
A Location-aware, Service-based Audio System

Robin Kirk and Jan Newmarch
School of Network Computing

Monash University Peninsula Campus
Melbourne, Australia

{robin.kirk, jan.newmarch}@infotech.monash.edu

Abstract— With the development of computer-based location
tracking systems and sensor systems a large amount of contextual
information is available to the application developer.
Information such as the location and motion paths of users and
physical objects, and the ambient noise and temperature of the
surrounding environment can be used to tailor a users experience
with an application, to best suit their requirements. This paper
introduces a location-aware audio streaming application that
utilizes a networked multimedia architecture. This architecture
facilitates the advertisement, discovery and connectivity of audio
services. The streaming application uses both the user’s current
location, and the location of surrounding active loudspeakers to
determine the best output device to use.

Keywords- home networks; multimedia distribution protocols;
network architecture; session user and device mobility; middleware,
pervasive computing, multimedia technologies; interoperability;
location-based services

I. INTRODUCTION
Computer applications are usually not programmed to

handle situational change, often leading to inappropriate
program behavior. If a user is listening to loud music in the
lounge room and another user enters the room, a doorbell or
phone rings, a common reaction would be to reduce the music
volume. Currently a user must do this manually, as the stereo
is unaware of these events. In situations such as these, context-
aware applications can be used to provide improved
functionality and automation, thus increasing the enjoyment
and satisfaction of the interaction with the device. To achieve
this, the application can use location, and possibly some form
of contextual information relating to a user and their physical
and social environment. This information can be collected by
asking the user, or implicitly by monitoring user behavior and
environment.

The ability of an application to deliver multimedia to users
based on their context is a powerful concept. Multimedia can
be directed towards the user’s location, and switch output
device if the user moves. Volume can be adjusted in response
to events, such as a person entering the room, or the doorbell
ringing. Despite these advantages, very few context-aware
multimedia systems have been developed. One such system is
the Intercom system by Nagel et al [1], currently under
development at the Georgia Tech Aware Home [2]. The
system allows context-aware intra and inter-home
communication between occupants. Features of the intercom
include caller id, contextual information gathering and

processing, multiple connections and “follow-me” audio. If a
callee does not want to be interrupted to chat (sleeping,
working) the system will inform the caller of the callee’s status.
Audio is output through speakers in the roof of the home, and
received through wearable wireless microphones. Commands
are issued via voice recognition or touch screen. The Context
Toolkit [3] was used to design the intercom, allowing
flexibility of location system implementation. The Intercom
system is designed for voice communication only, and does not
allow for movement of speakers.

Most architectures for home audio-visual systems such as
the Java Media Framework (JMF) [4] or Microsoft Direct
Show [5] are based on a local model, where all generators (e.g.
TV tuner card) and consumers (e.g. soundcard) are all on the
same machine. Even though JMF supports remote audio by
means of HTTP and RTP [6], it hides these under a local
programming model. Network architectures are either based
on existing middleware such as C++, often extending it in
some way, or build their own middleware structure oriented
towards a particular view of A/V. In the first class are systems
such as Multimedia System Services and the Multimedia
Component Architecture [7]. In the second category are
systems such as Network-integrated Multimedia Middleware
(NMM) [8]. There is work on distributed A/V systems using
Java such as HAVi [9] but this is quite specific to the Firewire
[10] networking protocol.

This paper describes a “follow me” audio application that is
aware of the user’s location, and the location of speakers
around the room, and outputs audio to the closest speaker to the
user. The application monitors the distances from each speaker
to the user, and will switch the audio stream if the closest
speaker changes. Speakers under development are networked
loudspeakers which consist of a basic speaker, power amplifier
and a micro PC (running Linux) with a wireless network card
[11].

The application uses our service-based audio architecture
[12] that facilitates audio service advertisement and discovery.
Use of this framework allows the application to be extended to
support many transport protocols and multiple presentation
formats. Furthermore, quality of service extensions may be
integrated. The framework uses Jini [13] for service
management. Jini is a middleware system built on Java that is
able to fully exploit Java networking capabilities and object
mobility.

0-7803-8785-6/05/$20.00 (C) 2005 IEEE

This paper is organized as follows: Section II discusses the
area of context-aware computing. Section III defines and
discusses the methods available to determine the location of
users and devices. Section IV describes the audio system
framework that is used. Section V describes the
implementation of the source and sink service, and the location
aware interface. Section VI describes the test environment and
observations. The paper concludes with a summary and
discussion of future work.

