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A square character table is shown to exist for all finite magnetic groups. The table possesses row 
and column orthogonality properties similar to the character table for linear groups. 

PACS numbers: 02.20. + b, 11.30. - j 

1. INTRODUCTION 

In dealing with the problem of time reversal symmetry 
in a group theoretic way, Wignerl introduced the concept of 
a corepresentation of a group G oflinear/antilinear opera­
tors analogous to a representation of a group oflinear opera­
tors only. It was soon realized that this theory had a ready 
physical application in dealing with magnetic crystals, 
where both linear and anti linear operators commute with 
the Hamiltonian. 2 It is also likely that this theory can be 
applied to the study of elementary particles due to T or CPT 
invariance. 3 

Despite its usefulness though, the theory of corepresen­
tations has unpleasant features as many results from the re­
presentation theory of groups over the complex numbers do 
not appear to hold. Let G be a group oflinear/antilinear 
operators, and H the subgroup of linear operators. A core­
presentation D of G is a set of matrices over the complex 
numbers 

D = I D (u),D (a):uEH,aEG - H J 

satisfying the following rules 

D(U IU2) D(udD(u 2 ), 

D (ua) D (u)D (a), 

D(a)D(u)*, 

D (al)D (a 2)*, 

where the asterisk denotes complex conjunction. Then 
(a) if M is a matrix commuting with D in the sense 

MD(u) = D (u)Mand MD (a) =D(a)M*. 

Then M is a scalar matrix if and only if it has a real 
eigen val ue. 4 

(b) if D is irreducible, 

ID(u)ijD(um, + ID (a)ikD (a)t =JQ..LsiIOjk' 
u a f 

(I) 

where I G I is the order of G andfthe dimension of D. 5 Note 
how j and k are interchanged in the two sums. 

(c) the character of the matrix of an antilinear operator 
is not invariant under a change of basis. This follows from 
the transformation rule6 

D'(a) =p-1D(a)P*. (2) 

(d) the number of classes need not equal the number of 
irreducible corepresentations (ICR's). This and the next re­
sult can be verified from CrackneW or Newmarch and 

Golding.s 

(e) the sum ofthe squares of the dimensions of the ICR's 
need not equal the order of G. 

After deriving (a) and (b) Dimmock5 commented " .... 
further development of the representation theory of non un i­
tary groups (without using the representation theory of the 
linear subgroup) has so far proven untenable." He, and oth­
ers following him, have then relied heavily on the representa­
tion theory of linear groups to obtain results about corepre­
sentations (we are not excepted from this!). In particular, the 
reduction of direct products is usually performed through 
the intermediary of the irreducible representations of the lin­
ear subgroup.6 

This inevitably gives the impression that corepresenta­
tion theory is a poor 'second cousin' to representation the­
ory. In a recent book Crackne1l9 is forced to defend the use of 
corepresentation theory for magnetic materials against those 
who feel that ordinary representation theory is quite suffi­
cient, and moreover, has better properties. The best theoreti­
cal argument against this view is a demonstration that all 
fundamental results in representation theory are mirrored 
by similar fundamental results in corepresentation theory, 
proved without using any theorems on representations. In this 
paper it is demonstrated that, with certain generalizations 
and additional concepts, a square character table exists for a 
finite magnetic group and that this table posseses row and 
column orthogonality. 

All of the results contained here can in fact be derived in 
a simpler manner by use of representation theory (cf. the 
character test for the types of ICR). We do not adopt that 
course as we wish to show that corepresentation can stand 
independently of representation theory. 

First, some preliminary results. From Eq. (I) 

D(U)-I =D(u-l)andD(a)-1 =D(a- I)*. 

Definition: Two corepresentations DI and D2 are equiv­
alent if there exists a matrix M such that 

MDI(u) = D2(U)M and MDI(a) = D2(a)M * 

for all u, aEG. The matrix Mis said to intertwine DI andD2 • If 
DI equals D2, M commutes with D 1• 

Theorem 1: Every corepresentation is equivalent to a 
corepresentation by unitary matrices. This has been shown 
by Dimmock.5 

Definition: A corepresentation is reducible ifit is equiv­
alent to a corepresentation of the form 

695 J. Math. Phys. 23(5), May 1982 0022-2488/82/050695-10$02.50 © 1982 American Institute of Physics 695 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

160.36.178.25 On: Fri, 19 Dec 2014 03:59:17



Otherwise it is irreducible an (ICR). 
Theorem 2 (Mashke): Every corepresentation is equiv­

alent to a direct sum of irreducible corepresentations. This 
has been given before.6 

2. SCHUR'S LEMMAS 

An algebraist once remarked to us "but nothing inter­
esting happens in ordinary representation theory!" To somt; 
extent we can now sympathize with this view, as what is lost 
in simplicity is here compensated for by variety, with four 
useful forms of Schur's lemmas. 

