PARTIAL DECRYPTION SECURITY PROTOCOL

Author 1

Author 2

ABSTRACT

Network administrators have a responsibility to ensure that only appropriate material crosses an organization’s network gateways. This may include filtering spam, blocking certain peer-to-peer protocols and ensuring that no illegal activities are carried out. Users on the other hand have a right to privacy. One way of gaining privacy is to encrypt network traffic, which makes packet contents completely opaque. We present a compromise between the extremes of complete visibility and opaqueness by proposing a protocol which allows partial visibility of encrypted data. We show that it is possible to preserve a high degree of privacy while allowing administrators to fulfill their monitoring and filtering roles.

KEY WORDS

content filtering, privacy, network administration, cryptographic techniques

1 Introduction

Network administrators have responsibilities to protect their organization and its employees against inappropriate material crossing the network gateways, either inward or outbound. Such material can include spam, illegal MP3 files or other content. For example, the US Child Internet Protection Act requires content filters for any government-funded school to protect children against pornography. Filtering may also be applied to services, such as Web Services, which may result in unapproved charges to an organization [10]. Typically such techniques involve looking at network addresses, port numbers and the direction of traffic [4]. More recently, deep packet inspection [11] techniques have been employed to block attempts to circumvent filtering (for example, SOAP over HTTP).

Users, on the other hand, have a right to privacy and many organizations have explicit rules to limit the amount of inspection that can be done. But users can often take matters into their own hands by encrypting data, which renders the content completely invisible to network administrators. This “all or nothing” visibility can lead to conflicts between privacy and organisational requirements. In extreme cases, it may even lead to a complete ban on encrypted material unless the system administrator has access to all keys to allow decryption of all material. This has even been a goal of governments, placing restrictions on export of cryptographic algorithms and attempting to require backdoors in systems.

We propose a compromise system, whereby users are able to encrypt content in such a way that the full content cannot be decrypted without appropriate keys, but a part of the content can be made visible to network administrators. While it is not a complete solution, it does show that in a cooperative manner the conflicting goals of visibility and privacy can be met in a way that is satisfactory to both users and administrators.

2 Background

Private/public key and secret key algorithms provide end-to-end confidentiality of information. If an algorithm does not do this, then it is regarded as flawed and discarded. Sound algorithms are not susceptible to man-in-the-middle attacks. A gateway employing packet inspection to filter content may be regarded as attempting such an attack (although probably for benign purposes) and will fail under any strong algorithm.

While this protects a user's data, it may run contrary to organisational or even government policies. For example, some countries routinely filter content that they believe to be of a controversial nature. If they cannot inspect content that is encrypted, then they may simply discard it.

We propose a solution to this by splitting content into two pieces: the first part is either in plaintext or encrypted with a key known to the filtering body while the second part is encrypted with a key known only to the final end-point. This is a cooperative system: the user offers enough information to the filter to allow it to perform its task while preserving confidentiality of the rest of the message.

3 Common Protocols

Many common Internet data formats have a header/body format. These include MIME and HTTP. Not all protocols support such datatypes though: ftp for example uses different ports for data and instructions about data. In this paper we concentrate on header/body formats and in particular the data transported in HTTP messages.

An HTTP request has the format

<REQUEST> request-line

Additional request information

<blank line>

Request data

while a reply has the format

<REPLY> reply information

Additional reply information

<blank line>

Reply data

Typically, all of this data is in cleartext. If it is transported by HTTP over TCP then the TCP packet also contains cleartext data and can be readily identified by deep packet analysers. However, if the HTTP is wrapped in an end-to-end encryption protocol like SSL as HTTPS data then it is opaque to all but an SSL server with appropriate keys.

An alternative to HTTPS is S-HTTP. This addresses information security at a different level to HTTPS by sending S-HTTP headers in the clear while applying cryptographic elements to the original HTTP message, which is included as S-HTTP data. The S-HTTP specification makes some recommendations for proxies, such as including partial URL information of the final destination, but in general it attempts to minimize the amount of information available to any third party. The information is certainly not enough to determine if the HTTP data is document data such as HTML, image files, etc, or is really application data tunneling over HTTP, such as SOAP method calls.

4 Project Objectives

The aims of the project is as follows:

· End-to-end encryption: Secure as much as possible of the messages from one end to another end by encryption.

· Visibility: Enable the network administrator to examine partial information of the packet without exploring the message content.

