
 i

�Adding Session and Transaction Management to XML Web

Services by Using SIP�

Submitted in partial fulfillment of the requirements for the degree of

Master of Network Computing (Minor Thesis)

By
Wei Dong

(ID:19082983)

Supervisor: Associate Professor Jan Newmarch

Submitted February, 2005

 ii

Declaration

I, Wei Dong (19082983), being a student at Monash University,
do declare that the minor thesis being submitted by me for an
assessment:
• is my own work and has not been copied from any other

sources,
• has not been submitted in any form for another degree or

diploma at any university or other institute of tertiary
education,

• affirm all information derived from the published and
unpublished work of others has been duly acknowledged.

Wei Dong
February 28th, 2005

 iii

Acknowledgements

Firstly, I thank my supervisor Associate Professor Jan
Newmarch for his patiently guidance and support throughout the
project. Also, his kindness help on both writing the thesis and
my studying life have brought me great encouragement to
accomplish this thesis.

Secondly, I would like to thank Judith Rochecouste and Bennos
Cousins for their assistance during writing my thesis.

Thirdly, I would like to thank my husband Xiaobo Liang, my
parents and parents-in-law. Without their love and supports, I
would not have pursued my dreams.

Finally, this thesis is dedicated to my incoming daughter. The
exciting feeling she brings to me could not be expressed in
words. I wish that she will own a healthy and happy life.

 iv

Abstract

In recent years, Web services have been drawing more attention to the computer

industry. They are built on open standards and provide solutions for integrating

applications across enterprises. The technologies behind Web services are Universal

Description, Discovery and Integration (UDDI), Web Services Description Language

(WSDL) and Simple Object Access Protocol (SOAP).

SOAP, which is responsible for delivering messages between applications, is a

connectionless protocol. In other words, SOAP cannot keep the session state between

SOAP calls. However, most E-commerce applications need to maintain the session

state and transaction information between Web services.

In this thesis, I propose and develop a new mechanism that supports Web services

session management by using Session Initiation Protocol (SIP) which is an IETF

standard session control protocol. In addition, based on this session management

mechanism, a simple transaction management solution for Web services is proposed.

Two systems are implemented as demonstrations for both mechanisms in this thesis.

Moreover, more functions can be added in these systems, such as security, service

registry and discovery.

 v

Table of Contents

List of Figures .. viii

List of Tables..x

Chapter 1 Introduction... 1

1.1 Overview .. 1

1.2 Research Questions... 2

1.3 Thesis Structure .. 3

1.4 Summary .. 4

Chapter 2 Background Knowledge ... 5

2.1 Introduction .. 5

2.2 Web Services .. 6

2.2.1 UDDI .. 7

2.2.2 WSDL... 7

2.2.3 SOAP.. 8

2.3 Session Management ...14

2.3.1 Session and Session Management Definitions14

2.3.2 Traditional session management techniques..15

2.3.3 Session Management on SOAP Messages ..18

2.4 Session Initiation Protocol (SIP) ..21

2.4.1 The Definition and Functions of SIP...21

2.4.2 SIP Protocol Stack..21

2.4.3 SIP Four Components...22

2.4.4 SIP Messages ...22

2.5 Session Description Protocol (SDP) ...26

2.5.1 SDP Definition and Fields ..26

2.5.2 A Simple Example of SDP message..27

2.6 Summary ...28

Chapter 3 Web Service Session and Transaction Managements Using SIP29

3.1 Introduction ...29

 vi

3.2 Overview of Transaction Management ...29

3.2.1 ACID Transactions ...29

3.2.2 Web Services Transaction Management ..30

3.3 Hypotheses ..33

3.4 Web Services Session and Transaction Management Implementation Gaps ..33

3.4.1 Session Management Implementation Gaps..33

3.4.2 Transaction Management Implementation Gaps..................................35

3.5 The Aims of This Thesis ..35

3.5.1 Two-Level Implementation...35

3.6 Summary ...37

Chapter 4 Session Management on Web services by Using SIP38

4.1 Introduction ...38

4.2 System Analysis...39

4.2.1 Introduction of the Online Video Shopping Web Services System.......39

4.2.2 Basic SOAP System Entities ..40

4.2.3 SIP Session Establishing Process within One Domain41

4.2.4 Architecture..43

4.2.5 Session Establishing ...45

4.2.6 Web Services Invoking ...46

4.2.7 Session Terminating ...47

4.3 System Design ...47

4.3.1 Package Diagrams of the Online Video Shopping Web Service System

...47

4.3.2 Class Diagrams for Online Video Shopping Web Service System50

4.3.3 Sequence Diagrams of the Online Video Shopping Web Service System

...55

4.4 Deployment ...63

4.5 Implementation Discussion ..64

4.5.1 SIP Server Implementation...64

4.5.2 The Communication Implementation of SOAP Requests and Web

 vii

Services ..65

4.6 Summary ...69

Chapter 5 Transaction Management on Web services by Using SIP70

5.1 Introduction ...70

5.2 System Analysis...70

5.2.1 Introduction of the E-banking Web service system..............................70

5.2.2 Architecture..71

5.3 System Design ...72

5.3.1 Package Diagram of the E-banking Web Service System....................72

5.3.2 Class Diagram of Transaction Manager ..74

5.3.3 Sequence Diagrams ..75

5.4 System Deployment ...80

5.5 System Testing...81

5.6 Summary ...85

Chapter 6 Evaluation and Conclusion ...87

6.1 Research Summary ..87

6.2 Research Questions..89

6.3 Evaluation..90

6.3.1 Session Management Mechanism Evaluation90

6.3.2 Transaction Management Mechanism Evaluation92

6.4 Hypotheses Results ..93

6.5 Future Work...93

References..95

Appendix A Glossary..101

 viii

List of Figures

Figure 1 Roles and Their Interactions in a Service-Oriented Architecture 6

Figure 2 The SOAP Message Structure.. 8

Figure 3 A SOAP Message Embedded in an HTTP Request......................................10

Figure 4 A SOAP Message Embedded in an HTTP Response11

Figure 5 SIP Protocol Stack (From [41])...22

Figure 6 SIP Request Message Format (From [41]) ..23

Figure 7 SIP Response Message Format (From [41]) ..24

Figure 8 Standard Peer To Peer SIP Session Sequential Diagram25

Figure 9 A SDP Message Example..27

Figure 10 Relationship between Specifications and Transaction Protocols (From [48])

..31

Figure 11 A Basic SOAP System Architecture (From [3]) ...41

Figure 12 SIP Session Establishing Process within One Domain (From [32])42

Figure 13 Use Case Diagram for Session Management on Web Services44

Figure 14 Architecture of the Online Video Shopping Web Services System.............45

Figure 15 Session establishing between the Client and the SIP server46

Figure 16 Web Services Invoking between the Client and the Service Server............46

Figure 17 Session Termination between Client and Online Video Shopping Web

Service System ..47

Figure 18 The First two package layers of the Online Video Shopping Web Service

System...48

Figure 19 SIP Package Diagram ...49

Figure 20 Application Package Diagram...49

Figure 21 Soapheader Package Diagram...50

Figure 22 SIP Server Part Class Diagram..51

Figure 23 Video Service Class Diagram..53

Figure 24 Session Establishing Sequence Diagram ...56

 ix

Figure 25 Web Service Invoking Sequence Diagram...59

Figure 26 Session Terminating Sequence Diagram ...62

Figure 27 Deployment Diagram of the Online Video Shopping Web Services System

..63

Figure 28 Session ID Checking and Getting Code Segment in VideoService66

Figure 29 SOAPRequestHandler Class Code Segment..67

Figure 30 SOAPResponseHandler Class Code Segment ...67

Figure 31 Specifying Handlers in Deploy.wsdd File ...68

Figure 32 Use Case Diagram of Transaction Management on Web Services71

Figure 33 Architecture of the E-banking Web Services System.................................72

Figure 34 E-banking Web Services System Package Diagram...................................73

Figure 35 Transaction Manger Class Diagram ..74

Figure 36 Sequence Diagram of Transferring Money from Bank A to Bank B77

Figure 37 Sequence Diagram of Transaction Rollback Procedure79

Figure 38 Deployment diagram of the E-banking Web Services System80

Figure 39 Bank A�s Web Service Code Segment ...82

Figure 40 Transaction Manager Code Segment ...83

Figure 41 John�s Transaction Result ...85

Figure 42 Kate�s Transaction Result ...85

 x

List of Tables

Table 1 SIP Six Methods and Their Functions (From [35])23

Table 2 SIP Response Classes (From [35])..24

Table 3 SIP Message Headers (From [35])..25

Table 4 SDP Field List in Their Required Order (From [36])27

Table 5 Classes Function Comparison between Video Store Web Service and

Transaction Manager ...75

Table 6 Bank A Accounts Detail ...83

Table 7 Bank B Accounts Detail ...84

 1

Chapter 1 Introduction

1.1 Overview

The Internet has brought great changes to our daily lives in the last few decades. E-

mail has taken the place of paper communication. Online conferences allow people to

talk just as in face-to-face meetings even they are long distance away. The Internet

collects huge amounts of information which enables people to know events which

have happened throughout the world without leaving their home. Some people now

describe the world as a global village.

People are no longer only satisfied with surfing static HTML (Hypertext Markup

Language) Web pages. They prefer interactive activities and Web pages that are

generated to handle the information they input. Fortunately, dynamic Web page

technologies have made this possible, although some of these interactions just involve

inputting and submitting simple HTML forms.

With the development of network and distributed programming technologies, more

and more software services are added in the internal network. For instance, airline

companies can provide timetable services for aircrew and booking clerks. If these

services could be integrated across enterprises and published on the Internet, it would

bring considerable benefits to many companies. However, this requirement can still be

out of the reach of dynamic Web page technologies, as different companies often use

different technologies to implement their Web sites. In addition, it is difficult to

accomplish application integration across enterprises without open standards.

Recently, Web services which are built on open standards have been garnering much

attention in the computer industry. Web services offer convenient standard ways to

open up the functionality between different applications and to provide solutions

when executing business transactions across enterprises.

 2

The technologies behind Web services are Universal Description, Discovery and

Integration (UDDI), Web Services Description Language (WSDL) and Simple Object

Access Protocol (SOAP). UDDI provides mechanisms for Web services registration

and finding; WSDL is responsible for describing Web services, and SOAP can be used

to carry remote method calls and their replies. These technologies have been

standardized by the World Wide Web Consortium (W3C) and generally accepted by

computer industry.

Although Web services are widely used in industry projects, some problems have

arisen. One is that SOAP, which is based on an XML (Extensible Markup Language)

format to transport messages between applications, is a connectionless protocol. In

other words, SOAP cannot keep the session state between SOAP calls. However, in

most E-commerce applications, such as a �shopping cart� or transferring money

between banks, the session and transaction states need to be maintained. The

traditional techniques: cookies, URL rewriting and hidden form information are not

suitable to manage SOAP sessions and transactions. Consequently, new mechanisms

need to be invented to manage sessions and transactions for Web services.

1.2 Research Questions

The objectives of this thesis are investigating new mechanims to use an IETF (Internet

Engineering Task Force) standard session control protocol, Session Initiation Protocol

(SIP), to manage sessions and transactions for Web services.

The major research questions addressed by this thesis are:

Question 1 is whether SIP can be used to manage sessions and transactions for Web

services.

Question 2 is how to inform Web services the beginning and the ending of a Web

service session by using SIP.

 3

Question 3 is how to manage multiple sessions and transactions on the Web service

server.

Question 4 is how to keep the session state between the client application and the

Web service server during communication.

If SIP can be used to manage sessions for Web services, it will provide a standard

manner for establishing, modifying and terminating a Web services session. This

thesis proposes a mechanism of using SIP to manage Web services sessions. Based on

this mechanism, a simple solution for Web service transaction management is

provided. The research hypotheses and the implementation gaps of using SIP to

manage sessions and transactions on Web services are discussed in Chapter 3.

1.3 Thesis Structure

The structure of this thesis is as follows:

Chapter 2 describes the background knowledge of Web services and its three

components UDDI, WSDL and SOAP. This chapter also reviews the most frequent

session management techniques used for Web-based applications and their limitations

when applied to manage SOAP sessions. Finally, a brief introduction to SIP and its

related protocol Session Description Protocol (SDP) are provided.

Chapter 3 presents the current status of Web services transaction management and

then the research hypotheses and the session and transaction management

implementation gaps are listed. Following that, this chapter proposes the aims of this

thesis. It also discusses two systems, an Online Video Shopping Web Services System

and an E-banking Web Services System, which are developed as demonstrations in

this thesis.

Chapter 4 investigates the mechanism of using SIP to manage sessions on Web

services. In this chapter, the Online Video Shopping Web Services System is

 4

developed. The supporting technologies used in the implementation are also briefly

described.

Chapter 5 investigates the mechanism of using SIP to manage transactions on Web

services. Based on the previous system, the E-banking Web Services System is

implemented in this chapter.

Chapter 6 first evaluates the mechanisms proposed in this thesis, and then the

research summary is provided. Finally, it outlines possible future work.

1.4 Summary

The three components, UDDI, WSDL and SOAP, enable Web services to integrate

applications running on different platforms. However, there is no formal definition for

managing sessions on SOAP messages. In most E-commerce applications, the session

state needs to be maintained. Thus, new mechanisms need to be invented to manage

sessions for Web services. The contributions of this thesis are: firstly, instead of

creating a new protocol to manage sessions for Web services, it uses a standard

session control protocol — SIP to accomplish this goal which enhances the

extensibility of Web services. Secondly, based on the proposed mechanism, this thesis

provides a simple solution for Web service transaction management which conforms

to the two-commit protocol and can be easily extended by adding more Web services

and security solutions. Two demonstration systems — an Online Video Shopping

Web Services System and an E-banking Web Services System are implemented to

accomplish the proposed session and transaction management mechanisms in this

thesis.

 5

Chapter 2 Background Knowledge

2.1 Introduction

With the rapid development of computer network technology, distributed programs

have been used for information exchanging and services sharing. These distributed

program technologies include Sun Remote Procedure Call (RPC) system, Microsoft

Component Object Model (COM), Distributed Component Object Model (DCOM)

and Common Object Request Broker Architecture (CORBA).

However, when these programs are applied widely, some of drawbacks are observed.

For example, in Sun�s RPC system, a server might provide many services. After a

client sends a request to the server with specified service name and parameter values,

the server would send back a response value from one of its services. The response

value which is represented in binary form is dependent on operating system, hardware,

and programming languages. Although Sun specified a standard binary format to

encode the parameter values, representing the values is still a problem. In addition, the

proprietary ownership of Microsoft�s COM and DCOM and CORBA�s confusing IDL

(Interface Definition Language) and complex ORB (Object Request Broker) system

have driven programmers to find a standard, cross-platform, language-independent

technology to implement distributed system. The advent of Web services makes these

dreams into reality [1].

