

JINI/J2EE Bridge for Large-scale IP Phone Services

Jia Yu†
Monash University

Melbourne, Australia
jiayu@cs.mu.oz.au

Jan Newmarch
Monash University

Melbourne, Australia
jan.newmarch@infotech.monash.edu.au

Michael Geisler
Sun Microsystems

Melbourne, Australia
michael.geisler@sun.com

Abstract

Current IP phone architectures which bring phone
services to a distributed open environment are eraltively
static and do not scale well. An IP phone environment
should be more dynamic. Using Jini to be middleware for
IP phone services will make the IP phone environment
more portable, easier to deploy and straightforward to
extend. However, many global applications with complex
business logic and potentially thousands of concurrent
users are developed on J2EE compliant platforms. On the
one hand, J2EE is a framework to support large-scale
systems while Jini is for small to medium-scale
applications. On the other hand, J2EE provides a
centralized service whereas Jini offers loosely-coupled
federations with dynamic administration. In this paper,
we propose an architecture called JINI/J2EE bridge for
marrying these two technologies, and allowing J2EE
applications to be accessed by Jini.

1. Introduction

The development of conventional telephony systems

is far behind the development of today’s Internet.
Centralized architectures (see Figure 1.a) with dumb
terminals make exchange software and hardware very
complex, but provide very limited functions. Closed and
hardware property systems hinder the enterprise to choose
products from different vendors and deploy a voice
function to meet their business needs. Consequently,
Web-like IP phone distributed architecture [1] is
proposed to facilitate enterprises and individuals to
provide their own phone services.

Web-like IP phone architecture (see Figure 1.b) is
similar to WWW of today’s Internet. An IP phone is an
intelligent client. It can be a PDA, small programmable
device or a desktop. Any individual or enterprise can

 †Current contact address: Department of Computer
Science and Software Engineering, Melbourne University

provide their phone services. Thousands of innovative
services can be deployed on IP networks for IP phones, as
a huge number of websites appear on the Internet. For
example, we can deploy an internal phone book service in
an enterprise network. People search the phone book by
their IP phones, and the phone can dial the telephone
number automatically. However, how to manage and
discover phone services is a challenging task.

To date, there is no standard for the phone service
management and discovery. Compared with enterprise
WWW service, IP phone network is more dynamic.
Therefore, the underlying infrastructure for the IP phone
services needs to be more portable, easy to deploy and
straightforward to extend. Jini[2] is a good technology for
device interoperability and network plug-and-play.
However, the benefits of Jini are far more than for
network devices; it also can contribute to network service
discovery, especially for a dynamic network. By using
Jini, a phone service can be discovered at run-time.
Imagine if every company or institution deploys their own
phone book service, when you get into a corporation, Jini
phone can find its phone service and display it on the
screen. Then you will easily know any staff telephone
number and other information without concerning
yourself with the location of the service and
reconfiguration.

In addition to Jini services which are for small to
medium-scale applications, large-scale phone services are
also needed in IP phone system, for example monitoring
service and customer information retrieval. Java 2
Enterprise Edition (J2EE)[3] is targeted at large-scale
applications, integrating clients, web components, EJB
components and database. However, J2EE provides a
centralized service whereas Jini offers loosely-coupled
federations with dynamics of administration. In dynamic
phone environment, we need to access J2EE large-scale
applications such as trouble reporting system, not only by
Web and certain Java clients, but also by Jini, so that an
IP phone can discover and access a J2EE application at
run-time. Since there is no J2EE server supporting Jini
access, in this paper we propose an architecture for
marriage of these two technologies called JINI/J2EE

Bridge to facilitate the discovery of J2EE service on the
Jini federation.

The rest of this paper is organized as follows:

Related work within an IP phone environment is
presented in Section 2. The detailed system design is
described in Section 3. Section 4 describes
implementation with class diagram. A use-case study is
presented in Section 5. We discuss the benefit and
drawback of the system in Section 6. We conclude in
Section 7.

2. Related work

The primary feature of voice application is that it is

extremely delay-sensitive rather than error-sensitive.
There are several approaches that have been developed to
support delay-sensitive applications on IP networks. In
the transport layer, UDP can be used to carry voice
packets while TCP may be used to transfer control
signals, as long delay is caused by TCP by its
retransmission and three-handshake mechanism. The
Real-Time transport protocol (RTP)[4] is a compensative
protocol for real-time deficiency on packet networks by
operating on UDP and providing mechanisms for real-
time applications to process voice packets. The Real-
Time Control protocol (RTCP)[4] provides quality
feedback for the quality improvement and management of
the real-time network.