Theorem 3 (Schur I): A matrix M intertwining two 
ICR's DI and D2 is either nonsingular or is zero. 

Theorem 4 (Schur II): If M is Hermitian and commutes 
with a unitary I CR D then M is a real constant matrix. Both 
of these have been shown by Dimmock.5 

Theorem 5 (Schur III): If D is a unitary ICR, and M a 
matrixsatisfyingMD(u) = D(u)MandM+ D(a) = D (a)M* 
for all u, aEG then M is a constant matrix. 

Proof From 

D(a l a2)M 

D(adD (a 2)*M 

MD(a,a 2 ), 

MD (a,)D (a 2 )*, 

or D(adM+* D(a2 )* 

Hence 

D(a,)MH=MD(a,). 

Similarly, from 

D(ua)M* 
D(u)M+ 

M+D(ua), 

M+D(u). 

Together with the assumptions 

D{u){M +M+) = (M +M+)D(u) 

and 

D(a)(M +M+)* =(M +M+)D(a) 

for all u, aEG. By Schur II, 

M +M+ =A1. 

Next, from the linearity of u and antilinearity of a, 

D(u) (iM) 

D(a) (iM)* = 

D(u) (iM+)* 

D(a)(iM+)* 

iMD(u), 
-iM+D(a), 

iM+D(u), 

-iMD(a). 

So iM - iM + also satisfies Schur II and is a constant matrix. 
Hence M is constant as required. 

The restriction imposed on M in Schur II that it be 
Hermitian is a very real one. Ifit is not, we have already 
shown8 that M is nonconstant. It is not possible to say much 
about any single such matrix, but we can derive results about 
the set of commuting matrices: 

m = I M:M commutes with D j, 

m is closed under matrix multiplication and addition; if 
MEm then soisM -I; it is also closed under scalar multiplica­
tion by JR, and finally if M #0, kM #0 for any integer k. 

696 J. Math. Phys., Vol. 23, No.5, May 1982 

Hence m is a (skew) field of characteristic zero over lR. We 
can say more about m. Any MEm can be written as the sum of 
a Hermitian and a skew-Hermitian matrix, and it is simple to 
show that both these belong to m. By Schur II, m can thus be 
written as a direct sum 

m = IA1:AEJRj 83m', (3) 

where m' contains only skew-Hermitian matrices. For any 
MEm', M2 is Hermitian, and since its eigenvalues are 
negative, 

M2 = - f.i2I, with f.i real. (4) 

As m' is closed under multiplication by JR, it follows that for 
m' nonempty we can find elements M I, M 2, M" .. , such that 

M,' '=M/, = -Mj. (5) 

With these preliminaries out of the way, we now show 

Theorem 6 (Schur IV): m is isomorphic to JR, C, or Q. 
Proof Ifm' is empty, then by Schur II m is isomorphic 

to lR. Assume, then, that m' is nonempty. The proof is in two 
parts: First it is shown that m contains a multiplicative sub­
group isomorphic to the group ofC or the group ofQ. Then, 
it is shown that the algebra of this group over JR equals m. 

Let G be a multiplicative subgroup of m consisting of 
elements 

G = I ± I, ± M I, ± M2,· .. :MjEm', 

M; = - I,MjMj = - MjMj for all iJ#ij. 

As MjMj = - MjMj ,Mj #Mj for i # j. If such a subgroup 
only contains the four elements 

±I,±MI, 

then it is isomorphic to the group of C. 
Suppose then it contains more. It cannot contain only 

six elements for this would mean that MIM2 is a mUltiple of 
I, M I , or M 2, which gives a contradiction. Thus it will con­
tain at least eight, and we show that this is the maximum. 
For consider any MEG which is not a multiple of I, MI or M 2. 

Then 

MIM2M 

is Hermitian as M /' = - Mj and all M j anticommute. 