This chapter is structured as follows. Section 2.2 provides the background

introduction of Web services and the technologies behind it. This is followed by an

overview of frequently used session management techniques in Web-based

applications in section 2.3. Section 2.4 introduces Session Initiation Protocol (SIP)

and its messages. Section 2.5 provides a brief introduction of Session Description

Protocol (SDP). Finally, section 2.6 summarizes this chapter.

 6

2.2 Web Services

In this thesis, the term Web service refers to a software system which supports the

interoperable interaction between different machines over a network. Web service

makes use of WSDL to describe its interface. Other systems can invoke Web services

by using SOAP messages, which is typically transported by HTTP (Hypertext

Transfer Protocol) [2].

Web services are based on a Service-Oriented Architecture (SOA) where all the

software systems are distributed as a set of services. In order to allow these Web

services to be used by other systems, there needs to be a formal mechanism to

describe, discover and invoke services. Figure 1 illustrates the three basic roles and

the interactions between the roles in the Service-Oriented Architecture [3].

Figure 1 Roles and Their Interactions in a Service-Oriented Architecture

From Figure 1, it can be seen that a Service-Oriented Architecture has Service

Provider, Service Registry and Service Consumer three roles. The service provider�s

Service Registry

Service Consumer
Service Provider

Web Service
Description

Find Publish

Bind

 7

main task is to implement the functions of the Web service. After that, the provider

should use a standard way to describe the interface for these functions. Finally, the

interface should be published to a service registry to allow the service consumer to

discover the services [3].

The service registry can be regarded as a Web services library. It accepts all Web

services published by service providers, and displays them to service comsumers.

Through this way, the service comsumers can find the information on how to bind and

invoke the Web services [3].

The service consumer utilizes the Web services offered by service providers to gain

useful information. Firstly, the service consumer extracts the service interface

information from service registry. From the services interfaces, the service consumer

will know the method names, parameter data types and transport protocols to invoke

the method. Then it uses this information to bind with the Web services. Finally, the

service consumer can invoke the Web services. The technologies supporting these

three basic roles are UDDI, WSDL and SOAP.

2.2.1 UDDI

Universal Description, Discovery and Integration (UDDI) acts as the service registry

in Web service Service-Oriented Architecture. It specifies how a Web service registers

its service information to a service depository and allows service consumers to find

those registered services and to use them [4]. In other words, UDDI supplies a register

mechanism for distributed Web services and offers a way for service consumers to

find the services. Its function is similar to the Naming Services of CORBA and RMI

(Remote Method Invocation) [5].

2.2.2 WSDL

Web Services Description Language (WSDL) is an XML based format to describe

 8

Web services as collections of communication end points that can exchange certain

messages [6]. When a Web service publishes its service to a UDDI registry, it is the

WSDL document which is used to describe that Web service. In fact, the WSDL

document provides a Web service�s interface for the user to bind and communicate

with the service, just as the IDL of CORBA [7].

2.2.3 SOAP

• Definition and Structure

Simple Object Access Protocol (SOAP) is a lightweight protocol which allows

applications to exchange information in a decentralized, distributed environment. It is

XML based format to construct messages, which can be not only exchanged over a

variety of protocols but also independent of particular programming languages [8].

The following figure is a pictorial representation of the SOAP message structure. (see

Figure 2)

Figure 2 The SOAP Message Structure

From Figure 2, it can be seen that a SOAP message consists of an envelope, an header

and a body. The envelope, as the top level element of the XML document presenting

in the SOAP message, contains a local name, a namespace declaration, zero or more

SOAP Header

(Optional)

SOAP Body

(Mandatory)

SOAP Envelope

SOAP Fault

 9

namespace qualified attribute information items, and one or two child elements — an

optional header and a mandatory body [8]. Although the SOAP header is an optional

child element in the SOAP envelope, it provides greater extensibility to SOAP

messages, thus allowing applications to extend the messages by adding information,

such as authentication and transaction management, to the header element [9]. The

SOAP body is a mandatory child element in the SOAP envelope. It offers a

mechanism for exchanging information with the SOAP message recipient. It may

have a child element called �SOAP Fault� which is used to carry error and status

information [8]. To summarize, the function of the SOAP body is encapsulating RPC

calls and reporting errors.

• SOAP messages example in Remote Procedure Calls (RPC)

The W3C SOAP 1.2 Part 0: Primer document [10] claims that using XML to

encapsulate remote procedure call functionality is one of the design goals of SOAP

Version 1.2. Another part of this document �SOAP Version 1.2 Part 2: Adjuncts� [11]

defines a standard for the RPC invocations and responses carried in SOAP messages.

Figure 3 and 4 are examples of SOAP messages embedded in an HTTP request

(Figure 3) and a corresponding HTTP response (Figure 4). They demonstrate how

SOAP makes use of XML vocabulary to encode parameters and to return values in its

messages.

 10

Figure 3 A SOAP Message Embedded in an HTTP Request

POST /axis/ProductsPriceQuery.jws HTTP/1.0

Content-Type: text/xml; charset=utf-8

Accept: application/soap+xml, application/dime, multipart/related, text/*

Host: 127.0.0.1

SOAPAction: ""

Content-Length: 437

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <getProductPrice

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <productName xsi:type="xsd:string">watermelon</productName>

 </getProductPrice>

 </soapenv:Body>

 11

Figure 4 A SOAP Message Embedded in an HTTP Response

In this example, a Product Price Query Web service is created to answer the

getProductPrice SOAP requests. The first six lines in Figure 3 and the first four lines

in Figure 4 are the standard HTTP header. The SOAP message, as the HTTP message

payload is presented in the body. From the SOAP request message, it can be seen that

the SOAP body carries a product name �watermelon� as the parameter to query its

price. After the server invokes the request�s remote procedure, the Product Price

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Server: Apache-Coyote/1.1

Connection: close

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

<getProductPriceResponse

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <getProductPriceReturn xsi:type="xsd:string">

 watermelon price is $2 per kilo

 </getProductPriceReturn>

 </getProductPriceResponse>

 </soapenv:Body>

</soapenv:Envelope>

 12

Query application gets the price of the watermelon and then inserts the answer in the

getProductPriceResponse tag of the SOAP response message. Note that the SOAP

header element is omitted in this example.

• The advantages and disadvantages of using SOAP in Web services comparing

to other distributed computing techniques

SOAP possesses many advantages Compared to existing distributed computing

techniques, such as Sun�s ONC RPC (Open Network Computing Remote Procedure

Call)[12], Microsoft�s DCOM, CORBA�s Internet Interoperable ORB Protocol (IIOP)

and Java RMI.

Firstly, SOAP enables universal communication between applications and services

through the Internet. Anyone who has tried to integrate programs across DCOM and

CORBA/IIOP should know that doing so is time consuming and expensive [13].

Unlike CORBA/IIOP, DCOM and RMI protocols, which use binary formats for the

remote service invoking, SOAP, with the help of XML, uses text format (Unicode) to

organize the exchanging data [14]. Because XML is a text-based, platform and

language independent method of describing data, it enables SOAP messages to be

both human and machine readable [13]. By sharing the same features as XML

described above, SOAP can accomplish information exchange between different

applications which are implemented in different programming languages and running

on variety of platforms. For example, a client application written in Microsoft Visual

Basic could use SOAP to access a method in a CORBA object running on a Linux

platform.

Secondly, utilizing HTTP as its transport protocol, SOAP eliminates firewall barriers.

CORBA/IIOP and Java RMI use object methods for RPC calls which are often denied

by firewalls or proxy servers because of security constraints. Therefore, CORBA/IIOP

and RMI are mainly used in Local Area Network (LAN). In contrast, SOAP exploits

HTTP, a standard transport protocol in the Internet, to bridge the communication

 13

between different organizations located behind firewalls [15], which makes it easier

for designers to develop their distributed systems in Wide Area Network (WAN).

Finally, SOAP not only works with HTTP but also with other transport protocols such

as SMTP (Simple Mail Transfer Protocol), FTP (File Transfer Protocol) [14], WAP

(Wireless Application Protocol) [16] etc., which makes SOAP widely used in many

applications and products. For instance, Liu C.C etc. [16] have set up a wireless

online teaching system using SOAP; Microsoft UPnP (Universal Plug and Play) [17]

uses SOAP to carry control messages between the control points and service devices.

CORBA and RMI have an advantage in keeping session information. They make use

of �threads� to identify the communication between the client and the server. TCP

(Transmission Control Protocol) [18], which is a connection-oriented transport

protocol, acts as the keeper of the client and the server session states. Therefore, they

can be easily used in developing decentralized network applications. In contrast,

SOAP has its own disadvantage in this aspect. As standard HTTP is a stateless

protocol [19] , SOAP naturally follows the HTTP request / response message model

by providing SOAP request parameters in a HTTP request and SOAP response

parameters in a HTTP response. Therefore, there is no session control on SOAP. This

means that communication is only established for the duration of sending a request

and receiving a response. With SOAP being widely used in Web services especially in

E-commerce, a session is needed to be added to SOAP messages so as to provide

stateful services, such as �shopping cart�, between participants. Unfortunately, the

SOAP specification does not say anything about session management on SOAP

messages. In other words, there is no standard mechanism to manage SOAP session

information.

In order to keep a session state between the client and the Web server, some

technologies are invited to manage the session in different methods. The following

section introduces the basic concepts of session and session management and

 14

evaluates some techniques used to manage the session in HTTP, HTML and SOAP.

2.3 Session Management

2.3.1 Session and Session Management Definitions

A session is defined as �Stateful connection between two parties during which one or

more communications take place� [20]. The management of a session should include

the processes of starting, joining, leaving, terminating and browsing the situations of

the session across the network [21].

There are two main issues that need to be solved in session oriented communication

applications. One is how to manage multiple sessions on the server side; the other is

how to keep the state between the client and server during communication.

Keeping session state is important for the communication in the network. In the OSI

(Open Systems Interconnect) seven-layer model, TCP, which belongs to the transport

layer, is a connection-oriented transport protocol. TCP provides a way to set up and

manage the session between two machines through the designated ports on those

machines [22]. In fact, TCP makes use of a pair of sockets to establish the connection

between two machines in the network. After the sockets in both machines have set up

the connection, corresponding processes are going to keep the duplex communication

state between them [18].

To find a new way to manage sessions for Web services, an overview of traditional

session management techniques in Web-based applications is given, and some new

session management methods on SOAP messages are explored in this section.

 15

2.3.2 Traditional session management techniques

• Session Management in TCP/IP and HTTP

In the IP (Internet Protocol) networking stack, HTTP belongs to the application layer

and sits on top of the TCP. However, as mentioned before, HTTP is a stateless

protocol, which means that the web server will not keep the client�s state or the user�s

personal information. For example, when a web server receives an HTTP request, it

does not know whether the request is sent by a new user or a previous user. In many

E-commerce applications, keeping client�s information is an important requirement. In

order to keep the session information for a user during a sequence of requests, CGI

(Common Gateway Interface) and Servlet have been invented to overcome this

restriction and to manage the session state for the Web users.

In the early development of the World Wide Web, the web server had to create

separate processes in the OS (Operation System) to handle the requests from different

browsers, with the aim of dynamically generating response pages. CGI allowed these

separate processes to read data from an HTTP request and to write data to an HTTP

response [23]. For every new user, CGI creates a file to store session information and

an ID number that corresponds to the user of that session. This information will be

written as part of every URL (Uniform Resource Locator) [24]. However these

methods are platform-dependent and expensive in terms of processor and memory

resources [22].

Servlet is another technology that can be utilized for dynamically constructing web

pages using the HTTP request. The session management is implemented by a group of

classes, �namely the Session Tracking API� [25]. When a browser sends a request to a

Web server, a Servlet is invoked. It will create an HttpSession object and a cookie

object. The cookie object will be transported to the browser through the HTTP header

and saved on the client side. The cookie object can be used to maintain the state and

to collect users� information such as shopping cart data and so on. The HttpSession

 16

object will be saved on the server side, and used to store and retrieve application layer

data associated with the client. Every cookie object has a session identifier which is

linked with the HttpSession object. Servlet uses the cookie identifier to track Web

users and to find the corresponding HttpSession objects on the server. In this way,

Servlet can manage the session for Web applications.

Cookies, as defined by Peng, W. and Cisna, J. [26], are: �small data structures sent

from a Web server to your browser and saved on your hard drive in a text file. They

are nothing more than a string of characters (letters and numbers) that store certain

pieces of information about you.� [26] Because of simple implementation and

anonymous session tracking property, the cookie technique has been widely used in

practice [25]. Most browsers know that they need to retrieve the cookie name and

value pair from the HTTP header and to send them back to the server during the

communication between the client and the server. Powell [27] believes that using

cookies is a smart decision to meet many state management requirements.

Although the cookie technique is supported by most browsers, its limitations cannot

be ignored. Firstly, cookies are dangerous for clients when they shop on line. For

example, when a user purchases something through the Internet, there will be a unique

Web session between the browser and the Web server which is recorded by Web

session ID. From the session ID and session object, the Webmaster will know what

the user has purchased and his/her personal information including credit numbers. If

the Website leaves cookies on the user�s computer, the session ID can be found in the

cookie file. Because cookies are just plain text files, they are easy to read using any

text editor. Manipulating cookies is the primary way used by hackers to hijack web

sessions. In addition, hackers can also alter information within a cookie file. Therefore,

�a little trial and error can produce a real mess for innocent victims [28].� It can be

even more dangerous if hackers use proxy servers which are an intermediary between

Web server and browser. Hackers can intercept the cookie information and alter it. In

fact, any hyperlink on Web pages could be connected to a hacker�s proxy server.

 17

Unfortunately, a general Web surfer cannot distinguish between the real Website and

the hacker�s proxy server.

Secondly, a cookie is transparent to client users, which means they do not know where

the cookies come from, when they are saved on their computers and how they work in

their computers. This will lead users to worry about their privacy. Therefore, some

clients choose to deny cookies on their browsers. As a result, cookies lose their

function of adding session state information to HTTP. A new mechanism needs to be

introduced to provide cookieless session management for Servlet.

This new mechanism is URL rewriting. Instead of adding information in the HTTP

header, this technique embeds a session identifier in the requested URL and transmits

it back and forth between the client and the server [27]. A major drawback of this

mechanism is that the identifier, which usually is a number, is directly put into page

links. If the user bookmarks a page, the bookmark will include the Session ID.