II. CONTEXT AWARE COMPUTING
Context is defined in the dictionary [14] as “The

circumstances in which an event occurs; a setting”. This may
include people, objects, temperature, social setting, lighting etc.
The concept of context-aware computing was first defined in
1994 by Schilt et. al.[15] as applications that “adapt according
to the location of use, the collection of nearby people, hosts and
accessible devices, as well as to changes of such things over
time”. Dey and Abowd provide a more general definition;
“Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an
application, including the user and applications
themselves”[16]. The latter definition best defines context-
aware computing, as it places no emphasis or constraints on the
type of contextual information that may be required. The aim
of context-aware computing is to enable applications to adapt
to situational change in an attempt to improve the interaction
between the user and computer. This can be achieved by
providing a specialized interface, automating tasks or adjusting
program settings to provide a unique and personalized
experience.

The first generation of context aware applications used
location of users to refine and personalize applications in an
office environment. The Active Badge office system [17]
produced at the Olivetti Research Lab in the early 90’s was the
first its kind. Staff members allowed the application to track
their movements around the building using wearable infrared
devices. The application reported the nearest room number, so
staff could be contacted on the nearest phone. The ParcTAB
also had context aware applications to determine current room
details and the nearest printer [18]. The Georgia Institute of
Technology has been researching context-aware applications
since the mid to late 90’s. Projects include a context-aware
Intercom, In/Out Board, Information display, whiteboard, and
conference assistant [19].

A number of context-aware systems have been developed
to provide location-based information to mobile users. Georgia
Tech produced Cyberguide [20], a system to provide tourist
information to visitors to the campus. Cyberguide users carry
an Apple handheld computer that connected to a central PC via
infrared to beacons around the center. The University of
Lancaster created GUIDE [21], to provide tourist information
on a Fujitsu handheld. Carnegie Mellon University has a
tourist assistant system called SmartSight [22]. This system
uses a wearable computer to answer spoken questions about
local landmarks, provide translations and aid navigation.

III. DETERMINING LOCATION
There are four main categories of location tracking

technologies used to determine the location of a user or
physical object in an indoor environment:

1. Infra-red (IR) – Fixed beacons receive IR signals
from transmitters worn on the body to determine
location. IR has short range, and objects and sunlight
can interfere with the signal. Systems such as Active
Badge [17] and Cricket [23] use IR tracking.

2. Proximity – Detecting when something is near an
object. For detecting physical contact, pressure or
touch sensors are used. Electronic ID tags can be
used to identify users. This technology is the basis
for Smart Floor [24]. Proximity location sensing
does not give accurate room location unless the
technology is installed on all areas of the floor.

3. Ultrasonic – This method calculates location using
some triangulation from short pulses of ultrasound
emitted from a transmitter worn on the body to
beacons installed in the roof. As the range is limited,
many beacons must be installed, increasing the cost
and deployment effort. One such implementation of
ultrasonic tracking is Active Bats [25].

4. Radio Frequency (RF) to determine the objects
location. Recently available RF commercial
software products such as the Ekahau Positioning
Engine [26] and AeroScout [27] use wireless network
infrastructure to determine location, as does MS
RADAR [28]. Due to their low setup cost, long
range and deployment effort compared to the other
three location sensing techniques, RF tracking
systems are currently the most popular choice for
location tracking.

For the location-aware audio system, the deciding factors
for what location sensing system to use were ease of
integration, accuracy and cost. Electromagnetic and proximity
based solutions are the most accurate, but require the purchase
of expensive specialized hardware. The Ekahau and
AeroScout positioning systems have a Java API, utilize
existing wireless access points and are accurate to a few
meters. In the end, the license fee for the Ekahau system was
the more affordable of the two, and therefore was the chosen
technology.

IV. A SERVICE BASED AUDIO ARCHITECTURE
At the most abstract layer a service based audio system

consists of three players:

1. Sources of audio data

2. Sinks for audio data

3. Controller Clients

Controller clients should link sources to sinks, and leave
them to decide how or if they can communicate. Section IV.A
discusses the factors that determine compatibility. Figure 1

0-7803-8785-6/05/$20.00 (C) 2005 IEEE

Figure 1. Communication Paths

shows the communication paths involved from a client
viewpoint.

For simplicity we define two interfaces: Source and Sink.
To avoid making implementation decisions about pull versus
push, we have methods to tell a source about a sink, a sink
about a source, to tell the source to play and the sink to record.