Hence by Schur II 

M IM 2M=AI with A real. 

As M ~ = - I, A = ± 1, so 

M= ±MIM2. 

Therefore 

G= I ±I, ±M" ±M2' ±MIM2J, 

which is easily seen to be the quaternion group. Thus Gis 
either the group ofJR, C, or Q. It is not hard to check that this 
is a property ofm rather than the particular group, i.e., if one 
group is isomorphic to Q, then all are etc. and we can refer to 
the group of m. 

For the second part of the proof, we consider the case 
when the group ofm is the quaternion group as the other two 
follow as special cases. Further, to show that any matrix in m 
belongs to the algebra over JR of G, it is sufficient to show that 
any MEm' is a real linear combination of M I, M2, and M IM 2 • 

J. D. Newmarch and R M. Golding 696 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

160.36.178.25 On: Fri, 19 Dec 2014 03:59:17



By Hermiticity and Schur II, 

MM, + M,M = aI, 

MM2 + M~ bI, 

MMIM2 + MIM2M C/, 
with a, b, c real. Set 

N = 2M + aMI + bM2 + cMIM 2. 

Clearly NEm/. 

It follows that N anticommutes with M
" 

M2, and M IM2. 

Hence N is either zero or by normalization an element of the 
group of m. As there are no other elements of this group, N 
equals zero and 

M = - !(aM, + bM2 + cMIM2) (6) 

as required. 
Thus there are possibly three kinds ofICR according as 

m is isomorphic to R, C, or Q. That these three types actually 
occur is shown by our earlier work. 8 It is helpful to quantize 
this by introducing the intertwining number from the pure 
mathematicians' version of group theory. 10 Recall that any 
complex number may be written as an ordered pair of real 
numbers, and that any quatemion may be written as an or­
dered quadruple of real numbers. This leads to the following. 

Definition: The intertwining number I ofm is the di­
mension ofm as an algebra over R. An ICR is of type (a) ifm 
is isomorphic to R in which case I = 1; of type (b) ifm is 
isomorphic to Q, when I = 4, and of type (c) if m is isomor­
phic to C with I = 2. 

3. ORTHOGONALITY RELATIONS 

The general forms of the orthogonality relations have 
previously been given by Dimmock.5 They are 

Theorem 7: If D, and D2 are two inequivalent ICR's, 

(7) 

For D irreducible and unitary, 

wherefis the dimension of D. 

We only remark that the last part of this theorem may be 
shown in a simpler manner as 

M= ID(u)XD(u-') + ID(a)XTD(a-')* 
U a 

satisfies the conditions of Schur III and hence is diagonal. 
This theorem does not take into account the different 

types of ICR and their properties. The following is proved 
for an ICR of type (b) and is specialized to types (a) and (c) 
later. 

Theorem 8: If D is a unitary ICR of type (b) with the 
group ofm generated by M, and M2 then 

ID (u)ijD (u)/'k 
U 

= (IG 1/2f)D,Ak - (IG 1/2fHMIlkj(M,)i/ 

- (IG l12fHM2k(M2L - (IG 1/2f) (M,M2)kj(M,M2L. (9) 

697 J. Math. Phys., Vol. 23, No.5, May 1982 

Proof From Schur IV, the following matrix is in m and 
can be written 

ID(u)XD(u)+ + ID(a)X*D(a)+ 
U 

= AI + pM, + wM2 + OMIM2 

with A, p, w, 0 real. Taking Hermitian adjoints 

ID(u)X+D(u)+ + ID(a)XTD(a)+ 
U a 

= AI - pM, - wM2 - oM,M2• 

Adding and taking traces, 

(IG l12f) (trX + trX*) =..1.. 

(10) 

(11 ) 

(12) 

By pre- and post-multiplying these by M, we can isolate the 
term pI to give 

p = - (JG 1/2f)[tr(XM,) + tr(XM,)*] (13) 

with similarly 

W = - (IG 1/2f)[tr(XM2) + tr(XM2)*] (14) 

and 0 = - (IG 1/2f)[tr(XM,M 2) + tr(XMIM 2)*]. (15) 

From Schur III we also have 

ID (u)XD (u)+ + ID(a)XTD(a)+ =zI, (16) 
a 

with Hermitian adjoint 

ID(u)X + D(u)+ + ID(a)X*D(a)+ =z*/, (17) 
U a 

where z = (G If)trX. ( 18) 

The sum over a may be eliminated from Eqs. (10) and (17) to 
give 

ID(u) (X -X+)D(u)+ 
U 

By setting Xjk = 1 for some j, k and zero otherwise, and then 
setting Xjk = i for the same j, k and zero otherwise, simple 
manipulations give the result. 