Therefore, if they try to revisit that bookmark later, they will get a �page not found�

error because the session will have timed out. Moreover, this method may not work

well for complex applications and a session ID can be easily changed and edited by

hackers. Therefore, in term of security, it is not safe.

Cookies are dependant on adding sessions to HTTP layer and are allowed application

layer programming languages (such as Servlet) to access its content through a defined

mechanism in HTML [29]. SOAP is not solely dependent on the HTTP protocol and

is not a HTML file. This means that the cookie technique is not suitable for applying

to SOAP session management. Similarly, URL rewriting gives each user a specific

URL for �talking� to the web server, but this URL information cannot be transmitted

to the SOAP messages to make the SOAP store the session information [29].

 18

• Session Management in HTML

A simple approach of adding session management in HTML is hiding session

information in HTML forms. When an online user surfs a Web page and fills a form

on that page, the session ID will be hidden in the form and be transported between the

client and the server. This session ID will be easily found by search the source code of

the Web page. Because it is an HTML session specification, it cannot be used for

managing a SOAP session, as there is no HTML form in SOAP messages.

2.3.3 Session Management on SOAP Messages

SOAP provides a much more powerful interface for Web services and allows users to

make more complex method calls between different Web-based applications running

on various platforms. Therefore, many researchers and Web developers want to take

advantage of these features and use SOAP to enhance their Web application functions.

However, as mentioned above traditional session management techniques cannot

support SOAP session management. In order to use SOAP in Web services, two main

techniques are designed for adding session information to SOAP calls.

• Integration of session management into Web servers

In Tsenov�s [14] project named REGNET, Zap software is used to manage the session

for SOAP messages. The project�s aim is to �set up a functional Network of Cultural

Service Centers through Europe� [14]. They presented a solution for applying SOAP

protocol in E-commerce. As introduced by Tsenov, Zap is a software module which

belongs to the Apache Web server. It can hide complex session management. In the

project, the Apache Web server is used to provide HTTP service for SOAP calls.

The integration of session service into the web server has its advantages and

disadvantages. One advantage is that it is easy for operators to use the software and to

develop the whole system. The other one is that it alleviates the burden of maintaining

 19

the system and enhances the efficiency of the system [14].

Although, this method is easy for the developer and maintainer of the system, one

disadvantage cannot be ignored. Zap is a part of the Apache server, it may not

cooperate with other Web servers for session management. In other words,

compatibility with other Web servers is a problem for Zap. Furthermore, the session

management and the HTTP servers are bound tightly, thus the session information

will be lost when the server crashes. From the programmers� point of view, the session

management is like a black box. If the Web server crashes, they can do nothing to

recover the session information for the Web users. If this happens, it would undermine

Web users� confidence in E-commerce.

! Adding state context in the SOAP header

Another solution for adding session management on SOAP messages is by making

use of the SOAP header to provide stateful services. In Jeckle�s research [20] on

SOAP 1.2, the SOAP header has four features:

1. The SOAP header is basically raw information to SOAP messages

2. SOAP users can define the header by themselves

3. The SOAP header has its own namespace which is different from the SOAP

namespace.

4. The SOAP nodes, the intermediaries between the SOAP sender and the ultimate

receiver that can process parts of the transported information along the SOAP

message path, can deal with SOAP header information.

Meanwhile, a SOAP node, as describe in Jeckle�s presentation, has three other

corresponding attributes:

1. A SOAP node can process SOAP messages along their message path.

2. A SOAP node can split a SOAP header when it matches the actor defined in the

SOAP header.

3. A SOAP node can be located by a SOAP header using URI (Uniform Resource

 20

Identifier).

Based on these characteristics, Jeckle defined the context information in the SOAP

header. The items in the header include context ID, expire time, issuer and so on.

Jeckle asserted that this solution has infrastructure and programming language

independence, because it uses SOAP�s built-in extensibility mechanisms. By using

this solution, SOAP will not depend solely on HTTP to transport its messages, but

also can use other transport protocols, such as SMTP. In addition, SOAP can have

more chance to cooperate with many other programming languages besides Java.

However, Jeckle left the session management implementation to the Web developers.

This means that each developer has to choose his/her own mechanism to manage the

SOAP session information.

Microsoft Corporation also provides this solution for supporting the SOAP session.

They define the DSML (Directory Services Markup Language) SOAP session

namespace as follows:

xmlns=�urn:schema-microsoft-com:activedirectory:dsmlv2�

Three SOAP header elements, <BeginSession> <Session> <EndSession>, and their

specifications are also presented for operating SOAP sessions [30].

However, from the specification it can be seen that this version of a SOAP session is

still based on the cookie mechanism. It puts cookies in the <Session> tag, which is

included in the SOAP header [29]. Also, the <Session> element will be transmitted

between the client and the server just like HTTP cookies. The developers have to

make sure the client application treats the <Session> tags as HTTP cookies and sends

them back to the server with each request. Furthermore, this mechanism assumes that

SOAP is transported on HTTP which limits the cooperation between SOAP and other

transport protocols.

Based on the limitations of the existing solutions, a new way of adding session

 21

information for SOAP calls is needed. Session Initiation Protocol, which is a standard

session management protocol, is a method to accomplish this goal.

2.4 Session Initiation Protocol (SIP)

2.4.1 The Definition and Functions of SIP

SIP (Session Initiation Protocol) is developed by the Internet Engineering Task Force

(IETF). It is a standard application-layer control protocol for setting up, modifying

and terminating sessions regardless of media content [31]. The major applications of

SIP are Internet conferencing, Internet phone, Internet games and online chatting.

There are five main functions that SIP provides for operating the communication

between two end users. Firstly, it can find the called user location in the

communication. Secondly, SIP is able to determine the availability of the end user.

Thirdly, the communication media and its parameters will be discovered by SIP and

fourthly, another function sets up the session parameters for both called and calling

parties. Finally, SIP can manage the session �including transfer and termination of

sessions, modifying session parameters, and invoking services� [32].

2.4.2 SIP Protocol Stack

Figure 5 illustrates the protocol stack of SIP. SIP is an application layer protocol

which usually carries SDP in its body and utilizes TCP or UDP (User Datagram

Protocol) [33] to transfer its messages through the Internet. In the latest SIP

specification RFC 3261 [32], TLS (Transmission Layer Security) version 1.0 [34] has

been added to be another transport protocol for SIP. This means that SIP can use TLS

over TCP for encrypted transport with the additional capabilities of authentication

[35]. The complete forms for some of the abbreviations in Figure 5 are shown below:

o SDP : Session Description Protocol [36]

o SAP : Session Announcement Protocol [37]

 22

o RTP : Real-Time Transport Protocol [38]

o RTSP: Real-Time Streaming Protocol [39]

o IP : Internet Protocol [40]

Figure 5 SIP Protocol Stack (From [41])

2.4.3 SIP Four Components

SIP consists of four major components: SIP User Agents, SIP Registrar Servers, SIP

Proxy Servers, and SIP Redirect Servers. Firstly, SIP User Agents (UAs) can be

divided into UAS (User Agent Server) and UAC (User Agent Client). Usually, these

are end-user devices, such as PCs, telephones. Secondly, SIP Registrar Servers are

databases which contain the UAs addresses within one domain. Thirdly, SIP Proxy

Servers accept a session request from a UA, look up the callee address in SIP

Registrar Servers, and then send the inviting session request directly to the callee if

the callee is in the same domain. If not, the Proxy Servers will send the request to

another SIP Proxy Server. Finally, SIP Redirect Servers allow the SIP proxy Server to

allocate the callee address in a different domain [32].

2.4.4 SIP Messages

SIP is a text-based protocol, which means that the SIP messages can be read directly

by a user and are easier to extend with new features [42]. Actually, SIP is based on

I P

UDPTCP

SIP SAP

SDP

Application and System Control

RTP/RTSP

Audio and Video

Internet Layer

Transport Layer

Application Layer

 23

HTTP-like request and response model, so its messages can be divided into SIP

Request and SIP Response [32].

• SIP Request Messages

A SIP request consists of a request line, several messages headers, an empty line and a

messages body. Figure 6 shows the format of a SIP request.

Figure 6 SIP Request Message Format (From [41])

Basically, there are six methods that can be presented in the request line of SIP request

messages. The methods and their functions are listed in Table 1.

SIP methods Function description

INVITE Establish media session between user agents
REGISTER Register a user agent current contact IP address

BYE Terminate an established media session
ACK Acknowledge final responses INVITE requests

CANCEL Terminate pending searches or call attempts
OPTIONS Query a user agent�s capability and discover its current availability

Table 1 SIP Six Methods and Their Functions (From [35])

Request-line

Message headers

Empty line

Message body

 24

• SIP Response Messages

A SIP response consists of a status line, several messages headers, an empty line, and

a message body. Figure 7 shows the format of a SIP response.

Figure 7 SIP Response Message Format (From [41])

A SIP response message is generated by a SIP user agent server or a SIP server to

reply a user agent client request. There are six classes of SIP responses which can be

presented in the status line of the SIP response messages. The first five classes are the

same as HTTP; the last one is created for SIP. Table 2 lists the six classes and their

descriptions and actions.
Class Description Action
1xx Informational Indicates status of call prior to completion. If first

informational or provisional response.
2xx Success Request has succeeded. If for an INVITE, ACK should be

sent; otherwise, stop retransmissions of request.
3xx Redirection Server has returned possible locations. The client should retry

request at another server
4xx Client error The request has failed due to an error by the client. The client

may retry the request if reformulated according to response.
5xx Server failure The request has failed due to an error by the server. The

request may be retried at another server.
6xx Global failure The request has failed. The request should not be tried again

at this or other servers.

Table 2 SIP Response Classes (From [35])

• SIP Message Headers

Status-line

Empty line

Message body

Message headers

 25

SIP message headers are presented in both SIP request and response messages. The

commonly used headers are CALL-ID, CSEQ, FROM, TO, VIA, CONTENT-TYPE,

and CONTENT-Length [41]. These header fields and their descriptions are shown in

Table 3.

Headers Descriptions
CALL-ID Uniquely identify a call between two user agents
CSEQ Contain a decimal number which increase for each request
FROM Indicate the originator of the request
TO Indicate the recipient of the request
VIA Record the SIP request and response routes
CONTENT-TYPE Specify the Internet media type in the SIP message body
CONTENT-Length Indicate the number of octets in the SIP message body

Table 3 SIP Message Headers (From [35])

• A Simple SIP Session Establish Example

To make things concretely, a simple SIP session establish example is given below.

(Shown in Figure 8)

Figure 8 Standard Peer To Peer SIP Session Sequential Diagram

(F1 - F7 are SIP messages, From [31])

The processes of setting up and terminating a session between two peers consist of six

INVITE F1

(100 Trying) F2

180 Ringing F3

200 OK F4

ACK F5

Media Session

Bye F6

200 OK F7

USER A USER B

 26

steps which are showed in Figure 8. Initially, User A sends an INVITE message to

User B to initiate a session; then User B responds to User A by sending a 100 Trying

message, a 180 Ringing message and a 200 Ok message and tells User A that it agrees

to set up the session with User A. After User A receives these messages, it sends back

an ACK message and shakes hands with User B. A session now is set up and the

information can be transported back and forth between two peers. When User B wants

to finish the session, it sends a BYE message to User A. User A will reply with a 200

OK message to the other side and the session is finished.

In this example, User A can be regarded as a UAC whereas User B can be regarded as

a UAS. When a UAS receives an INVITE message, it needs to know what kinds of

media session the UAC wants to set up. At the same time, UAS also needs to know

how to distinguish different invitations from UAC when it gives a response. All these

jobs are done by reading the SIP message body information, which is a SDP message.

2.5 Session Description Protocol (SDP)

2.5.1 SDP Definition and Fields

SDP is developed by the IETF Multiparty Multimedia Session Control (MMUSIC)

working group [36]. Much like SIP, SDP is also a text-based protocol, which is used

to describe multimedia sessions for session initiation, session invitation and session

announcement [36]. It can be carried in Session Announcement Protocol (SAP),

Session Initiation Protocol (SIP), Real-Time Streaming Protocol (RTSP), electronic

mail using the MIME (Multipurpose Internet Mail Extensions) extensions, and the

Hypertext Transport Protocol (HTTP) [36]. Included in the SDP messages are session

names and purposes, the active time of the session, the media included in the session,

and receivers� information such as addresses, ports, formats and so on [36]. All the

SDP fields are listed in their required order in Table 4.

 27

Field Description Mandatory
v= Protocol version Yes
o= Owner/creator and session identifier Yes
s= Session name Yes
i= Session information No
u= URI of description No
e= Email address No
p= Phone number No
c= Connection information No
b= Bandwidth information No
z= Time zone adjustments No
k= Encryption key No
a= Attribute lines No
t= Time the session is active Yes
r= Zero or more repeat times No
m= Media information Yes
a= Media attributes No

Table 4 SDP Field List in Their Required Order (From [36])

2.5.2 A Simple Example of SDP message

A SDP message example is shown below. (See Figure 9)

Figure 9 A SDP Message Example

There are two important fields in Figure 9 that need to be explained here. The first one

is �o=�. It contains the session creator name �John�, and the session identifier

�20040607111144�, thus a SIP UAS can use this field to identify the session. Another

v=0

o=John 20040607111144 20040607111144 IN IP4 43.32.1.5

s=SDP Message

i=A SDP Example

c=IN IP4 225.45.3.56

t=2877631875 2879633673

m=video 23422 RTP/AVP 31

 28

important field is �m=�, which indicates the media type �video�, port number

�23422�, transmit protocol �RTP/AVP�, and the media format presenting in number

style �31�. By reading this field, a SIP UAS will know the media types that a UAC

wants to communicate with and which kinds of transport protocols are used in the

session.

2.6 Summary

In this chapter, Web service and the technologies behind, i.e. UDDI, WSDL and

SOAP were introduced. By comparing these with other distributed technologies such

as CORBA and RMI, the advantages and disadvantages of using SOAP in Web

services have been made obvious. SOAP can easily integrate Web-based applications

across different platforms and programming languages in WAN. However, there is no

standard way of managing the session on SOAP messages. Following that, current

session management techniques on HTTP, HTML and SOAP were reviewed. After

analyzing these session management techniques, it was believed that the techniques

based on HTTP and HTML to manage the session cannot be applied on SOAP

messages, and the current SOAP session management methods have their limitations.

Thus, a new method needs to be developed to manage SOAP sessions. Finally, SIP, a

standard session management protocol, and SDP, which can be used to describe a

session and is carried by SIP messages, are introduced. The aims of this thesis are

firstly to use SIP to add session management to SOAP messages, and secondly to do

the transaction management on Web services in an advanced stage. The next chapter

will present background on transaction management and propose the aims of this

thesis.