· Non-intrusive: Leverage any established system without changes.

· Lightweight: Minimal extra processing, particularly at the gateway.

5 Proposed Solution

In general, network administrators have to consider the aspects of corporate responsibility by setting up the gateway to filter the traffic. Using the information inside the header, the gateway can make a reasonable decision whether or not the encrypted message can be passed. However, using an end-to-end protocol such as SSL means that the gateway cannot just see the header component. If the network administrators wants to inspect a message which is SSL enclosed, the gateway must decrypt the whole message and re-encrypt it using the destination’s key. In this way, possibly sensitive information will be totally exposed to the middle party during the time the message is decrypted and before it can be re-encrypted [3] [9].

So the goal of this system is to design a protocol that will allow only partial decryption by a trusted middle party, the gateway. The protocol must make sure the two ends are the only parties able to see the sensitive information and verify the message.

We propose a system in which client requests are sent in cleartext to a proxy, which transforms the request into a form suitable for a gateway, while applying cryptographic elements to the data.

The PDSP system includes client proxy, gateway and server proxy.

Figure 1 PDSP System Architecture

In Figure 1, the Client Proxy has the function of receiving messages from the real clients. The Client Proxy will split each message into two parts: the header and the body. The Client Proxy will encrypt the body part of message and prepare a composite message for the gateway as discussed later. After that the Client Proxy will use the Transmitting Protocol (TP), the sub protocol of the PDSP, to send the messages to the gateway middle party.

As the middle trusted party, the gateway should use TP to communicate with Client Proxy and Server Proxy. This is because those proxies use the same data structure to present the messages. The gateway will then examine the header part and check the traffic types against a policy, perhaps stored in a file. The policy file will contain rules to define acceptance or denial of messages. Acceptable messages then will be forward to the Server Proxy from the gateway [2] [4].

The Server Proxy will decode the composite message from the gateway and present the complete original message as cleartext to the Server.

Replies from the server will go through the reverse process.

We note that there are many alternatives to the details of the system presented above. For example, instead of separate proxies, the client and server could load dynamic libraries. This would avoid plaintext messages outside of the client/server address spaces, but would need to be more invasive to existing applications.

6 Alternative Composite Choices to Gateway

There are a variety of choices that can be made in the client proxy to build composite data for the gateway, each with various tradeoffs in security or computation time. Computation time at the gateway should be minimised since it will have to process many packets for many different users. The following cases are those with minimal computation time at the gateway for a given degree of security. We label the client proxy as Alice, the server proxy as Bob and the gateway as George. Px is encryption with X's public key, Sy builds a signed hash with Y's private key. M is the composite message of security enhanced message and body, plus a possible signed hash.

Messages with no integrity verification:

Case 1: No change

The plaintext text is passed through unaltered:

M = H + B

This is the reference default and has no privacy for the client.

Case 2: End-to-end encryption

The complete text is encrypted, using the server's public key

M = Pb(H + B)

This is opaque to the gateway and will not allow header-based filtering. M is passed through the gateway unchanged.

Case 3: Body encrypted

The body is encrypted with the private key of the server

M = H + Pb(B)

While the body is confidential, the header can be subject to man in the middle attacks, either for monitoring or changing. However, the gateway can apply filtering rules by a simple text search on the header. M is passed through the gateway unchanged.

Case 4: Separate encryption

M = Pg(H) + Pb(B)

The gateway can decrypt the header, but not the content. This avoids exposure of information to any other third party. The gateway decrypts the header, applies the filtering rules and if the message is approved it will send on a new message

M' = Pb(H) + Pb(B)

Messages with integrity verification:

Case 5: Signed plaintext

The message is

M = Sa(H + B)

which attaches a signed hash to the plaintext message. This does not hide the message at all (as in case 1) but does allow integrity checking by both the gateway and server.

Case 6: Signed encrypted text

This signs Case 2:

M = PbSa(H + B)

The server can verify the integrity of the text, but the gateway cannot do any filtering.

Case 7: Signed, body encrypted

The message is

M = Sa(H) + PbSa (B))

The gateway can verify the header before applying filter rules. The message can be passed through unchanged

Case 8: Signed, head and body encrypted

The message is

M = PgSa(H) + PbSa(B)

The gateway can verify the head and decrypt it in order to apply filters. The message sent to the server must have a re-signed and re-encrypted head

M' = PbSg(H) + PbSa(B)

This offers the most security: the message is opaque to any third party and its integrity is assured.