These may be specialized to a type (c) ICR by setting 
M2 = 0 and to a type (a) ICR by also settingM. = O. We give 
a summary for each case, together with the character tests 
which follow directly with Eq. (8). 

Type (a): 

(19) 

(20) 

Type (b): 

(21) 
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D(u)x(u)* = 21G I, 
u 

Ix(a
2
) = -IG I· 

Type (c): 

* IGI IGI "D (u)ijD (ul/k = .J:::...J...fJi/Ojk - ~Mdkj(Mdi/' 
~ 2/ 2/ 

~D(a);kD(a)t = I~) Oi/Ojk + I~) (M1)kj(Mdi/, 

D(u)x(u)* = IG I, 

a 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

Equations (7), (20), (23), and (27), when combined with 
the intertwining number, are actually the row orthogonality 
relations of the character table. We defer the statement for a 
discussion of the class concept. 

4. CLASSES IN COREPRESENTATION THEORY 

It has already been remarked that the number of classes 
need not equal the number of ICR's (it is always equal to or 
larger). An examination of previously published tables7 also 
shows that in many cases different classes have the same 
character for all ICR's. Clearly then, the definition of class 
must be extended for corepresentation theory. 

Definition: Two elements U1 and U2 of the linear sub­
group H are said to be in the same corepresentation class (C 
class) if either u I = U u2u - I for some uElJ or u I = aU2 - la - I 

for some aEG - H. 
It is straightforward to check that this is an equivalence 

relation on H so that a C class may be labelled Cu where u is 
any element of the C class. This also follows easily: 

Theorem 9: The character of a corepresentation is a C­
class function on H. 

The C class is here only defined over the linear sub­
group H; it does not as yet appear useful to extend it to 
G-H. 

Theorem 10 (Row Orthogonality): If D; and Dj are two 
unitary ICR's with characters on H of X; and Xj respectively, 
and the number of elements in Cu is nu , then 

Inux;(u)Xj(u)* = 8ljI; IH I, 
C

U 

where the sum is over all C classes of H and I; is the inter­
twining number of D; . 

This follows as stated at the end of the last section. Immedi­
ate results from this are 

Corollary 1: If D is a corepresentation equivalent to a 
direct sum of ICR's D; 

698 J. Math. Phys., Vol. 23, No.5, May 1982 

then 

1 
d; = f.IH I InuX(u)x;(u)*. 

, C u 

Corollary 2: If two corepresentations have the same 
character on H, they are equivalent. Returning to results on 
C classes, 

Theorem 11: (a) u'CuU,-1 = Cu andaCua- 1 = C u- 1 

for all u, aEG. (b) Cu and C u- I are in one-to-one correspon­
dence under the mapping g_g- I. 

Theorem 12: Let D be a unitary ICR and 

Su = ID(u'). 
U'EC.., 

ThenS" =zI. 
Proof This follows by using the previous theorem to 

show that S u satisfies the conditions of Schur III. 

5. THE REGULAR COREPRESENTATION 

The regular corepresentation DR is useful in corepre­
sentations for exactly the same reasons as the regular repre­
sentation is; with the elements of G ordered in some arbitrary 
fixed order, define 

DR (g)lj = 1 if g=g,gj-l 

= 0 if gi=g;gj-l. 

Due to the reality of the matrices, this representation is also a 
corepresentation. The following are shown in exactly the 
same manner as in representation theory ll--once the basic 
C-class results and row orthogonality are known, the meth­
ods of the two theories coincide. 