 29

Chapter 3 Web Service Session and Transaction

Managements Using SIP

3.1 Introduction

Some currently used session management techniques for Web-based applications and

SIP and SDP have already been introduced in Chapter 2. By using SOAP for

information exchanging, Web services technology enables companies to integrate

applications from disparate platforms and programming languages into a composite

application [43].

The primary objectives of this thesis are to propose and develop a new mechanism to

support session management on Web services, and then based on this mechanism, to

accomplish Web services transaction management. In this chapter, an overview of the

transaction management is described in section 3.2. Section 3.3 provides the

hypotheses of this research. After that, the implementation gaps of Web services

session and transaction managements will be discussed in section 3.4. Then, the aim

of this thesis is presented in section 3.5. Finally, section 3.6 provides the summary of

this chapter.

3.2 Overview of Transaction Management

3.2.1 ACID Transactions

ACID is an acronym for Atomic, Consistent, Isolation, and Durable [44]. The concept

of ACID transactions has come from database transaction and is widely used in

distributed database environment.

 30

ACID transactions identify a logical unit of work that is either completely

accomplished or done nothing at all [44]. In other words, the actions in a transaction

either all happen or are all undone. The four attributes of an ACID transaction are:

atomicity, consistency, isolation, and durability [45].

• Atomicity: The transaction is atomic. That is either all the actions occur or none

of them occur. If the transaction is interrupted and cannot be completed for any

reason, the state should be recovered as it was before the transaction happened

[45].

• Consistency: The transaction should keep the data in a consistent state. An

inconsistent state might happen during the transaction, but no other transaction

can access this inconsistent data at this time. When the transaction is finished, all

the inconsistent data will be eliminated [45].

• Isolation: Transactions are isolated from each other. That is, the effects of

concurrent transactions are not visible until one of the transactions is committed

[45].

• Durability: Once a transaction is committed, the effects of it should be guaranteed

to survive even if the system crashes [45].

The ACID transactions give a simple transaction management model which is

referenced by database programmers. When transactions happen simultaneously in a

distributed database environment, abiding by the ACID transactions principle is most

important.

3.2.2 Web Services Transaction Management

The ACID transactions have given a clear and simple model for programmers to

control transactions in a distributed environment. However, these require joined

applications and components to talk to each other under a highly coupled environment

[46]. Web services are usually loosely coupled applications, and not all business

 31

applications can be strictly implemented ACID transactions. Thus, Web service based

transaction management needs to be standardized.

In fact, transaction management on Web services is a new issue that is currently being

addressed by industry leaders [47]. The Arjuna Technologies, Fujitsu Limited, IONA

Technologies, Oracle Corporation, and Sun Microsystems have proposed the Web

Services Composite Application Framework (WS-CAF) specification [48]. Three

parts of specifications are included in WS-CAF specification: Web Services Context

Service Specification (WS-CTX) [49], Web Services Coordination Framework

Specification (WS-CF) [50], and Web Services Transaction Management

Specification (WS-TXM) [51]. The relationship between these three specifications

and transaction protocols is show in Figure 10.

Figure 10 Relationship between Specifications and Transaction Protocols (From

[48])

From Figure 10, it can be seen that an implementation of the WS-CAF consists of

three steps. Firstly, a context service needs to be set up to provide context

 32

management. Secondly, a Web services coordination framework can be build on the

context service to supply the message delivery function. Finally, a Web services

transaction management system can be added on the Web services coordination

framework to realize a variety of transaction management types.

The three Web transaction management models proposed by Bunting D. et al in the

Web Services Transaction Management (WS-TXM) specification [51] are the ACID

transactions model, the long running action model, and the business process

transaction model.

• ACID transactions model (TX-ACID) is the traditional ACID transaction and can

be used to interoperate the existing transaction infrastructures [51].

• Long running action model (TX-LRA) is based on the �all or nothing� atomicity

attribute of ACID transactions. The difference is that the activities in the long

running action model are not compulsory to perform all ACID transaction

requirements [51].

• Business process transaction model (TX-BP) is based on the business

specification to manage transactions. A business process transaction may consist

of ACID transactions or long running actions [51].

In general, ACID transactions are still the cornerstone in these three transaction

management models. However, because Web services can be applied to different

kinds of businesses, in some circumstances, such as long-lived applications, the

atomicity and isolation attributes cannot be strictly implemented according to the

ACID transactions.

In addition, the newest movement on Web service transaction management made by

W3C was the development of Web Services Choreography Description Language

(WS-CDL) [52]. The WS-CDL is an XML-based language which is independent of

business processes, allowing an interoperable framework between different platforms

and programming languages [52].

 33

To sum up, the WS-CAF and WS-CDL just give us a guideline to implement Web

service transaction management. According to Siegrist J.L. [47], Web services are a

relatively new technology, and many issues, such as transaction management, security,

interoperability etc, are needed to be considered. And the solutions of these problems

are new and not complete.

3.3 Hypotheses

Based on the literature reviewed in the above section and the previous chapter, a

number of hypotheses are generated for investigation.

Hypothesis 1: The standard session control protocol — SIP can be used to manage

sessions and transactions for Web services.

Hypothesis 2: Using SIP to manage sessions for Web services is more elegant and

general than Jeckle�s and Microsoft Corporation�s solutions.

Hypothesis 3: Using SIP to manage transactions for Web services can keep the

atomicity and consistency of the transactions.

Hypothesis 4: Using SIP to manage sessions and transactions for Web services

provides an easier solution on security issue than other solutions proposed so far.

3.4 Web Services Session and Transaction Management

Implementation Gaps

3.4.1 Session Management Implementation Gaps

There are three gaps in implementing session Management on Web services. They are

session description, the session information extraction from SOAP messages for Web

services and the session management mechanism based on Web services architecture.

As mentioned in chapter 2, some mechanisms have been used in adding session

 34

information for SOAP messages such as making use of HTTP cookies or by adding

session information in the SOAP header. The latter is recommended by W3C [8] and

is also adopted in this thesis. However, the session information inserted in the SOAP

header block varies. If two different Web services adopt same mechanism to add a

session identifier (ID) for their services, different customers, who belong to these two

Web services, might have the same session ID. When these two Web services

communicate with each other, the phenomenon of different sessions using the same

session identifier will occur. Thus, finding a standard way to uniquely identify a

session in cyberspace is the first issue in managing the Web service sessions.

To allow the Web services to identify the session information contained in SOAP

messages is the second implementation gap for session management. Traditional Web

servers are usually HTTP servers, such as Apache Tomcat, Microsoft IIS etc, which

can interpret HTTP requests and give HTTP responses. The bodies of the HTTP

requests can be HTML pages, Java Server Pages (JSP), Active Server Pages (ASP)

and so on. However, these kinds of Web servers cannot understand SOAP messages

unless they are equipped with a SOAP interpreter or equipped with a SOAP server.

Once a HTTP server has the ability to understand SOAP requests, it can recognize

methods and parameters in SOAP body messages, invoke the back end Web services

programs and give responses to them. This procedure simply follows the HTTP

request and response style which means that the Web services programs have no

opportunity to extract the session information included in SOAP headers. Therefore,

the second issue of managing Web service sessions that needs to be considered is how

to deliver the session information from a SOAP server to back end Web applications.

There is no formal definition on adding session management for SOAP messages, as

Newmarch J. has pointed out [29], �The current state of Web services with regard to

session management is: �roll your own��. This means that the Web services

programmers have to choose their own ways to develop the session management

mechanism for tracking the Web services session state. If every Web service has its

 35

own way to manage the session, it will lead to an interoperation problem between

Web services. For instance, if a user wants to buy a book online, and then rent a video

online and finally pay, it is impossible to manage this consumer behavior if the book

shop Web service and the video shop Web service use different session management

mechanisms. Hence, developing a new session management mechanism which

utilizes a widely accepted session management protocol and which is based on Web

service architecture is the third issue to be considered in this thesis.

3.4.2 Transaction Management Implementation Gaps

As described in Section 3.2, there is no complete solution for Web service transaction

management, and currently some industry leaders just provide some implementation

guideline. As a result, solutions to Web service transaction management are different

from business to business, depending on needs and complexity. Hence, a Web service

transaction management solution, which is simple to be implemented, easy to be

extended by adding other properties such as security and interoperability, is in urgent

demand. These are also the gaps for implementing Web service transaction

management.

3.5 The Aims of This Thesis

In order to fill in the gaps mentioned above, this thesis aims to develop a new session

management mechanism for Web services technology by using a standard session

control protocol SIP and then, based on this mechanism, to provide a simple Web

service transaction management solution and implement it in an E-banking Web

Services System.

3.5.1 Two-Level Implementation

• Web Services Session Management Implementation

For implementing the Web services session management mechanism, an Online

 36

Video Shopping Web Services System has been developed. Apache AXIS

(Apache eXtensible Interaction System) was chosen to act as SOAP server

Tomcat, which included in JWSDP 1.2 (JavaTM Web Services Developer Pack),

was the HTTP server. The client application for the Video Shopping System was a

Java application. The SIP server and the SIP client were developed in Java.

Microsoft Access was used to store the video data and customer information.

In the first level implementation, a Web service called �VideoService� which

provides online video shopping service for its customers was set up. A SIP server

was used to manage sessions between the client application and the

�VideoService�. A shopping cart, which associates with the session between the

client and the Web service, was created for every client and was used to record

the videos selected by the client.

• Web Services Transaction Management Implementation

Based on the first level implementation, an E-banking Web Services System was

developed which provided money transferring service from Bank A to Bank B. In

this system, two bank Web services were developed for supplying the money

transferal service. A �Transaction Manager� was introduced to manage the

transaction of transferring money. In fact, the transaction manager was also a Web

service, which was able to communicate with SIP server to get the session

information of the E-banking clients and to manage the money transferal

transactions for the clients.

In this system, the SOAP server and HTTP server were the same as the Video

Shopping System. The SIP server, the SIP client and the system client were all

developed in Java. Microsoft Access was chosen to store the bank account data.

 37

3.6 Summary

This chapter first introduced traditional ACID transactions and described the current

implementation state of Web services transaction management. Although industry

leaders have proposed some guidelines for implementing the transaction management

for Web services, a standard transaction management mechanism is still under

development. After proposed the research hypotheses, the Web services session and

transaction management gaps were listed. With the aim of addressing these gaps, this

chapter presented the objectives of this thesis and gave a brief introduction of the

following two systems — the Online Video Shopping Web Services System and the

E-banking Web Services System, which were implemented in this thesis. The next

two chapters will present the analysis, design and implementation of these systems in

detail.

 38

Chapter 4 Session Management on Web services by Using

SIP

4.1 Introduction

In the previous chapter the current implementation state of Web service transaction

management and the gaps in implementing Web service session and transaction

management were reviewed.

In this thesis, two Web service based systems�an Online Video Shopping Web

Services System and an E-banking Web Services System were developed to

accomplish the session and transaction management using SIP.

The first step to accomplish Web services transaction management is to provide a

session or context control for the Web services. In other words, the realization of the

Online Video Shopping Web Services System is a prior condition of the E-banking

Web Services System performance. Hence, this chapter focuses on the implementation

of Web services session management by taking the Online Video Shopping Web

Services System as the sample project. Based on the session management mechanism

used in the first project, the implementation of Web services transaction management

will be explained in the next chapter. The E-banking Web Services System will be the

example to demonstrate the implementation.

In this chapter, the system analysis is provided in section 4.2. Section 4.3 presents the

design of the Online Video Shopping Web Services System. The system deployment

is illustrated in section 4.4. This is followed by a system implementation discussion in

section 4.5. Finally, session 2.6 provides the summary of this chapter.

 39

4.2 System Analysis

4.2.1 Introduction of the Online Video Shopping Web Services

System

The Online Video Shopping Web Services System simulates a video store that sells

videos through the Internet. There are six functions provided by the video store Web

service and they are listed as below:

• List video category displays all the video categories in the store. The videos in the

shop are classified into different catalogues such as comedy, horror, tragedy and

drama, etc. It is convenient for customers (system clients) to look up their favorite

videos according to these categories.

• List Video lists all the videos for a given category. For example, if a user wants to

search a comedy video, he or she can choose the comedy category and then

require the system to list all the comedy videos.

• Add to Shopping Cart adds a given video item to the �shopping cart�. After a

customer selects a video, he or she can use this function to add the video item to

the �shopping cart�. Hence, this function offers a �shopping cart� for the customer

to keep the items that have been selected.

• Delete from Shopping Cart deletes a given video item from the �shopping cart�.

If a customer does not want to buy one or more video items in the current

�shopping cart�, he or she can use the delete from shopping cart function to �take

off� the videos. Therefore, the function is to allow customers to change their mind

and to delete one or more video items from their �shopping cart�.

• Get Video Items enables customers to review all the items in their current

�shopping cart�. After selecting some videos, a customer might need to have a

look at what is in the �shopping cart� and check whether they are videos that he or

she wanted.

 40

• Purchase sends the video order to the service provider (the video store). After a

customer selects all the videos, he or she decides to send the order to the video

store. The purchase function is used to input personal information and to buy the

videos in the �shopping cart�.

It is assumed that the client application knows where the video store Web service is.

Hence, the UDDI�s service registry role is not included in the system. The aim of this

project is to accomplish session management on Web services by using SIP. The

following parts of this section are organized as follows: firstly, a basic SOAP system

diagram is shown to illustrate the entities involved in a SOAP based Web service

system. Secondly, by analyzing the SIP session establishing process within one

domain, the useful SIP components for controlling the Web services session will be

established. Finally, the architecture of the Video Shopping Web Services System will

be given.

4.2.2 Basic SOAP System Entities

There are four entities involving in a basic SOAP system: a SOAP Client, a Web

server, a SOAP server and Web Services. (See Figure 11)

SOAP Client
Java Application
VB Application
C++ Application

Web
Server

SOAP over HTTP

SOAP
Server
[AXIS]

Web
Service

Web
Service

Web
Service

DB

DB

 41

Figure 11 A Basic SOAP System Architecture (From [3])

The functions of these entities are explained below:

• A SOAP Client sends SOAP requests and receives SOAP responses over HTTP.

The SOAP client can be an application which is developed in Java, Visual Basic or

C++.

• A Web Server receives SOAP requests and gives responses to a SOAP client. In

order to parse both the HTTP header and SOAP messages sent from clients, a Web

server needs to contain a SOAP server.

• A SOAP Server (or a SOAP Engine) parses SOAP request messages, invokes the

appropriate Web service, and generates SOAP response messages to SOAP clients.