However, adopting such open interfaces does not address
any incompatibility issues between A/V services. There is no
way for a client to know if participating services can talk to
each other as they may use different transport protocols, or the
sink may not support the source media format. For example, if
a WAV service sends the file using an array of bytes, a sink
expecting an RTP transmission cannot receive the media.
Streaming media protocols such as RTP were designed for
client/server use, and may not cooperate from source to
processor to sink. The responsibility of negotiating a transport
protocol and media content must fall on the source and sink. If
the source and sink fail to negotiate a valid transport and
content, an exception should be thrown. This violates the
principle that a service should be useable based on its interface
alone, but considerably simplifies matters for controller clients.

A controller that wants to play a sequence of audio tracks to
a sink will need to know when one track is finished in order to
start the next. The play() and record() methods could block till
finished, or return immediately and post an event on
completion. The second method allows more flexibility, and as
a result requires add/remove listener methods for the events.

Finally, there are the exceptions that can be thrown by the
methods. Attempting to add a source that a sink cannot handle
should throw an exception such as an
IncompatibleSourceException. A sink that can handle only a
small number of sources (for example, only one) could throw
an exception if too many sources are added. A source that is
already playing may not be able to satisfy a new request to
play.

A. Design Factors
The transport layer may be reliable (slow) TCP, unreliable

(faster) UDP, HTTP (even slower), with some QOS such as
RTP or some other network technology protocol such as
Bluetooth [29] or FireWire.

There are an enormous number of audio formats, from
encumbered formats such as MP3 [30] (for which you are
required to pay license fees for encoders and decoders),
unencumbered equivalents such as Ogg-Vorbis [31],
compressed (MP3 and Ogg-Vorbis) or uncompressed (Sun
AU[32] or waveform), lossy or lossless. In addition, there are
many wrinkles in each format: little- or big-endian; 8, 16 or 32
bit; mono, stereo, 5.1; sample rate such as 44.1 kHz, 8 kHz, etc

Audio comes from many different sources: tracks off a CD,
streaming audio from an FM station, speech off a telephone
line. The MPEG-7 standard [33] concentrates on technical
aspects of an audio signal in attempts to classify it, while the
CD databases (CDDB) such as Gracenote [34] classify CDs by
Artist/Title - which breaks down with compilation CDs and
most classical CDs (who is the artist - the composer, the
conductor or the orchestra?)

An audio stream may be "pushed", such as an FM radio
stream that is always playing. Or it may be "pulled" by a client
from a server, such as in fetching an MP3 file from an HTTP
server

The two interfaces given earlier are enough to identify
sources and sinks to a third party client (or to each other). In
order to negotiate whether they can talk to each other may
require more information, which can be supplied by further
interfaces.

B. Content Interfaces
The Java Media Framework (JMF) has methods such as

getSupportedContentTypes() which returns an array of strings.
Other media toolkits have similar mechanisms. This isn't type-
safe: it relies on all parties having the same strings and
attaching the same meaning to each. In addition to this, if a
new type comes along, there isn't a reliable means of
specifying this information to others. A type-safe system can at
least specify this by class files.

Interfaces are more type-safe than strings: a WAV
interface, an Ogg interface, etc. This doesn't easily allow
extension to the multiplicity of content type variations (bit size,
sampling rate, etc), but the current content handlers seem to be
able to handle most of these variations, so it seems feasible to
ignore them at an application level.

The content interfaces are just place-holders:
package presentation;

public interface Ogg extends java.rmi.Remote
{

}

A source that could make an audio stream available in
OggVorbis format would signal this by implementing the Ogg
interface. A sink that can manage OggVorbis streams would
also implement this interface.

C. Transport Interfaces
In a similar way, the transport mechanisms may be

represented by interfaces. A transport sink will get the

0-7803-8785-6/05/$20.00 (C) 2005 IEEE

information from a source using some unspecified network
transport mechanism. The audio stream can be made available
to any other object by exposing an InputStream. This is a
standard Java stream, not the special one used by JMF.
Similarly, a transport source would make an output stream
available for source-side objects to write data into:

public interface TransportSink {

 public InputStream getInputStream();

}// TransportSink

public interface TransportSource {

 public OutputStream getOutputStream();

}// TransportSource

V. LOCATION-AWARE IMPLEMENTATION

A. Client
The location-aware implementation consists of a Jini client

that is not only aware of the sources and sinks, but also the
locations of all PC’s or PDA’s running the Ekahau client
program. A music file may be chosen, and streamed from a
source, to a group of possible sinks. The client then calculates
the closest sink to the chosen tracked device (a PDA for
example) and will play the song to that sink. A map is shown
of the area, depicting the mobile user and mobile sinks. The
client periodically re-calculates to determine the closest sink to
the PDA, if another sink becomes closer, the stream is re-
directed to that sink. The audio will continue from the point it
was stopped at the source.