7 Protocol Design

We have implemented several of the possibilities, including the one involving the highest degree of security.

The protocol PDSP implements case 8 and is designed for communication between the Client Proxy and the gateway and between the gateway and the Server Proxy. A TCP socket connection is used to transmit the data with the format defined by next section. UDP could also be used. PDSP implements the Transmit Protocol (TP). PDSP uses TCP so that the defined messages can be exchanged based on a connection-oriented and reliable transport protocol.

Data structure

The private data structure, named HeaderBody, is defined to transmit the data in the default order. The proxies split each message into its Header and Body parts. The Header and Body will be handled by different encryption keys. The data structure consists of five parts: Header, Body, lengthHeader, lengthBody, and blockSize. The Header and Body store the header and the body information, which are generated by the proxy programs from the request or the response messages respectivly. Header and Body are the arrays of bytes for any kind of encoded message without considering the specific characteristic set. lengthHeader and lengthBody are the byte length of Header and Body respectively. The blockSize defines the size of the block during encryption and decryption process.

PDSP Protocol overview

There are two general types of PDSP messages: Request and Response. Both of them follow almost the same format with following parts: Command-Code, Parameter-Line, and Data.

Figure 2 shows the PDSP data unit format. The first byte will be the Command Code, followed by parameter message till to the end of the line.

Figure 2 Protocol Data Unit

Table 1 Command Code lists the defined code variables and their name representing the functions in PDSP. Also it interprets the directions for the transactions and whether or not the parameter and data is necessary.

Code
Name
Request/Response
Parameter
Data

0
Error
Response
Yes
No

1
Success
Response
Yes
Yes

2
Transmit Protocol
Request
Yes
Yes

Table 1 Command Code

Transmit Protocol (TP)

This sub protocol is designed for transmitting the data in the HeaderBody structure. The Protocol Data Unit will start with Command Code 2, followed by parameter line and data. The parameter line is

LenHeader+LenBody+ BlockSize.

So the server side will use LenHeader to define the length of the Header array, and LenBody to define the length of the Body array. Also the BlockSize defines the size of the block during encryption and decryption process. Those three numbers will be 3 bytes long. The server then will receive LenHeader length of data as the Header part, LenBody length of data as the Body part.

The TP response message sent by the server will be in the above format. The Command Code could be 0 or 1 to show an “Error” or a “Success” response status. If it is 0, the Parameter line will be the error messages providing the reason, and the Data will be blank. If it is 1, the Parameter line will be the same as TP request formula, and the Data will be transmitted with the defined lengths.

8 Filtering Different Message Formats

HTTP and SOAP message formats will be introduced based on their own protocol specifications. As a result, PDSP can analyse how to split and distinguish them, and use different policies to filter them.

HTTP format

HTTP consists of two types of message: request and response. A request message contains a request line, a header, and a body. The request line describes the HTTP method, resource (URL), and HTTP version. The Method indicates request type to be performed on the URL. The request header defines the client’s configuration for the communication and the client preferred format.

On the other hand, a response message contains a status line, a header, and a body. The status line consists of HTTP version, Status code, and Status phase. The response header signifies the server’s configuration for communication and special information about the response [1] [6].

Split HTTP messages

The HTTP message can be split into the Header and the Body by using the blank line of each request or response message. The blank line of each message signals the end the header. In this way, PDSP can use its private data structure to store the messages, encrypt them and transmit them.

Filter rules for HTTP

On the gateway, the system administrator can define rules to filter the message.

Filter rules for request:

· Method rule: Some HTTP methods are not permitted by the administrators, like methods TRACE and DELETE. So PDSP can catch the HTTP method from the Header part based on above format analysis.

· Host rule: gateway only wants some web server or domain accessed by the outside clients. So PDSP can use Header information to catch the host name or even the port number.

· Content-type rule: If the Content-type item appears in the request message, the administrator can check the type and pass the request with allowed type. Such as text/plain, text/html, text/xml etc.

Filter rules for response:

· Method rule: The HTTP response, as the symbol of the HTTP response, has the “HTTP/1. “ starting letters.

· Content-type: The HTTP response will contain the Content-type item in the Header part. The Content-type item will be filtered by the system administrator.

These rules are adequate for many filters, and are similar to those employed in commercial filters. They do not examine the body content, and cannot do so since in our protocol this is encrypted for privacy.