AXIS is version 3 of Apache SOAP, in which Java is used to implement standard

SOAP. Axis is the SOAP server to be used in the system.

• Web Services provide services for the clients to use. The functions of the services

are based on the business requirements. Web services can have back end database

program support for providing more powerful services. Web service programs can

be developed in Java, C++, and Visual Basic etc.

4.2.3 SIP Session Establishing Process within One Domain

In chapter 2, we have introduced four components of SIP: User Agents (UAs) (User

Agent Client and User Agent Server), Registrar Servers, Proxy Servers, and Redirect

Servers. In fact, not all these components need to be presented within one domain. For

example, SIP Redirect Servers are only used when a user agent wants to set up a

session with another user agent that is located in a different domain. However, to

simplify the procedure this situation is not considered at this stage. Figure 12 shows

the session establishing processes within the same domain.

 42

Figure 12 SIP Session Establishing Process within One Domain (From [32])

The process of setting up a SIP session within one domain is: first, User Agent A and

User Agent B register their IP addresses with the SIP Registrar Server. Then User

Agent A sends an inviting call to the SIP Proxy Server and tells the proxy that it wants

to communicate with User Agent B. After that, the SIP Proxy Server will query User

Agent B�s address information in the SIP Registrar Server and the SIP Registrar

Server will respond with the address of User Agent B. Then the SIP Proxy Server will

send the session invitation to User Agent B. User Agent B will respond to the SIP

Proxy Server to inform that it is ready to communicate with User Agent A. Then the

SIP Proxy Server passes this information to User Agent A and the SIP session is

established. User Agent A and User Agent B can communicate with each other

through the session[32].

SIP is widely used in the Internet phone and Internet conferencing areas, such as VoIP

(Voice over IP) applications, which allow voice and data to transfer over the Internet

[41]. In these applications, the addresses of the User Agents are important information

that the applications need to keep and update, because these addresses are the key clue

for finding and sending phone calls to User Agents. The registrar server is responsible

 43

for receiving registration requests from UAs and for providing the addresses of UAs

when it receives a proxy server�s address query. However, in a Web service system, a

Web server is not concerned about its clients IP addresses. Every client can just surf

the service without any operation. Under these circumstances, there is no need to keep

all clients IP addresses. Thus, the registrar server is not useful for controlling the Web

services session in this system.

If the registrar server is excluded from the system architecture, there is no reason for

keeping the proxy server in the system because the main function of the proxy server

within one domain is accessing the registrar server and helping to decide where the

callee party is. The proxy server does not issue requests or parse SIP message bodies

[35]. Therefore, there is also no need to maintain the proxy server in this system

architecture.

Until now, the remaining components in Figure 12 are User Agent A and User Agent

B. Actually, the User Agent A can be regarded as a SIP User Agent Client (UAC) and

User Agent B can be regarded as a SIP User Agent Server (UAS). If the UAC knows

the UAS address, the session establishing process will be as simple as setting up a

session between two peers, which has been introduced in section 2.4 of chapter 2.

Based on the analysis of above, the SIP components used in the Online Video

Shopping Web Services System are a SIP UAS and a SIP UAC. It is assumed that the

UAC will already know the UAS IP address regardless of whether they are located

within the same domain or not.

4.2.4 Architecture

As shown in Figure 13, a Web service user can establish a session with the system and

then invoke Web services provided by a service provider. After the user finishes all

activities with the Web services, he or she can terminate the established session.

 44

Figure 13 Use Case Diagram for Session Management on Web Services

Figure 14 illustrates the architecture of the Online Video Shopping Web Services

System. On the client side, there is a client application which allows users to set up a

session with a SIP server and to access the video shopping Web services. The SIP

client included in the client application can be regarded as a SIP UAC, and the SIP

server can be regarded as a SIP UAS. The latter is used to manage the session between

the client application and the Web services. The Web service server contains a HTTP

server, an AXIS SOAP server, a database and the Web services published by the

service provider.

 45

Figure 14 Architecture of the Online Video Shopping Web Services System

4.2.5 Session Establishing

With the purpose of using SIP to manage the session for Web services, a SIP server

needs to be running before a user logs on the client application. The SIP server opens

a server socket to accept the SIP client messages. The process of session establishing

is shown in Figure 15. When the Web service user starts the client application and

logs onto the system, an invitation message is sent from a SIP client to the SIP server.

Then the SIP server will send a 200 OK message to the SIP client. Next the SIP client

sends an acknowledge message to the SIP server and the session is established

between the client application and the SIP server. Now the client application has got

an unique session identification (ID), which is also recorded by the SIP server.

 46

Figure 15 Session establishing between the Client and the SIP server

4.2.6 Web Services Invoking

As illustrated in Figure 16, a user can access all the services offered by the service

provider, after he or she gets the session ID. The session ID will be inserted into the

SOAP header element and carried by every SOAP message which is transmitted

between the client application and the service server. When the service server receives

a user�s SOAP request which contains a new session ID, it will check that session ID

with the SIP server and to find out whether the user has already set up a session. If so,

the service server will first recode the session ID and then create a �shopping cart� for

the user; and finally send a corresponding SOAP response message to the client.

Figure 16 Web Services Invoking between the Client and the Service Server

 47

4.2.7 Session Terminating

Once a Web service user finishes a video shopping activity, he or she should terminate

the current active session or exit the client application system. During this procedure,

the SIP client first sends a BYE message to the SIP server. After the SIP server

receives this message, it informs the service server that the user�s session is

terminated and then sends a 200 OK message to the SIP client. As a result, the session

established between the client application and SIP server is terminated and the session

ID record is deleted from both the SIP server and the Web service. The process of

terminating a session is shown in Figure 17.

Figure 17 Session Termination between Client and Online Video Shopping Web

Service System

4.3 System Design

4.3.1 Package Diagrams of the Online Video Shopping Web Service

System

The packages of the system consist of three layers. The first layer is the

sipsoapsession package. This package includes four sub-packages: a sip package, an

application package, a soapheader package and an util package, which comprise the

second layer of the package. Figure 18 shows the first two package layers of the

 48

Online Video Shopping Web Service System.

Figure 18 The First two package layers of the Online Video Shopping Web

Service System

There of the second layer packages (sip package, soapheader package and application

package) contain third layer packages (See Figure 19, 20, 21).

• Sip package: This package includes three third layer packages. They are a client

package, a message package and a server package. Figure 19 illustrates the

package diagram of the sip package. The client package includes the class for

implementing SIP client which can be used for sending and receiving SIP

messages between the Web service user and SIP server, such as session

establishment messages and session termination messages. The message package

contains the classes for generating and processing SIP messages which are

transmitted between the SIP client and the SIP server. The SIP server

implementation classes are included in the server package.

 49

Figure 19 SIP Package Diagram

• Application package: There are three sub-packages contained in this package and

they are a client package, a server package and a commonobj package. As

demonstrated in Figure 20, the classes included in the commonobj package are

used by both the client and the server packages. The classes in the client package

are composed the system client application. All the Web services implementation

is enclosed in the server package.

Figure 20 Application Package Diagram

• Soapheader package: axisheader package is the only sub-package contained in

the soapheader package and it is used to generate an AXIS soap header element

that can contain the session ID within it (See Figure 21). This package can be

extended by adding more sub-packages which can generate soap header element

for different SOAP servers.

 50

Figure 21 Soapheader Package Diagram

• Util package: This package contains a session hash table that can be used for

recording and managing the session information by SIP server and Web services.

4.3.2 Class Diagrams for Online Video Shopping Web Service System

This project focuses on the design and implementation of a SIP server and a video

store Web service. This section first illustrates the SIP server design, and following

that the design of the video store Web services will be introduced.

SIP Server Class Diagram

As shown in Figure 22, ten classes coming from different packages are involved

in the design of the SIP server. SessionTable belongs to the sipsoapsession.util

package. MessageProcess, MessageGenerator and MessageProcessResult classes

come from the sipsoapsession.sip.message package. SIPServer,

SIPMsgSockHandler, WebMsgServer, WebMsgSockHandler, and ServiceClient are

in the sipsoapsession.sip.server package. The Thread class comes from J2SE API.

The description of each class is detailed below:

 51

Figure 22 SIP Server Part Class Diagram

• SessionTable: this class acts as a record table for the SIP server to store the
active session information, such as session ID, Web service IP address and

port. Once a session is set up between the SIP client and the SIP server, the

SIP server will record the session ID in its SessionTable for later use.

• MessageProcess: this class is responsible for processing the SIP messages
sent between the SIP client and the SIP server. Some of the processing

results will be saved in MessageProcessResult for later use.

• MessageProcessResult: this class can save the processing results of the
MessageProcess class. The results will be used by the MessageGenerator

class for generating SIP response messages or final SIP messages.

 52

• MessageGenerator: this class is responsible for generating SIP messages.
Sometimes it needs the information saved in MessageProcessResult to

generate SIP messages.

• SIPServer: this class is used to accept messages sent from SIP clients.
When it receives a new SIP message, SIPserver will start

SIPMsgSockHandler to deal with the messages. In addition, SIPServer

creates a WebMsgServer when it starts.

• SIPMsgSockHandler: this class is a subclass of the Thread class, and is
started by SIPServer for handling SIP messages sent from a SIP client. It

can make use of MessageProcess, MessageGenerator and

MessageProcessResult classes to process and generate SIP messages.

Additionally, when a session is terminated, it will start a ServiceClient

class to inform a corresponding Web service.

• WebMsgServer: this class is a subclass of the Thread class, and is started
by SIPServer. It is responsible for accepting a connection from the Web

services and starting a WebMsgSockHandler to handle the messages from

Web services.

• WebMsgSockHandler: this class is a subclass of the Thread class, and is
started by WebMsgServer. Its functions are handling checking session

requests from Web services and updating the SIP server SessionTable to

record the Web services IP addresses and ports for establishing sessions.

• ServiceClient: this class is a subclass of the Thread class, and is started by
SIPMsgSockHandler. By reading the information saved in the SIP server

SessionTable, ServiceClient can inform a corresponding Web service that a

session with the Web service is terminated.

Video Store Web Service Class Diagram

Figure 23 is the class diagram of the Video Store Web Service. The Video

Service consists of twelve classes and one interface. The BasicHandler class

comes from AXIS API. The Thread class and Serializable interface are from

J2SE API. As introduced above, the SessionTable class belongs to

 53

sipsoapsession.util package. AxisSOAPHeader class is in the

sipsoapsession.soapheader.axisheader package. The remaining classes are

owned by the sipsoapsession.application.server package. The detail

description of important classes is listed below:

Figure 23 Video Service Class Diagram

• SOAPRequestHandler: this class is the subclass of the BasicHandler class.
It is used to inform VideoService of the session ID contained in the SOAP

request messages. It also outputs the SOAP request messages into a log file

called VideoService.log.

• SOAPResponseHandler: this class is the subclass of the BasicHandler
class. It is able to insert session ID into SOAP response messages

 54

generated by AXIS, and output the response messages into the

VideoService.log file.

• VideoService: this class is the video store Web service implementation. For
every web user�s request, it can make use of SessionTable to save the

session information, utilize VideoDBHandler to handle the request, and

generate the corresponding result to the client. In addition, it creates a

ServiceServer object to accept the messages from SIP server, and starts a

WebMsgClient object to check a new session ID with the SIP server.

• VideoDBHandler: this class can be used to access the data saved in the
video store database according to client requests.

• ServiceServer: this class is a subclass of the Thread class. It is started by
VideoService. For every connecting message sent from SIP server,

ServiceServer will start a ServiceSockHandler object to handle it.

• ServiceSockHandler: this class is a subclass of the Thread class. It can
handle session termination messages sent from the SIP server.

• WebMsgClient: this class is a subclass of the Thread class. It is started by
VideoService to check a new session ID with the SIP server. If the session

has been set up, WebMsgClient will add an AxisSOAPHeader and a

ShoppingCart object in the VideoService SessionTable.

• ShoppingCart: this class can be used to store the video items selected by
the Web service users.

• AxisSOAPHeader: this class can generate a SOAP header element that
contains the session ID within it. Since AXIS was used as the SOAP server,

the generated SOAP header element is defined by AXIS API.

• SessionTable: similar to the function in SIP server design, this class can be
used to store the session information for VideoService. This information

includes session ID, AxisSOAPHeader and ShoppingCart.

 55

4.3.3 Sequence Diagrams of the Online Video Shopping Web Service

System

In this section, three sequence diagrams demonstrate the interactions between the

client GUI application, the SIP server and the video Web service in the system in the

following scenarios:

♦ Establishing a new session

♦ Invoking a Web service

♦ Terminating a session

Establishing a new session

Establishing a new session between a Web service user and the SIP server consists of

following steps (see Figure 24):

1. GuiIntial on the client side uses the SIPClient to setup a connection with

SIPServer.

2. SIPServer accepts the connection.

3. SIPServer starts a SIPMsgSockHandler to handle the messages sent from

SIPClient.

4. SIPClient sends an INVITE message to SIPMsgSockHandler.

5. SIPMsgSockHandler responds with a 200 OK message to SIPClient.

6. SIPClient generates an ACK message to SIPMsgSockHandler, and then a new

session between GuiIntial and the SIP server is established.

 56

Figure 24 Session Establishing Sequence Diagram

Invoking a Web service

Figure 25 takes an invoking �list video category� function as an example to illustrate

the procedure of invoking a Web service.

1. Once the GuiIntial sets up a session with the SIP server, the Web service user

will get a session ID. Then GuiIntial tells VideoClient that it wants to see the

video category by invoking VideoClient�s listcategory() method.

2. VideoClient generates the SOAP request, which contains the session ID in its

header element and sends the request to the AXIS Server.

3. SOAPRequestHandler, which is inserted into the SOAP request chain in AXIS,

handles the request by calling the VideoServer�s setSOAPHandler() method to

check whether the session ID is set up with the SIP server.

4. VideoService creates a WebMsgClient object to check the session ID with the

SIP server.

 57

5. WebMsgClient connects with the WebMsgServer, which is started by the SIP

server, to accept the checking session connection from the Web service.

6. The WebMsgServer then starts a WebMsgSockHandler object to handle the

messages sent from WebMsgClient.

7. WebMsgClient sends the session ID to WebMsgSockHandler.

8. WebMsgSockHandler checks the session ID with the SIP session table and

then sends the �session set up� result back to WebMsgClient.

9. After WebMsgClient receives the checking result, it will send the VideoService

IP address and a port number to the SIP server. This information will be used

to inform VidoService when the session is terminated.

10. When the WebMsgSockHandler receives the IP address and the port number, it

will insert them into the SIP session table for later use.