B. Source/Sink
As the location-aware audio system streams audio, a “push”

implementation approach at the transport layer was required.
A Sink exposes an OutputStream, and the Source writes sound
data read from the source file to that stream. TCP/IP sockets
were used to transfer the file over the network.

At the presentation level, a Sink was implemented that is
capable of handling OGG Vorbis and WAV files. Ogg Vorbis
support is achieved using the OGG vorbis tritonus plug-in [35].
Using standard Java libraries, a FileInputStream is read from
the socket and converted to an AudioInputStream. The file is
converted to WAV on-the-fly for output to the soundcard if
required.

VI. TESTING

A. Test Environment
A basic test environment was constructed, with two sinks,

one source, one client and one PDA used for tracking purposes
only. The test was conducted in a large 10x10 meter office

area. Two wireless access points were placed an either end of
the room.

The hardware specifications of the machines used were:

• Sinks (2) – Pentium II 350MHz 128MB RAM 802.11b
PCI card.

• Source – Pentium 4 2.53GHz 512MB RAM 802.11b PCI
card

• Location-aware client – Pentium M 1.4GHz Laptop
512MB RAM 802.11b Mini-PCI card

• Tracking client – IPAQ PDA 802.11b PCMCIA card

B. Test Strategy
A test case was carried out several times in the test

environment to demonstrate that the system functions as
designed, and the responsiveness of the Ekahau location
system. Sink, Source and location-aware client services, and
the Ekahau client program on the Sinks and PDA were started.
The location-aware client was then used to select the Source
and Sink services and initiate the session. The PDA was
initially located at one end of the room, near Sink 1. The PDA
was then picked up and carried over at walking pace to the
other side of the room near Sink 2. When the PDA became
closer to Sink 2, the time taken for the stream to cease at Sink 1
and begin at Sink 2 was recorded. The PDA was then carried
back to Sink 1. When the PDA became closer to Sink 1, the
time taken for the stream to cease at Sink 2 and begin at Sink 1
was recorded.

C. Results
The system functioned as designed in all tests that were

conducted. The average time taken for the location system to
trigger a Sink change was five seconds. The delay was longer
than anticipated, and unsatisfactory for this application. This
delay may be explained by the lack of an adequate number of
wireless access points. The accuracy of the Ekahau positioning
is mainly dependent on the number of audible access points
installed. At least three access points is recommended, so the
accuracy of the location system during testing was definitely
less than the advertised accuracy of one meter.

The responsiveness of the location system is also dependent
on which method call is made on the LocationEstimate object
received from the Ekahau positioning engine,
getAccurateLocation() or getLatestLocation(). The current
implementation uses the getLatestLocation() method to
minimize the delay, at the expense of greater accuracy.

VII. CONCLUSION
In this paper we have presented an overview of the area of

context-aware computing and multimedia systems, multimedia
middleware, and location sensing technologies. An
implementation of a location-aware audio system, which forms
part of our service-based audio framework, was described in
detail. An explanation of the testing carried out was provided,
and the initial results discussed.

0-7803-8785-6/05/$20.00 (C) 2005 IEEE

The location-aware audio system is the first stage in
realizing a truly context-aware audio system. A planned
variation to this is to have all nearby sinks playing the audio
stream at different volumes determined by the user’s location.
The aim of this is to maintain the overall volume at the desired
level, regardless of where the user is standing. Following this,
the next stage of development will focus on developing a
household audio system capable of adapting itself to the
surrounding environment. Contextual information such as
ambient noise levels gathered from microphones and user
preferences will be used. We are also devising reasoning
algorithms that will allow the audio system to react to state
changes in other smart devices, such as telephones and
doorbells. Additionally, quality of service extensions will be
developed and integrated into the framework to deliver audio
in the best way possible.

VIII. REFERENCES
[1] K. Nagel, C. Kidd, T. O'Connell, A. Dey, and G. Abowd, "The family

intercom:developing a context-aware audio communication system,"
presented at UbiComp2001, Atlanta, Georgia, 2001.

[2] C. Kidd, R. Orr, G. Abowd, C. Atkeson, I. Essa, B. MacIntyre, E.
Mynatt, T. Starner, and W. Newstetter, "The aware home: a living
laboratory for ubiquitous computing research," presented at Second
International Workshop on Cooperative Buildings (CoBuild99'),
Pittsburgh, PA, 1999.