Theorem 13: The number of times an ICR D; is con­
tained in DR is 

2/;/1;. 
Theorem 14: 

2f./ = IHI· 
; I; 

Theorem 15: If e is the identity of G and D; is a unitary 
ICR 

I x;(e)x;(u)* = o(e,u)IH I. 
I; 

Theorem 16 (Column Orthogonality): If D; is a unitary 
ICR, 

IX;(Ul~;(U2)* = o(Cu, ,CuJ~. 
1 i nu 

6. DIRECT PRODUCTS 

The (inner) direct product is defined in the normal way 
by 

D = D 1 ® D2 if D (g)ij.kl = D 1 (g);k D2(g)jI' 

From the row orthogonality, this can be reduced directly 
without reference to the irreducible representations of H. 
We collect the interesting results in one theorem. 
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TABLE I. The character tables for the 58 magnetic point groups. The group or groups are given on the upperleft of each table, with the ICR's beneath. In the 
upper middle is given the C classes with the character beneath. To the right is the intertwining number for each ICR. 
(a) 

I' 2' m' E I 

A A A 

(b) 

2'/m E 0', 

2'lm' E I 
21m' 22'2' E C" I 

A A' As A I 
B A" Au B -I 

(c) 

2m'm' E C" 
2'm'm E O'y I 

A A' 
B A" -I 

(d) 

4' 4' E C" I 

A A I 
E E 2 -2 4 

(e) 

m1m1m l E C2x C,y C" 
mmm i E C" O'y O'x 

m1m'm E C" I 0', I 

A A, As 
BJ A, Au -1 -I 
B, B, Bs -I I -1 
B, B, Bu -1 -I 

(I) 

4'22' E Chz ,C2y C" I 

A 1 
E 2 0 -2 2 
B, -1 1 1 

(g) 

4'lm E C" I 0', I 

As 
Au 1 -1 -1 
Es 2 -2 2 -2 4 
Eu 2 -2 -2 2 4 

(h) 

4'2m' E C,x,C,y C" 
4'mm' 4'2'm E ax CTy C2, I 

A, A A, 1 1 1 1 
E E E 2 0 -2 2 
A, B, A, 1 -1 1 1 
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TABLE I (Continued). 
(i) 

4'/mmm E C'X,C'Y C2z I O'x ,CTy U z I 
A. 1 1 1 1 1 1 
Eg 2 0 -2 2 0 -2 2 
B,g -1 -1 
Au 1 1 -1 -1 -1 
Eu 2 0 -2 -2 0 2 2 
B ,u -1 -1 -1 

(j) 
42'2' E cz , C4~ C.z I 

A 1 
B -1 -1 
'E -1 -i 
'E -1 -i 

(k) 

4/m' E C 4: ,C 4-.; C'z 
41/m' E S4~,S4Z C'z I 

A A 1 1 
B B -1 1 1 
E E 2 0 -2 2 

(1) 
4m l m' E C 4: C'z C .~ 

421m' E S .; C'z S4~ I 

A A 1 1 
B B -1 1 -1 
'E 'E -1 -i 
'E 'E -i -1 

(m) 

4/mm l m' E C4~ C'z C.;; I S.~ U Z S4~ I 

A. 
B. -1 -1 -1 -1 
'Eg -1 -i -1 -i 

'Eg -i -1 -i -1 

Au -1 -1 -1 -1 

Bu -1 -1 -1 -1 1 

'Eu -1 -i -1 -i 

'Eu -i -1 -1 -i 

(n) 

4/m l m l m ' E C'z C.~ C'x.Y C'a.b 
4/m 'mm E C2z C4~ O'x,y C1 da,b 

4' /m
l m'm E C'z S4~ C2X" CTdo.,b I 

A, A, A, 1 1 1 1 
A, A, A, 1 1 -1 -1 
B, B, B, 1 1 -1 1 -1 
B, B, B, 1 1 -1 -1 1 
E E E 2 -2 0 0 0 
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TABLE I (continued). 

(0) 

32 ' 3m' E C+ 
3 C3 I 

A A 
'E 'E w w· 
2E 2E w· w 

(p) 

6' 6 ' 3' E C± 
3 I 

A A A 
E E E 2 -\ 2 

(q) 

3m ' E C+ 
3 

C-
3 I s. s+ • I 

A, 
'Eg w w· w w· 
2Eg (v· w w· w 
Au -\ -\ -\ 

'Eu w w· -\ -w -w· 
2Eu w· w -\ -w· -w 

(r) 

61/m' E C3± I s± • I 

A. \ \ \ 

Eg 2 -\ 2 -\ 2 
Au -\ -\ \ 

Eu 2 -\ -2 \ 2 

(s) 

61m2' 31m' 6l mm' E C± 
3 {1d 1.2.3 

61m'2 3'm I 6 '22' E Cl c' 21,2,3 I 

A, A, A, A, A, A, \ \ 

A2 A2 A2 A2 A2 A2 \ \ -\ 
E E E E E E 2 -\ 0 

(t) 