Several signaling protocols have been proposed for
IP phone applications. MGCP[5] and MEGAC [6]are old
centralized models, while H.323[7] and SIP[8] are peer-
to-peer protocols. H.323 is published earlier by ITU and
gained more support in today’s products. However, being
simple and similar to HTTP, SIP will bring the benefits of
WWW architecture into IP telephony and readily run
wherever HTTP runs. It is a gradual evolution from

existing circuit-switched networks to IP packet-switched
network. Server gateways that convert VoIP signaling
and circuit-switched network signaling are required.
Potentially, MGCP and MEGAC are believed to work
along with SIP. MGCP or MEGAC acts as a protocol for
gateway control whereas SIP is used as call-signaling
protocol.

Intelligent phone terminals are the basic component
for Web-like phone system. Pingtel xpressa[9] is 100%
Java-based IP phone. The xpressa is based on SIP and
hence leverages its extensibility, scalability and ease of
deployment. Several Java APIs for audio applications are
also available on desktop, including Java Telephony API
(JTAPI)[10], Java Speech API (JSAPI)[11] and Java
Media Framework API (JMF)[12].

Integrated Network APIs for the Java Platform
(JAIN)[13], developed by a community of companies led
by Sun Microsystems, is a set of integrated network APIs
for the Java platform. JAIN architecture divides a
network-related software system into several layers and
puts forward open APIs between two adjoined layers. The
JAIN architecture is targeted toward networks, signaling
and services layers of wired, wireless and packet
networks. Open standard APIs will enable different
companies to provide solutions for different portions of
the systems and hence allow customers to choose
products from multiple vendors at different levels based
on their requirements. Open standard APIs will also hide
the complexity of networks and signaling protocol for
high-level application developers, so a huge opportunity
for new services on IP phone systems will be achieved.

OSS/J[14] is a set of standard Java APIs for
Operation Support systems (OSS). OSS covers the
software used by a service provider to create, administer

a. Traditional telephony architecture b. Web-like phone architecture
Figure 1. Telephony architecture[1]

and bill services on its network. Standard OSS APIs are
expected to promote multi-vendor interoperability. OSS/J
APIs are shown in Table 1.

Current Jini implementation using dynamic

classloading cannot be deployed in small devices, due to
their limited resources. Jini surrogate architecture[17]
provides proxy-based solution to address this problem.
Other projects such as JMatos[18] and JiniMe[19] also
provide solutions to implement Jini on small devices.

Emerging networking, signal standards and
intelligent terminals enable high performance Web-like
VoIP system. Layered standards for phone software and
operation support systems facilitate vendor
interoperability and productivity of innovation phone
services. Solutions for Jini on small devices contribute to
produce Jini-based phone device. As compared to related
works above, we focused on combining Jini and J2EE
technology, so that IP phone can access large-scale phone
services, such as OSS/J applications, without concern of
their location.

3. JINI/J2EE Bridge

Our goal is to facilitate the discovery of J2EE

services on the Jini federation. Through an independent
program running outside J2EE application server -a

Jini/J2EE proxy for a J2EE application- the J2EE
application can be accessed by a Jini client. However, it is
not a good idea that people have to run the proxy
separately after deploying their J2EE application on a
J2EE server. It is better that JINI/J2EE proxies can be run
automatically. For example, when a J2EE application is
dbbeployed on a J2EE application server, the
corresponding Jini/J2EE proxy runs and registers this
J2EE service to the Jini lookup service. Once this
application is undeployed from the J2EE application
server or disconnection occurs between the proxy and the
application server, that proxy should disappear from the
Jini network until the application appears on the J2EE
server again.

3.1. Architecture

The architecture of the JINI/J2EE Bridge is

illustrated in Figure 2. Every J2EE application has its
proxy and runs in the bridge. A JINI/J2EE proxy
represents a J2EE application on the Jini federation and
can communicate with its J2EE application by Remote
Method Invocation (RMI)[22] or Java Message Service
(JMS)[21]. There are two major entities of the JINI/J2EE
Bridge, a JINI/J2EE proxy manager and a proxy
container.

• The JINI/J2EE proxy container holds
resources and provides a runtime environment for
JINI/J2EE proxies, and organizes JINI/J2EE proxies.
The container can allocate and release resources for a
JINI/J2EE proxy.

• The proxy manager is responsible for the
proxy management. The manager is capable of
communicating with J2EE applications running on a
J2EE server; it manages proxy creation and
destroying, according to the status of the
corresponding J2EE application.