[3] A. Dey and G. Abowd, "The context toolkit: aiding the development
of context aware applications," presented at Workshop on Software
Engineering for Wearable and Pervasive Computing, Limerick, Ireland,
2000.

[4] "Java Media Framework (JMF)"
 http://java.sun.com/products/java-media/jmf/
[5] "Microsoft Direct Show"

http://www.microsoft.com/Developer/PRODINFO/directx/dxm/help/ds/
default.htm

[6] "RTP - The real time transport protocol"
http://www.cs.columbia.edu/~hgs/rtp/

[7] D. Waddington and G. Coulson, "A multimedia component
architecture," presented at 1st IEEE International Workshop on
Enterprise Distributed Object Computing - EDOC 97, Surfers Paradise,
Gold Cost, Australia, 1997.

[8] M. Lohse, M. Repplinger, and P. Slusallek, "An open middleware
architecture for network-integrated multimedia," presented at Protocols
and Systems for Interactive Distributed Multimedia Systems,
Proceedings of IDMS/PROMS'2002 Joint International Workshops on
Interactive Distributed Multimedia Systems / Protocols for Multimedia
Systems, Coimbra, Portugal, 2002.

[9] "HAVi - Home Audio/Video Interoperability Architecture"
http://www.havi.org

[10] "FireWire (IEEE 1394)," http://www.apple.com/firewire/
[11] J. Newmarch, "A networked loudspeaker," presented at Australian

Unix and Open Systems User Group, Queensland, 2002.
[12] J. Newmarch and R. Kirk, "A service architecture for scalable

distributed audio," presented at AWESOS 2004 - 1st Australian
Workshop on Engineering Service-Oriented Systems, Melbourne,
Australia, 2004.

[13] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath,
The Jini specification: Addison-Wesley., 1999.

[14] "Dictionary.com" http://dictionary.reference.com.
[15] B. Schilt, N. Adams, and R. Want, "Context-aware computing

applications," presented at Workshop on Mobile Computing Systems
and Applications, Santa Cruz, 1994.

[16] A. Dey and G. Abowd, "Toward a better understanding of context and
context-awareness," Georgia Institute of Technology, GVU Technical
Report GIT-GVU-99-22.

[17] R. Want, A. Hopper, V. Falcao, and J. Gibbons, "The active badge
location system," ACM Transactions on Information Systems, vol. 10,
pp. 11, 1992.

[18] P. Brown, J. Bovey, and X. Chen, "Context-aware applications: from
the laboratory to the marketplace," IEEE Personal Communications, vol.
4, pp. 7.

[19] "Future computing environments website"
http://www.cc.gatech.edu/fce/

[20] S. Long, R. Kooper, G. Abowd, and C. Atkeson, "Rapid Prototyping
of Mobile Context-aware Applications : The cyberguide case study,"
presented at 2nd ACM international Conference on Mobile Computing
and Networking, New York, 1996.

[21] N. Davies, K. Mitchell, K. Cheverst, and G. Blair, "Developing a
context sensitive tourist guide : some issues and experiences," presented
at CHI'00, Netherlands, 2000.

[22] J. Yang, W. Yang, M. Denecke, and A. Waibel, "Smart sight: a tourist
assistant system," presented at 3rd International Symposium on
Wearable Computers, San Francisco, California, 1999.

[23] N. Priyantha, A. Chakraborty, and H. Balakrishnan, "The cricket
location-support system," presented at MOBICOM, 2000.

[24] R. Orr and G. Abowd, "The smart floor: a mechanism for natural user
identification and tracking," presented at CHI2000, Netherlands, 2000.

[25] A. Ward, A. Jones, A. Harter, and M. Addlesee, "A new location
technique for the active office," IEEE Personal Communications, vol. 4,
pp. 42-47, 1997.

[26] "Ekahau positioning engine website" http://www.ekahau.com
[27] "AeroScout" http://www.aeroscout.com
[28] P. Bahl and V. N. Padmanabhan, "RADAR: An RF based in-building

user location and tracking system," presented at IEEE Infocom, 2000.
[29] "Bluetooth website" http://www.bluetooth.com/
[30] "Fraunhofer IIS website" http://www.iis.fraunhofer.de/
[31] "Ogg vorbis website" http://www.vorbis.com/
[32] "Sun/NeXT sound file format (.au),"

http://www.opengroup.org/public/pubs/external/auformat.html
[33] "MPEG-7 specification"

http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
[34] "Gracenote CDDB"

http://www.gracenote.com/gn_products/cddb.html
[35] "Tritonus project website" http://www.tritonus.org

0-7803-8785-6/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