61/m'm'm E C± 
3 C' 21,2,3 I s± • (Td 1,2.3 I 

A,. \ \ 
A2g \ -\ -\ 
Eg 2 -\ 0 2 -\ 0 
A ,u \ -\ -\ -\ 
A2u \ -\ -\ -\ 
Eu 2 -\ 0 -2 0 

(u) 

6m12' E s-
3 

C+ 
3 {1h C-

3 S3+ 
62 '2' 6m 'm ' E C+ • Ct C2 

C3- C-• I 

A' A A \ 
'E" 'E, 'E, -w· w -\ w· -w 
2E" 2E, 2E, -w w· -\ w -w· 
A" B B -\ -\ \ -\ 
2E' 2E2 2E2 w w· \ w w· 
'E' 'E2 'E2 w· W w· w 
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TABLE I (Continued). 

(v)'====================================== 

6/m' 
6'/m 

A' 
E" 
A" 
E' 

E 
E 

2 
\ 
2 

\ 
-\ 

\ 

\ 

-2 
-\ 

2 

\ 
-\ 

\ 
-\ 

I 

\ 
2 
\ 
2 

(w)========================================= 
6/mm'm E C-+ 

6 

-(J) 

-\ 

-(J) 

-\ 

C+ , 

-\ 

-\ 

-\ 

-\ 

-\ 

-\ 

C~ , C~ 
6 I 

-(J) 

-(J)* 

-\ 

-(J) -\ 
-(J)* -\ 

-\ -\ 
-\ 

-\ 

s~ , s-
6 

-(J) 

-\ 

-\ -\ 
-(J) 

-(J)* 

-\ 
-(J) 

-(J)* -(J) 

\ 

-\ 

-\ 

-\ 

\ 

-\ 

-\ 

-\ 

-\ 

-(J) 

-\ 

-(J) 

-(J)* 

s ,- I 

-(J) 

- (J)* 

-\ 

-\ 

-(J) 

(x)======================================== 
6'/mm'm 

A' , 
A; 
A;' 

A~ 

E" 
E' 

6/m'm'm 
6/m'mm 

E 
E 
E 

2 
2 

-\ 

-\ 

-2 
2 

-\ 

-\ 

-\ 
-\ -\ 

-\ 

\ 

-\ 

o 
o 

C" 2i 

\ 

-\ 

-\ 

\ 

o 
o 

I 

~)I====================================================================== 
m'3 

A 
E 
T 

E 

2 
3 -\ 

C'7 

-\ 
o 

I 

\ 
2 

(z)====================================== 
4'3m' 

A 
'E 
2E 
T 

4'32' 

A 
'E 
2E 
T 

E 

\ 
3 

\ 
-\ 

(J) 

(J)* 

o 

(J)* 

(J) 

o 

I 

(aa),======================================== 
m3m' 

702 

E 

3 

\ 

3 

-\ o 

-\ o 
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C3~ 

o 

o 

I 

\ 

3 

-\ 

-\ 

-\ 

-3 

-\ 

-\ 

-\ 

-\ 

o 
-\ 

-(J) 

-(J)* 

o 

o 
-\ 

-UJ 

o 

I 
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TABLE I (Continued), 
(bb) 

m'3m' E C,; 
m'3m E C,; 

A, A, 1 1 
A2 A2 1 1 
E E 2 -1 
T, T, 3 0 
T2 T2 3 0 

Theorem 17: 
(a) If D j , Dj' and Dk are ICR's and 

D j ®Dj = ffi 'Ld~Dk' 
k 

Then 

d~ = I I~ I 'Lnu,,t";(u)Xj(UI,Kk(Uj*. 
k c. 

(b) If 0 is the identity ICR, 

d~. = Ii' 
(c) If d~k is the multiplicity of 0 in D j ®Dj ®Dk 

then 

d~k =drIk' 

This difference between the double and triple product is 
of great importance in developing a Racah algebra for such 
groups.M 

Symmetrized and antisymmetrized squares are neces­
sary in dealing with a number offermions or bosons; symme­
trized cubes are used in magnetic phase transitions9; symme­
trized, antisymmetrized and mixed symmetry cubes 
separate out the permutation properties of the 3jm symbols. 
These can all be distinguished by character tests. For com­
pleteness we summarize them here. The notation used is 
[A J, where [A} isa Young diagram ofS

n
• 

(a)XI21 (u) =!( [X(u)F + X(u 2
)), 

(b)KII'1 (u) =!( [X(u))" - X(u 2
)), 

(C)XI31 (u) = ~([X(u)]J + 3X(u 2)X(u) + 2X(uJ)), 

(d)XII 'I (u) = ~([X(u)]' - 3X(u 2)X(u) + 2X(uJ)), 

(e)XI211 (u) = !([X(u)]' - X(u')). 