11. WebMsgClient also needs to update the VideoService session table by adding

the session ID, a new shopping cart and a corresponding SOAP header. The

shopping cart created here will be used to keep the video items for the Web

service users.

12. After that, WebMsgClient stops the connection with WebMsgSockHandler.

13. WebMsgClient returns the checking session result to VideoService with a

boolean value.

14. Then the boolean value will be sent from VideoService to

SOAPRequestHandler.

15. After receiving a positive result, the listategory() method call will be delivered

to VideoService.

16. VideoService makes use of VideoDBHandler to query the database of the video

store and returns the result.

17. During the procedure of generating a SOAP response to the client, a

SOAPResponseHandler is used to get the session ID from the VideoService

through invoking the setSOAPHeader method of VideoService.

18. And then the SOAPResponseHandler will add the session ID into the SOAP

header element of the SOAP response message.

 58

19. The SOAP response message is received by VideoClient.

20. Finally, the Web service user can see the video category list.

59

Fi
gu

re
 2

5
W

eb
 S

er
vi

ce
 In

vo
ki

ng
 S

eq
ue

nc
e

D
ia

gr
am

 60

To sum up, there are five stages in the procedure of invoking a Web service:

$ The first stage (steps1-2): the Web service user sends a SOAP request message

to a Web service.

$ The second stage (steps 3-14): the invoking Web service checks the session ID

with the SIP server.

$ The third stage (steps15-16): the service method is invoked and the result is

generated for the Web service user.

$ The fourth stage (steps 17-18): the session ID is added into the SOAP response

message.

$ The fifth stage (steps 19-20): the final result is shown to the Web service user.

Terminating a session

When a Web service user accomplishes his or her video shopping activities, he or she

needs to terminate the session. Figure 26 shows the steps involved in terminating a

session.

1. GuiIntial informs the SIPClient that it wants to terminate the current session.

2. SIPClient then sends a BYE message to the SIP server, and the message is

handled by the SIPSockHandler, which is created in the session establishing

procedure.

3. SIPSockHandler creates ServiceClient to inform VideoService that a session is

terminated.

4. The ServiceClient connects with ServiceServer, which is created by

VideoService, to receive session terminating messages from the SIP server.

5. The ServiceServer starts a ServiceSockHandler to deal with the messages from

ServiceClient.

6. The ServiceSockHandler reads the terminating session ID from ServiceClient.

7. ServiceSockHandler then deletes the terminating session ID from the session

table of VideoService. As a result, the shopping cart and the SOAP header

information kept in the session table will also be deleted.

 61

8. The SIPMsgSockHandler on the SIPServer side removes the terminating

session ID from the SIPServer session table.

9. After that, the SIPMsgSockHandler sends a 200 OK message to SIPClient,

which means that the session has been terminated.

10. Finally, SIPClient stops the connection with SIPMsgSockHandler.

62

Fi
gu

re
 2

6
Se

ss
io

n
Te

rm
in

at
in

g
Se

qu
en

ce
 D

ia
gr

am

 63

4.4 Deployment

Figure 27 Deployment Diagram of the Online Video Shopping Web Services

System

The deployment diagram of the Online Video Shopping Web Services System is

shown in Figure 27. The session jar file needs to be put into an accessible directory

on both the client and Web service server sides. The session jar file needs to be

copied to common\lib directory, which is under the JWSDP1.2 home directory, in

order to let the HTTP server (Tomcat contained in JWSDP 1.2) locate it. The Video

Web Service program includes sipsoapsession.application.server and

sipsoapsession.application.commonobj packages. The packages that the Web Service

Client program needs to have are sipsoapsession.application.client and

 64

sipsoapsession.application.commonobj. The PC which is running the SIP server

should contain sipsoapsession.sip package. The packages included in session.jar are

the sip package, the soapheader package and the util package. All the computers in

this system should support Java 1.4.2 and network connection.

4.5 Implementation Discussion

4.5.1 SIP Server Implementation

SIP Transport Protocol

From the SIP Protocol Stack introduced in chapter 2, it can be seen that SIP can

utilize TCP and UDP to transfer its messages through the Internet. Using UDP to

carry SIP messages costs less set up connection time than using TCP, and reduces

the Internet traffic jam possibility. However, the lack of handshaking or

acknowledgement in UDP transport means that a datagram could be lost along

with a SIP message. When this happens in an E-commerce application, it will

cause a serious security problem. In addition, HTTP uses TCP as its transport

protocol to provide a reliable connection service to Web users. Therefore, in our

system, TCP is absorbed as the SIP transport protocol to supply a stable

connection for both the Web service users and providers.

Standard Session ID

The session ID is the key point for accomplishing session management in this

system. Hence, generating a cyber unique identification when the session is

established is the most important element for SIP implementation. In order to

express the session ID in a standard manner, we use the �o� field of SDP and ISO

8601 Date/Time Representations [53, 54] are used to generate the session ID.

According to SDP specification, the format of the session ID is:

YYYYMMDDhhmmss@<SIP client IP address>

For example, a SIP client whose IP address is 192.168.0.100 sets up a session

with a SIP server at 5:06:30 am, 19 December, 2004. The session ID is:

 65

20041219050630@192.168.0.100.

4.5.2 The Communication Implementation of SOAP Requests and

Web Services

Normally, after a SOAP server receives a SOAP request, it will analyze the SOAP

message and then invoke a corresponding back-end Web service program. In other

words, the Web service program cannot directly access the SOAP request. But in this

system, the session ID enclosed in SOAP message header element needs to be

managed by the Web service. To accomplish the communication between SOAP

messages and the back-end Web Service by using AXIS SOAP server, four steps

need to be done:

• Writing static methods in the VideoService class to implement session ID
checking and getting functions. (See Figure 28) The method setSOAPHeader

is the session ID checking function and the method getSOAPHeader is the

session ID getting function.

 66

Figure 28 Session ID Checking and Getting Code Segment in VideoService

• Implementing two subclasses of AXIS BasicHandler. One class is used to
inform VideoService of the session ID in the SOAP request. The other class

adds session ID in the SOAP response (See Figure 29 and 30). The class

SOAPRequestHandler in Figure 29 uses the setSOAPHeader method in

VideoService to inform the back-end Web service to check the session ID in

the SOAP request. The function of class SOAPResponseHandler in Figure 30

is adding session ID in SOAP response messages by using the

getSOAPHeader method in VideoService.

 67

Figure 29 SOAPRequestHandler Class Code Segment

Figure 30 SOAPResponseHandler Class Code Segment

 68

• Inserting SOAPResponseHandler and SOAPResponseHandler into AXIS
request and response handlers by specifying them in a deploy.wsdd file.

(Shown in Figure 31) The WSDD (Web Service Deployment Descriptor) file

is an XML-based format and is used to configure the properties of the AXIS

engine [3]. The <handler> tag defines the handlers that need to be specified

for the AXIS engine. The <requestFlow> and <responseFlow> tell the AXIS

engine where the handler should be put.

Figure 31 Specifying Handlers in Deploy.wsdd File

• Deploying the Web service. The following command can be used to deploy
the Video Web service in a DOS window.

 69

After these four steps, the SOAPResponseHandler and SOAPResponseHandler have

been deployed into AXIS request and response handler flows, and become the bridge

for SOAP messages and back-end Web Service communication.

4.6 Summary

This chapter has presented the architecture of using SIP to manage sessions for Web

services and the technologies used in an Online Video Shopping Web Service

System. We use SIP technology to set up and terminate sessions for Web services.

The set up session ID will be kept in the SOAP messages sent between the users and

Web services. Therefore, the Web services can distinguish different users from the

session ID. A session table is applied to manage the session on Web services. It

keeps the session ID and shopping cart as a key � value pair, as a result, the Web

services can handle all users� requests by administrating the session table.

In order to deliver the session ID from the SOAP message header to the back-end

Web services, AXIS as the SOAP server provides an extensible message processing

system for Web service programmers. By extending the basic handler class and then

deploying to the AXIS engine, programmers can easily add custom functionalities. If

applying this system architecture to other SOAP servers, they would have to have

similar interface or function for programmers to accomplish the session information

exchange. The next chapter presents the E-banking Web Services System which is

based on the session management mechanism of this system to achieve transaction

management for Web services.

java org.apache.axis.client.AdminClient -l

http://localhost:8080/axis/services/AdminService deploy.wsdd

 70

Chapter 5 Transaction Management on Web services by

Using SIP

5.1 Introduction

In the previous chapter, the mechanism of using SIP to manage the session on Web

services has been presented. The Online Video Shopping Web Services System has

been implemented. This chapter will present the transaction management mechanism

on Web services which is based on the previous implementation described in chapter

4. An E-banking Web Services System will be used to illustrate the implementation

of the mechanism.

This chapter will first provide the system analysis of the E-banking Web service

system in section 5.2, followed by the system design in section 5.3. After this, the

system deployment will be illustrated in section 5.4. The system testing is presented

in section 5.5. A summary will be given at the end.

5.2 System Analysis

5.2.1 Introduction of the E-banking Web service system

The goal of this stage is to accomplish transaction management on Web services.

Thus, the E-banking Web Services System focuses on the implementation of money

transfer transaction management between two banks. Bank A and Bank B Web

services will be implemented which provide money transferal functions. The system

client can choose an account from one of these banks to transfer money to an

account in another bank.

 71

The previous stage of this research has provided a session management mechanism

for Web services, which is the first step to complete transaction management.

Therefore, the mechanism will be used in the implementation of the transaction

management in the E-banking Web services system. However, the session ID used in

the previous stage cannot be used to identify a transaction between the two banks

because a client might create many transactions within a session. In order to

accomplish transaction management for Web services, a transaction manager needs

to be brought in which is responsible for coordinating all the participants� activities

in a transaction. In the following part of this section, the architecture of the system

will be presented.

5.2.2 Architecture

Figure 32 shows the use case diagram of the system.

Figure 32 Use Case Diagram of Transaction Management on Web Services

In this system, the Web service user can set up a session with a SIP server, transfer

money between two banks (Bank A and Bank B in the system), and terminate the

session with the system. The architecture of the system is illustrated in Figure 33.

 72

Figure 33 Architecture of the E-banking Web Services System

As with the previous system, the task of the SIP server is managing the session for

all the Web services in the system. The Transaction Manager is a Web service that

looks after all the transactions in the system. Bank A Web service server and Bank B

Web service server are service servers that provide money transferal functions. The

communication between Transaction Manager and SIP server and between

Transaction Manger and the two bank Web service servers is through the Internet.

5.3 System Design

5.3.1 Package Diagram of the E-banking Web Service System

As shown in Figure 34, there are eight sub-packages included in the

sipsoaptransaction package. The banka and the bankb packages contain classes for

implementing Bank A and Bank B Web services respectively. The classes in the

client package are for Web service users to invoke Web services and to transfer

money between banks. The transaction package contains transaction manager

implementation classes which can provide transaction coordination service for the

 73

participants. The commonobj package includes the Account class that will be used by

both the two bank Web services and the transaction manager service. The classes in

other packages, such as sip package, soapheader package and util package, are the

same as the classes in the Online Video Shopping System. The E-banking Web

service system still uses SIP to manage the session which is similar to the previous

one. The difference is that this time SIP is used to manage the session for the

transaction manager�s Web service and not for the two bank Web services. The pivot

of this system is the design and implementation of the transaction manager.

Figure 34 E-banking Web Services System Package Diagram

 74

5.3.2 Class Diagram of Transaction Manager

Figure 35 Transaction Manger Class Diagram

Figure 35 shows the class diagram of the transaction manager. The composition of

the transaction manager is very similar to the video service one in the previous

project. It consists of eleven classes. The BasicHandler class comes from AXIS API,

and the Thread class is from J2SE API. The SessionTable class belongs to package

sipsoaptransaction.util, while AxisSOAPHeader class is in

sipsoaptransaction.soapheader.axisheader package. The remaining classes belong to

sipsoaptransaction.transaction package. In fact, the some of the class functions are

the same as that of video store Web service. Table 5 lists the comparison of class

functions between the video store Web service and the transaction manager.

 75

Transaction Manager
class name

Corresponding Video Store
Web Service class name

Function Comparison
between video store Web service and transaction manager

SOAPRequestHandler

Almost same. The only difference is that
SOAPRequestHandler in transaction manager outputs
SOAP request messages into a file named
TXManager.log.

SOAPResponseHandler

Almost same. The only difference is that
SOAPResponseHandler in transaction manager outputs
SOAP response messages into a file named
TXManager.log.

TXManager

VideoService

Different. TXManager implements all functions of a
transaction manager. While VideoService implements all
functions of a video store Web service.

TXDBHandler VideoDBHandler Same. They are both used to handle database query.
TXMngrServer ServiceServer Same.

TXMngrSockHandler ServiceSockHandler Same.

TXMsgClient

WebMsgClient
Almost Same. The only difference is that TXMsgClient
put an initial transaction number in TXManager session
table, but not a shopping cart.

AxisSOAPHeader Same.

SessionTable

Almost same. Transaction manager owns two
SessionTable objects. One of them is for managing
session information, and the other is for managing
transaction information.

Table 5 Classes Function Comparison between Video Store Web Service and

Transaction Manager

5.3.3 Sequence Diagrams

This section focuses on introducing how the transaction manager coordinates all

transaction participants. The sequence diagram in Figure 36 illustrates the process of

transferring money successfully from Bank A to Bank B. It is assumed that the client

GuiInitial has already set up a session with SIP server, and the transaction manager

already has knows the session ID.

1. When GuiInitial gets the session ID from the SIP server, it invokes the

createTX() method in TXManager (Transaction Manager) to create a new

transaction.

2. Then GuiInitial gets a unique transaction ID from TXManager.

3. The GuiInitial can now invite transaction participants and it invites Bank A

first to join the transaction.

 76

4. Bank A then joins in the transaction by invoking TXManager�s joinTX()

method.

5. TXManager returns the joining result to Bank A Web service with confirming

information.

6. After Bank A Web service gets the confirmation result from TXManager, it

gives GuiInitial an invitation response to indicate that it has joined in the

transaction.

7. Then GuiInitial invites Bank B to join in the transaction and this is

accomplished in steps 7, 8, 9, 10.

8. When GuiInitial gets all the invitation responses from Bank A and Bank B

Web services, it tells TXManager to transfer money from a Bank A account

to a Bank B account by invoking the commit() method in TXManager.

9. TXManager then gives the account information to Bank A and Bank B Web

services and asks them to prepare for transferal of the money. After Bank A

and Bank B Web services check the account information, they each give a

�prepared� response to TXManager which declares that they have prepared

for the money transfer. Steps 12, 13 and 14, 15 accomplish this procedure.