SOAP format

SOAP is a lightweight protocol for information interaction and exchange in the distributed network environment. A SOAP message is based on XML format including four aspects. They are envelope, data encoding, RPC convention and transmission mechanism. SOAP needs a transport method binding its structure for exchanging the messages using an underlying protocol. HTTP is a popular and widely used underlying protocol binding with SOAP. However HTTP is typically considered as a Web browser protocol, which has been used for other purposes by SOAP (this is labelled by advocates as “firewall friendly” but by others as exploiting a security hole). So there is a requirement to help administrators check the SOAP messages binding with HTTP. At the same time the SOAP content may be protected by cryptography techniques. In this paper, PDSP can solve this problem by providing SOAP filter rules [8].

Split SOAP messages

Due to the fact that we only consider SOAP messages using HTTP as the transmission method, it has no difference from the HTTP format. So PDSP will use the same way to split the SOAP messages, just as the HTTP messages. In this way, the entire SOAP XML message will be the Body part of HTTP encrypted by PDSP.

Filter rules for SOAP

For filtering the SOAP messages, the system administrator has to define the rules to catch the message with SOAP attributes. At the same time, PDSP allows him to see the SOAP related items. Then those items could be compared with the rules. Like HTTP, the criteria of Method, Host and Content-Type will be applied to check. The special filter rules for SOAP messages will be analysed next.

Filter rules for request:

· Method: Typically the request method will be POST, because SOAP client will send the SOAP request included in the HTTP body.

· Host: The HTTP header should provide both of host and the port number in the Host item, for specifying certain serving port number of the application server.

· Content-Type: It will be text/xml (in SOAP 1.1) or application/soap+xml (for SOAP 1.2), to indicate the body message is the xml format containing SOAP message.

· SOAPAction: This line must appear (in SOAP 1.1), even with empty action content. The purpose of this item is the server will use this HTTP header to recognize and direct SOAP messages. It is not needed for SOAP 1.2 since the Content-Type is adequate.

Filter rules for response:

· Content-Type: It will be text/xml or application/soap+xml, following with the character set, such as UTF-8. That will indicate the response format and encoding method.

9 Evaluation

The number of signatures, verifications, encryptions and decryptions for each of the eight cases are given n Table 2. For example, case 5 has 2 components to be signed by Alice, both of which are verified by Bob, and one of which is verified by George.

Case
Sign
Verify
Encrypt
Decrypt

1

2

A
B

3

A
B

4

2A + G
2B + G

5
A
B + G

6
A
B
A
B

7
2A
2B + G
A
B

8
2A + G
2B + G
2A + G
2B + G

Table 2: Operations performed by each component

The PDSP protocol (case 8) as might be expected has significant overheads for each message passing through each component. In particular, the gateway has to perform signing, verification, encryption and decryption for each message. If verification is removed (case 4), the extra work drops substantially.

10 Performance

The time performance was measured in an experiment conducted on Pentium III with 256M RAM running Windows XP. All programs were written in Java and run on a single machine – across a network performance might improve due to less task swapping, but we are really interested in relative performance of the different cases. The experiment consisted of sending a single block in the header (with block size 100 bytes) and with zewro bytes in the message from the client to the server, and returning a single header with a varying number of blocks in the body. This would realistically simulate a typical request for an HTML document by an HTTP request with empty body and HTTP reply with an arbitrary body.

Figure 3 shows the round trip time from receiving a request at the client proxy to returning a reply after contacting the server. The results are as expected: case 1 and 5 are nearly flat, while the others are all comparable.

[image: image1.wmf]0

0.5

1

1.5

2

2.5

3

3.5

0

10

30

50

70

90

Number of Message Blocks

Time (Sec.)

Case 8

Case 7

Case 6

Case 5

Case 4

Case 3

Case 2

Case 1

Figure 3 Round-Trip for Cases 1-8

Since the gateway will be handling many simultaneous connections, in Figure 4 we show the time taken at the gateway for each message. Cases 4 and 8 are the most expensive since they involve encryption and decryption of the head at the gateway. The extra load is not excessive though, and could be reduced by using symmetric rather than public key algorithms.

[image: image2.wmf]0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

1

10

20

30

40

50

60

70

80

90

100

Number of the Message

Blocks

Time(sec.)