API Application
Service Activation API Provisioning a service
Quality of Service API Monitoring service life-cycle
Trouble Ticketing API Detecting and fixing faults
IP Billing API Billing and discounting
Inventory API Service, network and

customer info retrieval

Figure 2. JINI/J2EE bridge architecture

J2EE Application
Server

Application 1

Application 2

JINI/J2EE Proxy
Container

Client

RMI/JMS
JINI/J2EE Proxy 1

look up
lease

JINI/J2EE Proxy
Manager

JINI/J2EE Proxy 2
Jini lookup
service

Client

Table 1. Summary of OSS/J APIs[15]

3.2. Discovery mechanism

How can the bridge know there is a proxy needing to

run? And how can an application be aware that there is a
JINI/J2EE bridge available and send its proxy to the
bridge? In order to let bridge and application discover
each other, two types of messages are developed, query
message and response message. As shown in Figure 3, the
initiation of the discovery procedure starts from the
bridge, since JINI/J2EE Bridge needs to be run all the
time. The bridge sends a query message, asking “do you
want to provide a Jini service?” When a query message is
received by an application, if it wants to provide a Jini
service, it will send a response message, saying “yes, my
Jini proxy is there, please run it for me.” In the response
message, the URL of the proxy Jar file must be indicated.
The Jar file contains the main class of representing proxy
for the J2EE application and other supporting classes.
Hence the manager can know where to download the
proxy’s Jar file.

The proxy manager of the bridge is responsible to

handle query message sending and response receiving,
while the J2EE application is able to process query
messages and send response messages by a message-
driven bean called JINI/J2EE message-driven bean. In
the deployment stage, this type of message-driven bean
can be added along with other business logic beans into
one .ear file.

3.3. Message models

In order to let the bridge talk to a J2EE application,

query and response information needs to be wrapped into
a J2EE message system such as JMS. We use different
message models for processing query message and
response message

For the query message, the publish/subscribe
messaging model is used, because these query messages
should be simultaneously passed to many applications,
which want to provide Jini services. As shown in Figure
4, the JINI/J2EE manager sends a query message
periodically to a certain topic, whose JNDI name is
JINIServiceQueryTopic. After a J2EE application is
deployed, its JINI/J2EE message bean subscribes to this
topic and the query message can be received. In this way,
any application going to offer a Jini service can be
informed that the proxy bridge is active.

For response message, given only one receiver,

JINI/J2EE proxy manager, the point-to-point messaging
model is considered. As shown in Figure 5, once an
application receives a query message, it sends a response
message to a specified queue named
JINIServiceRequestQueue. The JINI/J2EE manager is a
listener to that queue and hence the response message can
be received.

3.4. JINI/J2EE proxy retrieval

We presume that the JINI/J2EE bridge does not

know anything about a proxy before the proxy runs,
otherwise, an administrator would be assigned to collect
proxy class files from application providers and deploy
them into the bridge. The bridge should download the Jar
file of a proxy code automatically. Jar file retrieval for the
bridge can be done with aid of an HTTP server. Every
proxy Jar file is put into the HTTP server and its URL is
indicated in response messages sent to the bridge. On
receiving the response message, the bridge downloads the
Jar file from HTTP server and activates the proxy, if a
proxy is not running in the container.

3.5. Liveness

A JINI/J2EE proxy manager is responsible to

maintain the lifetime of every proxy running in the
container. The manager should keep in touch with the
J2EE application; if the connection is lost, the manager
must destroy the representing proxy and then ask the
container to release all resources allocated for the proxy.

 JINI/J2EE Bridge J2EE application

1: Query

2: Response

Figure 3. Discovery procedure

JMS

JINI/J2EE Manager

JINIServiceQueryTopic Application 1

Figure 4. Query message model

Application 2

Application 3

JINI/J2EE Manager

Application 1

Figure 5. Request message model

JINIServiceRequestQueue

Application 2

A time-based solution can be used to maintain the
lifetime of activated proxies. Every proxy is set an expiry
time when it is created in the container. When the proxy
expires, the bridge will deactivate it. The manager
publishes query messages periodically and these
messages trigger JINI/J2EE message-driven beans to send
a response. For a running proxy, its expiry time is
extended on receiving its response message. So if an
application disappears, there will be no response message
from it for a long time, and then the proxy will be
expired.

4. Implementation

We implemented a JINI/J2EE proxy manager and

used surrogate host implementation from Madsion
project[23] to simulate the container. The Madison
surrogate host provides a Jini service running
environment and export server from which Jini clients
can download the Jini service resources.