10. Once TXManager receives the �prepared� responses from both of the bank

Web services, it commits the money transferal command to both of the bank

Web services and then gets the transfer results from the Web services (See

step 16, 17, 18, 19).

11. In steps 20 and 21, TXManager informs Bank A and Bank B Web services

that the transaction has successfully finished.

12. Finally, TXManager sends the transferal money result to GuiInitial.

 77

Figure 36 Sequence Diagram of Transferring Money from Bank A to Bank B

The process of transferring money successfully from Bank A to Bank B has been

 78

introduced in Figure 36. From Figure 36 it can be seen that the transaction manager

abides by the two-phase commit protocol to control the transaction. In other words,

the transaction manager dispatches money transferal messages to all the participants,

only when it receives the �prepared� responses from all the participants, which

means that all the participants agree to go ahead. During the money transferal

procedure, if Bank A transfers money successfully and Bank B fails due to system

problems, the transaction manger will ask Bank A Web service to rollback what has

been done in Bank A Web service. The rollback procedure is shown in Figure 37. In

step 19 of Figure 37, the transaction manager receives the �failed� information from

Bank B Web service, and then it invokes the rollback function in Bank A Web

service with the transaction ID to ask Bank A Web service to recover the original

state.

 79

Figure 37 Sequence Diagram of Transaction Rollback Procedure

 80

5.4 System Deployment

Figure 38 Deployment diagram of the E-banking Web Services System

The deployment diagram of the E-banking Web Services System is shown in Figure

38. All computers in the system need to support J2SDK 1.4.2. The session jar file

and AXIS 1.1 API are deployed in client computer, transaction manager, Bank A

Web Service Server and Bank B Service Server. In order to run a Web service server,

 81

the JWSDP 1.2 is installed on transaction manager, Bank A Web service Server and

Bank B Web service Server. The communication between SIP server and client, and

between SIP and transaction manager is through TCP, and the communication among

the client, transaction manager, Bank A Web service and Bank B Web Service is

through the Internet.

5.5 System Testing

In order to know whether the rollback function in the transaction manager works

well a scenario is simulated to test it. There are two assumptions in this scenario. The

first is that the money amount in every account has a maximum value in both of the

bank Web services. It is assumed that every account in Bank A can only have

maximum $200, and in Bank B $100. For example, if John has an account in Bank B

with $80, and he wants to transfer $30 from his Bank A account to his Bank B

account, he will get a �Bank B prepare fail (Too much money in Bank B account)�

information because $80 plus $30 is $110, which is greater than maximum account

value $100 in Bank B. The Bank A Web service prepare() method code is illustrated

in Figure 39.

 82

Figure 39 Bank A�s Web Service Code Segment

The second assumption is that after the transaction manager gets the �prepared�

information from both bank Web services, it also needs to locate a text file, which is

named by first fourteen digits of the session ID and then it can commit the

transferring money action. For instance, John has established a session with the SIP

server and has got the session ID which is 20040919142242@192.168.0.1. Then he

creates a transaction with the transaction manager and wants to transfer money

between two banks. After the transaction manager gets the �prepared� messages

from both of the bank Web services, there should be a text file named

�20040919142242.txt� that can be located by the transaction manager in order to

 83

transfer the money. Figure 40 displays the commit() method code in the transaction

manager.

Figure 40 Transaction Manager Code Segment

In this scenario, Bank A and Bank B accounts detail are given as below: (See Table 6

and Table 7)

Account Number Password Account Balance

123 (John) 123 100
234 (Kate) 234 120

Table 6 Bank A Accounts Detail

Account Number Password Account Balance

345 345 40
456 (Joint) 456 60

 84

Table 7 Bank B Accounts Detail

Two users, John and Kate, take part in this scenario. John withdraws $20 from

account number 123 at Bank A, while Kate withdraws $40 from account number 234

at Bank A. They want to transfer the money to account number 456 at Bank B. First

John�s transaction starts, and then Kate�s. But Kate�s session text file is created

before John�s. In this situation, the transaction result of Kate�s money transferal

should be successful because the result will be within the $100 limit of account 456.

On the other hand John�s transaction should fail because Kate�s transaction preceded

John�s, and at that time of John�s transaction the money in account number 456 was

already $100. Although the transaction manager has got the �prepared� message

from both bank Web services for John�s transaction, and the money transferal action

can be accomplished in Bank A, the account number 456 in Bank B cannot accept

the deposit. Hence, the transaction manager asks Bank A to rollback the money into

account number 123.

The testing result is similar to the above. Figure 41 and Figure 42 show John�s and

Kate�s money transferal transaction results respectively.

 85

Figure 41 John�s Transaction Result

Figure 42 Kate�s Transaction Result

The closing balance of account number 456 in Bank B is $100, and in Bank A the

balance of account number 123 is 100, and the balance of account number 234 is $80.

This scenario result demonstrates that the transaction manager in the E-banking Web

Service System supports the two-phase commit protocol to control the transaction.

Moreover, it is able to handle multiple transactions and keep the atomicity and

consistency of the transactions.

5.6 Summary

This chapter has presented the way use of SIP to manage transactions for Web

services, and the E-banking Web Services System has been developed as a

demonstration project. The transaction manager, which is able to coordinate the

transaction for all participants, is also a Web service. It conforms to the two-phase

 86

commit model which means that all participants have to agree on the transaction,

only then can the transaction be committed. During the implementation of the

transaction, if any participants cannot accomplish the action successfully, the

participants need to rollback to the original state. A unique transaction ID is used to

label every transaction created in the transaction manager. All other participants can

use the transactions ID to communicate with the transaction manager, which enables

data state consistency in all participants.

Although the transaction management for simple Web services has been

accomplished, part of the implementation of the transaction manager would need to

be changed for diverse business systems in order to coordinate different Web

services. The security and reliability issues also need to be considered in future work.

 87

Chapter 6 Evaluation and Conclusion

This thesis has proposed the mechanisms of using SIP to manage session and

transaction for Web services. Two demonstration systems have been developed to

implement the mechanisms. This chapter first reviews and summarizes the thesis in

section 6.1 and then presents the answers to the research questions proposed in

Chapter 1 in section 6.2. Section 6.3 evaluates the proposed mechanisms. After that,

the results of the hypotheses proposed in Chapter 3 are given in section 6.4. Finally,

the future work will be outlined in section 6.5.

6.1 Research Summary

This thesis has offered new mechanisms that support session and transaction

management on Web services by using a standard session control protocol SIP.

Chapter 2 introduced the background knowledge for this research. Web services, as

one of the most popular technical innovations discussed today, have attracted

considerable attention in industry. Among the three main technologies, SOAP,

WSDL, and UDDI, behind Web services, SOAP possesses an important function.

SOAP messages can be exchanged over a variety of protocols, but SOAP can also

accommodate various programming languages. However, SOAP is a connectionless

protocol, which means there is no session control on SOAP. With Web services

applied widely to E-commerce applications, the session state is required to be

maintained. As discussed in chapter 2, traditional session management techniques

are not suitable for managing sessions of SOAP messages, and some new session

management techniques also have their limitations. Also in Chapter 2, some

background on the two IETF standardized protocols SIP and SDP was provided.

 88

Chapter 3 first described the status of Web services transaction management and then

provided the hypotheses of this research. Following that, the implementation gaps of

Web services session and transaction managements were discussed. Finally, this

chapter proposed the objectives of this thesis. These were developing a new session

management mechanism for Web services by using a standard session control

protocol SIP, and then based on this mechanism providing a simple Web service

transaction management solution. In order to demonstrate the mechanisms, two

systems were discussed: an Online Video Shopping Web Service System and an E-

banking Web Service System.

Chapter 4 presented the analysis, design and implementation of the Online Video

Shopping Web Service System. In this system, a SIP server was used to control the

session setting up and terminating for the Web service. The session ID generated by

SIP was inserted into a SOAP header element and delivered between the Web

services client and server. There was a session table maintained by the service server,

which could be used to keep all session states on the Web service. It is important to

emphasize here that using this proposed architecture to implement Web services

system, the SOAP server needs to provide an interface or function for programmers

to accomplish the session information exchange between SOAP messages and back-

end Web service programs, as with AXIS.

Based on the first system, the E-banking Web Services System was implemented in

Chapter 5. The architecture of this system was very similar to the previous one. The

difference was that a transaction manager was implemented as a kind of Web service

to communicate with the SIP server and to control the transaction for the Web

service client and the two bank Web services. Although this system provided a

simple service, i.e., transferring money between two banks, it conformed to the two-

commit protocol to manage the transaction and was able to keep the atomicity and

consistency properties of ACID transaction.

 89

6.2 Research Questions

The research questions were introduced in Chapter 1. Following is a summary

answer to each question as proved in the thesis.

Question 1 is whether SIP can be used to manage sessions and transactions for Web

services.

Answer: Yes. In this thesis, two Web service systems have been implemented to

demonstrate how to use SIP to manage sessions and transactions for Web services.

Question 2 is how to inform Web services the beginning and the ending of a Web

service session by using SIP.

Answer: The implementation of the Online Video Shopping Web Service System

provides the answer for this question.

The procedure for a Web service to know the beginning of a session is: First a

session is established between a client application and a SIP server. The client

application then gets a session ID. When the Web service server receives a SOAP

request which contains the session ID, it will check the session ID with the SIP

server and will know whether the session has been established or not.

The procedure for a Web service to know the ending of a session is: When a SIP

server receives a BYE message from a client application, it will inform the Web

service server by sending a session terminating message which contains the session

ID. As a result, the Web service knows that the session has terminated.

Question 3 is how to manage multiple sessions and transactions on the Web service

server.

Answer: In order to manage multiple sessions and transactions on the Web service

server, a SessionTable class is used in both of the demonstration systems. It keeps a

session ID or a transaction ID and their relative data as a key � value pair, (for

 90

example, in the Online Video Shopping Web Service System the session table keeps

the session ID and shopping cart as a key � value pair) as a result, the Web service

server can handle multiple sessions and transactions by administrating the session

table.

Question 4 is how to keep the session state between the client application and the

Web service server during communication.

Answer: After a client application establishes a session with a SIP server, it will get

a session ID. The set up session ID will be contained in the SOAP messages sent

between the client application and the Web service server. Thus, the session state can

be kept during communication.

6.3 Evaluation

6.3.1 Session Management Mechanism Evaluation

The session management mechanism proposed in this thesis involves adding session

information in the SOAP header element and using SIP to manage the session state

for Web services. This mechanism possesses three advantages compared to similar

mechanisms introduced in chapter 2, for example, Jeckle�s and Microsoft

Corporation�s SOAP session solutions. These three advantages are described as

follows:

1. Using standard protocol to generate session ID

The session information added in the SOAP header element can vary in Jeckle�s

and Microsoft Corporation�s SOAP session solutions. If using different ways to

identify sessions on Web services, especially in E-commerce, it will be hard to

integrate them across enterprises. Since Web services are based on standard

protocols, such as UDDI, WSDL and SOAP, to support the interoperable

interaction between different applications over a network, a standard way of

describing the session ID is a suitable solution for accomplishing session

 91

management.

The advantage of the proposed mechanism is that SDP, which is developed by

IETF MMUSIC for describing multimedia sessions, and ISO 8601 Date/Time

Representations are used to generate the session ID. The format of the session ID

is:

YYYYMMDDhhmmss@<SIP client IP address>

Using this standard manner to identify a session makes it easier to integrate Web

services across enterprises.

2. Using standard protocol to manage the session for Web services

In Jeckle�s SOAP session solution, the session management mechanism is left to

Web developers. This will also cause an integration problem between Web

services. The Microsoft Corporation�s solution for managing sessions on Web

services is similar to the HTTP cookie mechanism. This means that the Web

developers have to make sure that the client application treats the

<BeginSession>, <Session> and <EndSession> tags as HTTP cookies and knows

when and how to send those three tags to the Web server. If the Web server

crashes, it will be difficult to recover the session state.

The second advantage of the current mechanism is that as SIP, a standard

application-layer session control protocol, is used to manage sessions for Web

services, the integration problem can be easily solved according to SIP

specification. In addition, the SIP server can be located in PCs separated from the

Web server. If the Web server crashes, the session state can be recovered from

SIP server. Moreover, using SIP to manage the session state enhances the

extensibility to Web services as more Web services can be easily added into the

demonstration system.

3. Extensibility on security issue

 92

The security issue is always important for the E-commerce Web services, as

customers need to input sensitive information such as credit card numbers in

order to access services. However, neither Jeckle nor Microsoft Corporation

mentions the solution for security in their SOAP session management

mechanisms.

Although in the demonstration project there is no code for implementing the

security, the SIP specification can be the reference for adding the security

solution to the mechanism. Actually, the SIP specification defines the

communication encryption and authentication and also provides security

solutions for registration, inter-domain requests, peer-to-peer requests, and

denial-of-service protection. Therefore, the security issue can be easily extended

in the proposed mechanism. This is the third advantage of the current mechanism.

6.3.2 Transaction Management Mechanism Evaluation

Based on the session management mechanism, this thesis has proposed a simple

transaction management mechanism on Web services. In this mechanism, SIP is still

used to manage the session state and a transaction manager is introduced to manage

transactions among participants.

As introduced in chapter 3, the WS-CAF [48] and WS-CDL [52] simply provide

implementation guidelines for Web services transaction management. In fact, the

design and implementation of transaction management depend on the business work

flow. For example, in the E-banking Web service project, the implementation of the

transaction manager is based on a money transferal work flow.

The advantages of the proposed transaction mechanism are: firstly, the transaction

manager is a Web service which needs to communicate with the SIP server to control

transactions among joined parties. It can be changed easily according to different

 93

businesses. Secondly, as SIP is still used to manage the session state, security issue

can be addressed in this mechanism according to SIP specification. Thirdly, this

mechanism conforms to two-phase commit protocol which enables data state

consistency in all participants. Finally, this mechanism provides great extensibility

for more Web services to be added in.

6.4 Hypotheses Results

Based on the evaluation in the last section, the results of the hypotheses proposed in

Chapter 3 are:

Hypothesis 1: The standard session control protocol — SIP can be used to manage

sessions and transactions for Web services.

Result: Correct. It has been proved by the accomplishment of the two demonstration

systems.

Hypothesis 2: Using SIP to manage sessions for Web services is more elegant and

general than Jeckle�s and Microsoft Corporation�s solutions.

Result: Correct. SIP not only provides a standard manner for identifying a session,

but also solves the integration problem in Jeckle�s and Microsoft Corporation�s

solutions.