Case 8

Case 7

Case 6

Case 5

Case 4

Case 3

Case 2

Case 1

Figure 4 Delay at Gateway for Cases 1-8

11 Deployment

The situations considered here (HTTP messages of different types) do not cover all possible types of internet traffic. Nevertheless, they do include a significant part of current and future traffic. Filtering such traffic may go a long way to satisfying organisational and legal requirements. It would be a straightforward technical matter to block encrypted data unless it uses a protocol such as the one proposed here.

However, to be usable, client proxies would need to be installed and clients configured to use them. Alternatively, clients might need to use appropriate libraries to supply such a protocol. This is a non-trivial matter that is beyond the scope of this paper.

12 Satisfied features

Now the solution will be evaluated based on the four features introduced by Section 2.1.

· End-to-end encryption: nearly satisfied, Body part is protected by encrypting and signing for integrity and confidentiality at strong security level.

· Visibility: satisfied, Header part can be retrieved by gateway for filtering.

· Non-intrusive: satisfied, client and server proxies mean that PDSP can be used by legacy applications..

· Lightweight: reasonbly satisfied, although there are computational costs they are not too expensive.

13 Conclusion

In this paper, a new security protocol has been designed to provide a partial solution to the conflict between high privacy and the lack of visibility. A number of possible security and privacy levels have been proposed, and it has been shown that it is possible to produce a compromise between conflicting goals. This compromise has computational costs, though.

PDSP is obviously an extendable project. The protocol can be upgraded so that it can work with many types of transmission protocol such as SMTP etc. [1]. Additional work would need to be performed to adapt it to protocols with different structures, such as FTP.

There are deployment issues that are beyond the scope of this paper. These will require much work.

In addition, our proposal relies on trust and cooperation between all users: Alice and Bob could deceive a gateway, George, by giving a header claiming certain content while actually sending a different type of content. Nevertheless, we believe our proposal is an important step towards overcoming the conflicting goals of privacy and inspection.

References

[1] B.A. Forousan, TCP/IP protocol suite (Boston: McGraw-Hill, 2003)

[2] E. Maiwald, Network security: a beginner’s guide (Berkeley, London: Osborne/McGraw-Hill, 2003)

[3] E. Rescorla, SSL and TLS: designing and building secure systems (Boston: Addison-Wesley, c2001)

[4] H. Craig, TCP/IP network administration (Sebastopol, CA: O’Reilly & Associates, c2002)

[5] R. Oppliger, Internet and Intranet Security (Norwood, MA: Artech House, 1998)

[6] S.A. Thomas, HTTP essentials: protocols for secure, scaleable, Web sites (New York: Wiley, c2001)

[7] S. Nigel, Cryptography: an introduction (London: McGraw-Hill, 2003)

[8] W.B. Brogden, SOAP programming with Java (San Francisco: Sybex, c2002)

[9] W. Stallings, Network security essentials: applications and standards (Upper Saddle River, NJ: Prentice Hall, 2003).

[10] J. Newmarch, Firewalling Web Services, Int Conf on Management of Web Services, Nanchang, China, 2003

[11] Roesch, M. (1999). Snort - Lightweight Intrusion Detection for Networks. In 13th Systems Administration Conference - LISA 99.

Command-Code(1 byte)

Parameter line

Data (optional)

Gateway

policy

Client Proxy

Clients or

Browsers

Server Proxy

Web Servers

_58265768.xls
图表1

		0		0		0		0		0		0		0		0.05

		1		1		1		1		1		1		1		0.08

		10		10		10		10		10		10		10		0.09

		20		20		20		20		20		20		20		0.091

		30		30		30		30		30		30		30		0.1

		40		40		40		40		40		40		40		0.13

		50		50		50		50		50		50		50		0.11

		60		60		60		60		60		60		60		0.12

		70		70		70		70		70		70		70		0.1

		80		80		80		80		80		80		80		0.17

		90		90		90		90		90		90		90		0.19

		100		100		100		100		100		100		100		0.21

&A

Page &P

Case 8

Case 7

Case 6

Case 5

Case 4

Case 3

Case 2

Case 1

Number of Message Blocks

Time (Sec.)