The class diagram of the JINI/J2EE proxy manager is
illustrated in Figure 6. Classes are explained below:

• JINIJ2EEProxyManager
It is responsible for proxy creation and interaction

with the container.
• QueryTask

The purpose of QueryTask is to establish a
connection to a certain topic on a J2EE
application server and publish query messages to
the topic on a J2EE application server.

• ResponseListenerThread
It is an asynchronous message listener, an

object of RequestListener, to the queue on a J2EE
application server, which is used to pass through
Jini service response messages sent by a Jini/J2EE
message-driven bean in the J2EE application.
RequestListener realizes the interface
MessageListener defined in JMS.

• IncomingResponse
This is used to parse response messages from a
J2EE application and take action according to the
content of the message and the status of its
representing proxy.

• ProxyRec
This class holds the information of a proxy, which
is running in the container.

• ProxyExpirationThread
This thread is used to maintain a proxy table in
the manager. This proxy table records the
information of all active proxies in the container.

QueryTask

cancel()
run()

JINIJ2EEProxyManager

ResponseListenerThread

ResponseListe
ner

onMessage()

Thread

ProxyExpirationThread

Comparable

ProxyRec
JarURLName : String
expiration : long
id : proxyID

IncomingResponse
proxyURL : URL

getURL()

MessageListener

onMessage()

defined in JMS
package

Figure 6. Class diagram of the JINI/J2EE proxy manager

5. Case Study

As introduced in the related work section, OSS

software is a large-scale application for service providers.
OSS/J is built on J2EE, and provides a well-defined
interface in Java as shown in Figure 7. In this section, we
present JIINI/J2EE proxy for OSS/J trouble ticket
implementation [16] in the IP phone environment.

The class diagram is shown in Figure 8. A proxy can
access trouble ticket application by invoking methods on
the objects implementing OSS/J Trouble Ticket API. A
suitable OSS/J Jini service interface (TTService in Figure
8) is defined, so that the proxy can be found by matching
that service interface on Jini federation. Trouble ticket
API is defined in TTProxy and Proxy is interface defined
in the container through which the container can manage
proxy.

After an instance of TTProxyImpl runs in the proxy
host, it registers TTService to the look up service. An

object of TTServiceImpl is exported to a Jini client as
soon as the client asks for trouble ticket service and then
client can create a trouble ticket by invoking
createTroubleTicket(). We create a program that can
monitor IP phone status and generate a trouble ticket
when the IP phone is not online. The trouble ticket
reports the location and reason and the ticket is lodged
into the database. The sequence diagram of trouble ticket
creation is illustrated in Figure 9.

We deployed the Jar file of the proxy in a HTTP
server. We also implemented a JINI/J2EE message-driven
bean and deployed along with OSS/J trouble ticket
implementation on a Weblogic server[20], J2EE
application server. The message-driven bean is used to
discover the JINI/J2EE Bridge, and send response
message indicating the URL of the Jar file. When trouble
ticket application is deployed, the bridge downloads the
Jar file and activates trouble ticket proxy. After putting
trouble ticket proxy access code into the phone’s monitor
program, the trouble ticket is successfully generated when
the phone is switched off. In addition, the trouble ticket
proxy can be also deactivated when the message-bean is
undeployed from J2EE server.

Remote

TTService

createTroubleTicket()
getDescription()

TTProxy

createTroubleTicket()

TTServiceImpl TTProxyImpl

Proxy

activate()
deactivate()

UnicastObject

proxy interface
required in the
container

Serializable

 Figure 8. Class diagram of proxy for OSS/J Trouble Ticket system

IPPhoneMonitor TTService TTProxy JVTSessionBean TroubleTicketValue

[IP phone is disconnected]

createTroubleTicket()

createTroubleTicket()
makeTroubleTicketValue()

return (TroubleTicketValue)

setTroubleDescription()

setTroubleLocation()

createTroubleTicketByValue(ttValue:TroubleTicketValue)

return(TroubleTicketKey)

OSS/J Trouble Ticket
Implementation

6. Discussion

This JINI/J2EE bridge architecture, a container with

a proxy manager, can be deployed with any J2EE-
compliant application server such as Weblogic server.
Developers can write a proxy program and deploy it into
a HTTP server. As soon as the corresponding application
is up on the J2EE server, the bridge retrieves and
activates the proxy. The bridge enables J2EE applications
to provide Jini access other than RMI and JMS type
communication. In the case of Trouble Ticket API, on
one hand, managers or customer care centers can create
Trouble Ticket through Web or a J2EE client; on the
other hand, network components, such as IP phone device
and server, can generate trouble tickets automatically by
Jini. Therefore, the developers of equipment can put
trouble report for every possible error condition in their
code without need for reference to the location of the
trouble ticket system, as trouble ticket service can be
discovered at run-time.