Hypothesis 3: Using SIP to manage transactions for Web services can keep the

atomicity and consistency of the transactions.

Result: Correct. This can be proved by the system testing in Chapter 5.

Hypothesis 4: Using SIP to manage sessions and transactions for Web services

provides an easier solution on security issue than other solutions proposed so far.

Result: Correct. As mentioned in section 6.3, SIP specification has provided clear

definitions for implementing security.

6.5 Future Work

Instead of inventing a new protocol, this thesis uses an existing standard protocol SIP

to manage sessions and transactions for Web services. However, the security issue

 94

has not been considered in these mechanisms. As mentioned in section 6.1, SIP

specification mentions various security solutions. Some of these could be added into

the mechanisms in future research.

In the Web service systems, it is assumed that the service customer already knows

the location of the Web service provider. Hence, the service registry and discovery

procedures are omitted. In order to provide a complete Service-Oriented Architecture

implementaion, a UDDI server could be added to a future system.

The transaction management is still under development because Web services are

loosely-coupled, have long transaction durations and complex interactions between

multiple components. This thesis has provided a simple solution for transaction

management on Web services. Hopefully, it will bring about new implementation

possibilities for managing Web service transactions in the future.

 95

References

1. Ray, R. J., and Kulchenko, P., Programming Web Serivices with Perl,

O'Reilly&Associates,Inc. (2003).

2. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris,

C., and Orchard, D., Web Services Architecture, (2004). Available from

http://www.w3.org/TR/ws-arch/ [Accessed: Oct. 22, 2004]

3. Irani, R., and Basha, S. J., AXIS: The Next Generation of Java SOAP, Wrox

Press Ltd (2002).

4. UDDI, UDDI technical white paper, (September 6, 2000). Available from

http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf [Accessed:

Oct. 22, 2004]

5. Newmarch, J., Web services, (Oct 22, 2003). Available from

http://jan.netcomp.monash.edu.au/webservices/tutorial.html [Accessed: Oct.

22, 2004]

6. Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S., Web

Services Description Language (WSDL) 1.1, (15 March, 2001). Available

from http://www.w3.org/TR/wsdl [Accessed: Oct. 22, 2004]

7. Looker, N., and Xu, J., Assessing the dependability of SOAP RPC-based

Web services by fault injection, Object-Oriented Real-Time Dependable

Systems, 2003. Proceedings. Ninth IEEE International Workshop, Vol, Iss, p.

163 - 170, (2003).

8. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., and Nielsen, H.

F., SOAP Version 1.2 Part 1: Messaging Framework, (2003). Available from

http://www.w3.org/TR/2003/REC-soap12-part1-20030624/ [Accessed: Setp.

30, 2004]

9. Jepsen, T., SOAP cleans up interoperability problems on the Web, IEEE IT

Professional, Vol: 3, Iss: 1, p. 52 - 55, (2001).

 96

10. Mitra, N., SOAP Version 1.2 Part 0: Primer, (24 June, 2003). Available from

http://www.w3.org/TR/2003/REC-soap12-part0-20030624/ [Accessed: Sept.

30, 2004]

11. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., and Nielsen, H.

F., SOAP Version 1.2 Part 2: Adjuncts, (24 June, 2003). Available from

http://www.w3.org/TR/2003/REC-soap12-part2-20030624/ [Accessed: Sept.

30, 2004]

12. Ts'o, T., and Chiu, A., ONC Remote Procedure Call (oncrpc), (16 Jan.,

2001). Available from http://www.ietf.org/html.charters/oncrpc-charter.html

[Accessed: 20 Oct., 2004]

13. Chester, T. M., Cross-platform integration with XML and SOAP, IEEE IT

Professional, Vol: 3, Iss: 5, p. 26 - 34, (2001).

14. Tsenov, M., Application of SOAP protocol in E-commerce Solution, 2002

First International IEEE Symposium, Vol: 3, Iss, p. 59 - 62, (2002).

15. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and

Weerawarana, S., Unraveling the Web services web: an introduction to

SOAP, WSDL, and UDDI, Internet Computing, IEEE, Vol: 6, Iss: 2, p. 86 -93,

(2002).

16. Liu, C. C., and Chuang, Y. D., Remote Data Access Scheme Support for

Wireless Access to an Online Teaching System Using SOAP Technology,

IEEE Telecommunications, Vol: 2, Iss, p. 1717 - 1722, (2003).

17. UPnP, Understanding Universal Plug and Play (White Paper), (2002).

Available from

http://www.upnp.org/download/UPNP_UnderstandingUPNP.doc [Accessed:

Oct. 22, 2004]

18. Postel, J., RFC: 793 TRANSMISSION CONTROL PROTOCOL, (September,

1981). Available from http://www.faqs.org/rfcs/rfc793.html [Accessed: 20

Oct., 2004]

19. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.,

and Berners-Lee, T., Hypertext Transfer Protocol -- HTTP/1.1, (June, 1999).

 97

Available from http://www.w3.org/Protocols/rfc2616/rfc2616.html [Accessed:

20 Oct., 2004]

20. Jeckle, M. C., Adhere to Session-Oriented Communication Principles,

(2002). Available from http://www.jeckle.de/files/ssgrr2002.pdf [Accessed: 5

Oct., 2003]

21. Patterson, J. F., Hill, R. D., Rohall, S. L., and Meeks, S. W., An

Architecture for Synchronous Multi-user Applications, Computer Supported

Cooperative Work, Proceedings of the 1990 ACM conference on Computer-

supported cooperative work, Vol, Iss, p. 317 - 328, (1990).

22. Hughes, M., Shoffner, M., and Hamner, D., Java Network Programming

second edition, Manning Publications Co. (1999).

23. Schildt, H., The Complete Reference Java 2 Fifth Edition, Brandon A.

Nordin (2002).

24. Boutell, T., CGI Programming in C& Perl, Kim Fryer (1996).

25. Chan, H., Lee, R., Dillon, T., and Chang, E., E-Commerce Fundamentals

and Applications, John Wiley & Sons, Inc. (2001).

26. Peng, W. H., and Clisna, J., HTTP cookies- a Promising Technology, Online

Information Review, Vol: 24, Iss: 2, p. 150 - 153, (2000).

27. Powell, M., (2002). Available from

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnservice/html/service08062002.asp [Accessed: 5 Oct., 2003]

28. Berghel, H., Hijacking the Web----Cookies revisited: Continue the dialog on

personal security and underling privacy issue, Communication of the ACM,

Vol: 45, Iss: 4, p. 23 - 27, (2002).

29. Newmarch, J., A Critique of Web Services, (2004). Available from

http://jan.netcomp.monash.edu.au [Accessed: 26 Oct., 2004]

30. Corporation, M., DMSL SOAP session support, (2003). Available from

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dsml/dsml/dsml_soap_session_support.asp [Accessed: 5 Oct., 2004]

31. Cai, H. L., W., Yang, B., and Tang, L. H., Session Initiation Protocol and

 98

Web Services for Next Generation Multimedia Applications, Multimedia

Software Engineering, 2002. Proceedings of the IEEE Fourth International

Symposium on Multimedia Software Engineering, Vol, Iss, p. 70 - 80, (2002).

32. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J.,

Sparks, R., Handley, M., and Schooler, E., RFC 3261 - SIP: Session

Initiation Protocol, (Jun., 2002). Available from

http://www.faqs.org/rfcs/rfc3261.html [Accessed: 5 Oct., 2003]

33. Postel, J., RFC 768 - User Datagram Protocol, (28 August, 1980). Available

from http://www.faqs.org/rfcs/rfc768.html [Accessed: 20 Oct., 2004]

34. Dierks, T., and Allen, C., RFC 2246 - The TLS Protocol Version 1.0,

(January, 1999). Available from http://www.faqs.org/rfcs/rfc2246.html

[Accessed: 20 Oct., 2004]

35. Johnston, A. B., SIP Understanding the Session Initiation Protocol,

ARTECH HOUSE, INC. (2004).

36. Handley, M., and Jacobson, V., RFC 2327 - SDP: Session Description

Protocol, (April, 1998). Available from

http://www.faqs.org/rfcs/rfc2327.html [Accessed: 20 Oct., 2004]

37. Handley, M., Perkins, C., and Whelan, E., RFC 2974 - Session

Announcement Protocol, (October, 2000). Available from

http://www.faqs.org/rfcs/rfc2974.html [Accessed: 20 Oct., 2004]

38. Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V., RFC 3550 -

RTP: A Transport Protocol for Real-Time Applications, (July, 2003).

Available from http://www.faqs.org/rfcs/rfc3550.html [Accessed: 20 Oct.,

2004]

39. Schulzrinne, H., Rao, A., and Lanphier, R., RFC 2326 - Real Time

Streaming Protocol (RTSP), (April, 1998). Available from

http://www.faqs.org/rfcs/rfc2326.html [Accessed: 20 Oct., 2004]

40. Postel, J., RFC 791 - Internet Protocol, (September, 1981). Available from

http://www.faqs.org/rfcs/rfc791.html [Accessed: 20 Oct., 2004]

41. Xia, N., A Modem Based Lightweight VoIP System Using SIP, in School of

 99

Network Computing, Monash University, Melbourne (January, 2004).

42. Camarillo, G., SIP Demystified, McGraw-Hill Companies, Inc. (2002).

43. Anderson, R., Web Services Management - Plotting a Course for Success

(Slow adoption requires careful planning), (April 5, 2004). Available from

http://www.sys-con.com/story/?storyid=44359&DE=1 [Accessed: 26 Aug.,

2004]

44. serviceoriented.org, ACID Transactions, (Available from

http://www.serviceoriented.org/acid_transactions.html [Accessed: 17 Aug.,

2004]

45. NuSphere.com, ACID Transactions, (2002). Available from

http://www.nusphere.com/products/library/acid_transactions.htm [Accessed:

17 Aug., 2004]

46. Padmanabhuni, S., Web services transactions standards: Core requirements,

(10 Jul., 2003). Available from

http://searchwebservices.techtarget.com/originalContent/0%2C289142%2Csi

d26_gci913977%2C00.html [Accessed: 26 Aug., 2004]

47. Siegrist, J. L., Transaction Management Issues and Recommendations for

Developing Extranet - Based Web Services for the Oil Storage Company,

(April/May, 2004). Available from

http://www.jenikya.com/text/articles/transwebservices.pdf [Accessed: 19

Aug., 2004]

48. Bunting, D., Chapman, M., Hurley, O., Little, M., Mischkinsky, J.,

Newcomer, E., Webber, J., and Swenson, K., Web Services Composite

Application Framework (WS-CAF) Ver1.0, (July 28, 2003). Available from

http://developers.sun.com/techtopics/webservices/wscaf/primer.pdf

[Accessed: 12 Nov., 2004]

49. Bunting, D., Chapman, M., Hurley, O., Little, M., Mischkinsky, J.,

Newcomer, E., Webber, J., and Swenson, K., Web Services Context (WS-

Context) Ver1.0, (July 28, 2003). Available from

http://developers.sun.com/techtopics/webservices/wscaf/wsctx.pdf [Accessed:

 100

10 Nov., 2004]

50. Bunting, D., Chapman, M., Hurley, O., Little, M., Mischkinsky, J.,

Newcomer, E., Webber, J., and Swenson, K., Web Services Coordination

Framework (WS-CF) Ver1.0, (July 28, 2003). Available from

http://developers.sun.com/techtopics/webservices/wscaf/wscf.pdf [Accessed:

10 Nov., 2004]

51. Bunting, D., Chapman, M., Hurley, O., Little, M., Mischkinsky, J.,

Newcomer, E., Webber, J., and Swenson, K., Web Services Transaction

Management (WS-TXM) Ver1.0, (July 28, 2003). Available from

http://developers.sun.com/techtopics/webservices/wscaf/wstxm.pdf

[Accessed: 19 Aug., 2004]

52. Kavantzas, N., Burdett, D., and Ritzinger, G., Web Services Choreography

Description Language Version 1.0, (27 April, 2004). Available from

http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/ [Accessed: 26 Aug.,

2004]

53. ISO 8601 Date/Time Representations, (Available from

http://www.mcs.vuw.ac.nz/technical/software/SGML/doc/iso8601/ISO8601.h

tml [Accessed: 19 Dec., 2004]

54. Kuhn, M., A Summary of the International Standard Date and Time Notation,

(19 Dec., 2004. Available from http://www.cl.cam.ac.uk/~mgk25/iso-

time.html [Accessed: 21 Dec., 2004]

 101

Appendix A Glossary

HTML Hypertext Markup Language

UDDI Universal Description, Discovery and Integration

WSDL Web Services Description Language

SOAP Simple Object Access Protocol

W3C World Wide Web Consortium

XML Extensible Markup Language

IETF Internet Engineering Task Force

SIP Session Initialtion Protocol

SDP Session Description Protocol

RPC Remote Procedure Call

COM Component Object Model

DCOM Distributed Component Object Model

CORBA Common Object Request Broker Architecture

IDL Interface Definition Language

ORB Object Request Broker

HTTP Hypertext Transfer Protocol

SOA Service-Oriented Architecture

RMI Remote Method Invocation

IIOP Internet Interoperable ORB Protocol

ONC RPC Open Network Computing Remote Procedure Call

LAN Local Area Network

WAN Wide Area Network

SMTP Simple Mail Transfer Protocol

FTP File Transfer Protocol

WAP Wireless Application Protocol

UPnP Universal Plug and Play

TCP Transmission Control Protocol

 102

OSI Open Systems Interconnect

IP Internet Protocol

CGI Common Gateway Interface

OS Operation System

URL Uniform Resource Locator

URI Uniform Resource Identifier

DSML Directory Services Markup Language

UDP User Datagram Protocol

TLS Transmission Layer Security

SAP Session Announcement Protocol

RTP Real-Time Transport Protocol

RTSP Real-Time Streaming Protocol

UA User Agent

UAS User Agent Server

UAC User Agent Client

MMUSIC Multiparty Multimedia Session Control

MIME Multipurpose Internet Mail Extensions

ACID Atomic, Consistent, Isolation, and Durable

WS-CAF Web Services Composite Application Framework

WS-CTX Web Services Context Service Specification

WS-CF Web Services Coordination Framework Specification

WS-TXM Web Services Transaction Management Specification

TX-ACID ACID transactions model

TX-LRA Transaction Long running action model

TX-BP Transaction Business process transaction model

WS-CDL Web Services Choreography Description Language

JSP Java Server Pages

ASP Active Server Pages

AXIS Apache eXtensible Interaction System

JWSDP JavaTM Web Services Developer Pack

 103

VoIP Voice over IP

ISO International Organization for Standardization

WSDD Web Service Deployment Descriptor