0.712

0.19

0.43

0.13

0.341

0.05

0.25

0.992

0.32

0.651

0.17

0.571

0.141

0.421

1.161

0.46

0.751

0.18

0.842

0.331

0.641

1.424

0.791

1.101

0.2

1.051

0.671

0.831

1.542

0.962

1.221

0.2

1.262

0.841

1.031

1.893

1.202

1.502

0.19

1.492

1.092

1.312

2.043

1.512

1.712

0.181

1.803

1.312

1.512

2.303

1.713

2.043

0.22

1.993

1.623

1.803

2.553

2.023

2.243

0.2

2.243

1.883

2.023

2.764

2.213

2.443

0.221

2.494

2.143

2.253

3.024

2.434

2.714

0.29

2.724

2.303

2.533

3.325

2.724

3.045

0.261

3.084

2.594

2.824

Sheet1

				PDSP		Case 8		Case 7		Case 6		Case 5		Case 4		Case 3		Case 2		Case 1

		0		0.732		0.712		0.19		0.43		0.13		0.341		0.05		0.25		0.05

		1		1.311		0.992		0.32		0.651		0.17		0.571		0.141		0.421		0.08

		10		1.953		1.161		0.46		0.751		0.18		0.842		0.331		0.641		0.09

		20		2.875		1.424		0.791		1.101		0.2		1.051		0.671		0.831		0.091

		30		3.725		1.542		0.962		1.221		0.2		1.262		0.841		1.031		0.1

		40		4.666		1.893		1.202		1.502		0.19		1.492		1.092		1.312		0.13

		50		5.408		2.043		1.512		1.712		0.181		1.803		1.312		1.512		0.11

		60		6.249		2.303		1.713		2.043		0.22		1.993		1.623		1.803		0.12

		70		7.13		2.553		2.023		2.243		0.2		2.243		1.883		2.023		0.1

		80		7.952		2.764		2.213		2.443		0.221		2.494		2.143		2.253		0.17

		90		8.902		3.024		2.434		2.714		0.29		2.724		2.303		2.533		0.19

		100		9.834		3.325		2.724		3.045		0.261		3.084		2.594		2.824		0.21

_50987816.xls
图表1

		0		0.11		0.2		0.1		0.341		0.05		0.2		0.04

		1		0.13		0.26		0.12		0.45		0.06		0.251		0.06

		10		0.18		0.27		0.15		0.471		0.091		0.26		0.061

		20		0.2		0.3		0.12		0.471		0.11		0.26		0.081

		30		0.171		0.29		0.16		0.441		0.1		0.24		0.061

		40		0.17		0.32		0.12		0.441		0.11		0.24		0.091

		50		0.23		0.34		0.121		0.521		0.13		0.251		0.06

		60		0.221		0.411		0.13		0.501		0.161		0.281		0.07

		70		0.26		0.4		0.14		0.501		0.17		0.32		0.09

		80		0.26		0.39		0.151		0.521		0.231		0.31		0.12

		90		0.28		0.421		0.2		0.551		0.221		0.35		0.15

		100		0.32		0.531		0.171		0.681		0.241		0.451		0.14

Case 8

Case 7

Case 6

Case 5

Case 4

Case 3

Case 2

Case 1

Number of the Message Blocks

Time(sec.)

0.5

0.671

0.691

0.611

0.721

0.681

0.691

0.711

0.711

0.731

0.751

0.821

Sheet1

				PDSP		Case 8		Case 7		Case 6		Case 5		Case 4		Case 3		Case 2		Case 1

		0		0.732		0.5		0.11		0.2		0.1		0.341		0.05		0.2		0.04

		1		0.881		0.671		0.13		0.26		0.12		0.45		0.06		0.251		0.06

		10		1.101		0.691		0.18		0.27		0.15		0.471		0.091		0.26		0.061

		20		1.502		0.611		0.2		0.3		0.12		0.471		0.11		0.26		0.081

		30		1.813		0.721		0.171		0.29		0.16		0.441		0.1		0.24		0.061

		40		2.183		0.681		0.17		0.32		0.12		0.441		0.11		0.24		0.091

		50		2.434		0.691		0.23		0.34		0.121		0.521		0.13		0.251		0.06

		60		2.794		0.711		0.221		0.411		0.13		0.501		0.161		0.281		0.07

		70		3.134		0.711		0.26		0.4		0.14		0.501		0.17		0.32		0.09

		80		3.445		0.731		0.26		0.39		0.151		0.521		0.231		0.31		0.12

		90		3.895		0.751		0.28		0.421		0.2		0.551		0.221		0.35		0.15

		100		4.296		0.821		0.32		0.531		0.171		0.681		0.241		0.451		0.14