To date, the JINI/J2EE proxy manager of the bridge
was implemented to work along with only one J2EE
server. It is better to let the bridge support multi-J2EE
servers. It can be achieved by making a property file for

the bridge, in which the URLs of multi-J2EE servers are
pre-configured, and then when the bridge starts, it reads
all URLs from the property file and sends query messages
to all URLs.

7. Conclusion

Centralized and closed system architecture hinders

the development of telephony systems. Web-like phone
architecture is expected to strengthen a lot of phone
services provided by enterprise or individuals. We
propose to use Jini as phone service middleware, due to
the dynamic nature of phone environment. However,
J2EE is a framework for global enterprise applications.
Additionally, new standard APIs (OSS/J) for operation
support systems and business support system are built on
J2EE. It is clear that IP phone systems need to support
both dynamics of administration and global access. In this
paper, we presented architecture for marriage two
technologies called JINI/J2EE Bridge.

The bridge can accommodate many J2EE application
proxies on Jini federation. These proxies are
automatically managed by the bridge according to the
status of their represented J2EE applications, with the aid

Figure 9. Sequence diagram of trouble ticket creation

of a HTTP server. This general bridge architecture works
along with a J2EE compliant server and provides Jini
access for J2EE applications. A proxy for OSS/J trouble
ticket, which is built on J2EE, was also discussed. By
providing Jini access, an IP phone monitor can report
trouble to the trouble ticket software without the need for
reference to the service location. The success of the
implementation of the JINI/J2EE proxy for the trouble
ticket application certainly proves that this bridge
architecture is practical.

8. Acknowledgment

We would like to thank Sun Microsystems,

Melbourne for their support for this project. We also want
to thank Rob Gray for his proof-reading for the paper.

9. References

[1] Pintel Corp., Next Generation VoIP Services and
Applications Using SIP and Java, Technology Guide,
http://www.pingtel.com/docs/collateral_techguide_final.pdf.
[2] Jini Network Technology, http://www.sun.com/ software/
jini
[3] Java 2 Platform, Enterprise Edition, http://java.sun.com/
j2ee
[4] Schulzrinne H., Casner S., Frederick R., and Jacobson V.,
RTP: A Transport Protocol for Real-Time Applications, RFC
1889, January 1996
[5] Arango M., Dugan A., Huitema C., and Pickett S., Media
Gateway Control Protocol(MGCP) Version 1.0, RFC 2705, The
Internet Society, October 1999
[6] Cuervo F., Greene N., Rayhan A., Huitema C., Rosen B.,
and Segers J., Megaco Protocol Version 1.0, RFC 3015,
November 2000
[7] ITU-T, H.323: Packet-based Multimedia Communications
Systems, International Telecommunication Union, 1998
[8] Rosenberg J., Schulzrinne H., Camarillo G., Johnston A.,
Peterson J., Sparks R., Handley M. and Schooler E., SIP:
Session Initiation Protocol, RFC 2543, The Internet Society,
February 21, 2002
[9] Pingtel Corp., http://www.pingtel.com
[10] Java Telephony API, http://java.sun.com/products/jtapi/
[11] Java Speech API, http://java.sun.com/products/java-
media/speech/
[12] Java Media Framework, http://java.sun.com/products/java-
media/jmf/
[13] Sun Microsystems, The JAIN APIs: Integrated Network
APIs for the Java Platform, White Paper, May, 2002,
http://java.sun.com/products/jain/WP2002.pdf
[14] OSS through Java Initiative, http://java.sun.com/products
/oss
[15] OSS through Java J2EE Design Guidelines,
http://java.sun.com/products/oss/Com-arch-dg.1.1.pdf.zip
[16] OSS Trouble Ticket API, http://www.jcp.org/aboutJava/
communityProcess/first/jsro91/
[17] Jini Technology Surrogate Architecture Specification,
http://surrogate.jini.org/sa.pdf

[18] JMatos Software, http://www.psinaptic.com/oem/

[19] JiniME: Jini Connection Technology for Mobile Devices,
WhitePaper,
http://www.cs.rit.edu/~anhinga/Whitepapers/JiniME
[20] BEA WebLogic Server Overview, White Paper,
http://www.beasys.com/products/weblogic/server/wls-70-ov-
wp-04021.pdf
[21] Java Message Service API, http://java.sun.com/
products/jms/
[22] Remote Method Invocation, http://java.sun.com/products/
jdk/rmi/
[23] Madision project, contributed implementation for Surro-
gate host, http://ipsurrogate.jini.org/specs.html