The row orthogonality now allows a direct reduction of 
these powers without use of tables relating these powers to 
the linear subgroup. 

7. CONCLUSION 

In this paper it has been shown that the powerful con­
cept of a character table applies to finite magnetic groups as 
well as linear groups. The only added complexity is the sim­
ple intertwining number. The character table will expedite 
calculations as well as helping to show that corepresentation 
theory can stand upright without leaning on representation 
theory for most of its results. 

To make the theory more concrete, the character tables 
for the fifty-eight magnetic point groups are given. They 
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C2m C2p C4~ 
C2m u dp Slm I 

1 1 1 
1 -1 -1 
2 0 0 

-I -I 1 
-1 1 -1 

I 
have been adapted from the tables of Crack neW and all nota­
tions are the same as there. 

APPENDIX: DESCENT IN SYMMETRY TO THE LINEAR 
SUBGROUP 

The results obtained so far have been done without any 
reference to the representation theory of linear groups. It is 
known, however, that there are strong relations between the 
ICR's of G and the irreducible representations (IR's) of ll. I 
These are generally shown by ascent in symmetry where the 
ICR's ofG and their properties are determined by the IR's of 
H. From the methods developed earlier, we now reverse this 
and derive these relations by descent from G to H. No new 
results are demonstrated-rather the interplay between 
Schur's lemmas for linear and nonlinear groups is shown. 

First we fix notation, and give the row orthogonality of 
an ICR ofGsubduced toll. LetD be a unitary ICR ofG and 
Ll the possibly reducible representation of H obtained by 
descent to H. X, the character of Don H, is also the character 
of .1. Row orthogonality then gives 

D(u)x(u)* = I IH I 
u 

with I the intertwining number of D. Each type of ICR is 
now considered in turn. 

Type (a): Since I equals one, .1 is an IR. Setting 

P=D(a()) 

for an arbitrary fixed element of G - H, 

.1 (a~) = D (ao)D (ao)* = PP * 

and 

.1 (aouao- I) = D (aouao- I) = PLl (u)*P +. 

The ICR matrices are then given by 

D(u) =Ll (u) andD(a) =D(aao-'ao) = .1 (aao I)P. 

The IR satisfies the character test 

a 

For the other two types ofICR, .1 is reducible. To gain 
the results given by other authors6 we consider the special 
case in which a unitary transformation has been applied to D 
so that Ll is in completely reduced form. 

Type (b): As the intertwining number is four, Ll is reduc­
ible to either Ll, $..::1 1 or ..::11 $..::1 2 ffi Ll3 $ ..::1 4 , This second pos­
sibility soon leads to a contradiction for by Schur's lemma 
for linear groups any MEm must be 
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c 
Schur IV shows then that MEm' is purely imaginary so that 
M I, M 2, and MIM2 are purely imaginary. This is the required 
contradiction and so Li = Li l EI1 Li l, i.e., 

(
LiI(U) 

D(u) =Li (u) = ° 
By Schur's lemma for linear groups applied to MEm 

M = (zl1 Z21). 
\z31 Z41 

But by Schur II, M + M + = AI and (M - M +)2 = - pH. 
Hence 

M =XI(~ ~) +X2C~ _OiJ 

+ X3( ~ 1 ~) + X4C~ ~. 
This in tum imposes restrictions on D (a) as MD (a) 
= D (a)M *. Choosing an arbitrary element aoEG - H gives 

D(ao) = (_Op ~), 

D(a) = ( ° 1 
- Lil (aao- )P 

Lil(a~)= -PP*, 

Li 1(aOuaO- I) = PLi 1(u)*P +, 

and 

a 

Type (c): The intertwining number is now two so Li is 
equivalent to Lil EI1 Li2 with Li 1,¢=Li 2. If Li is in completely re­
duced form 

704 J. Math. Phys., Vol. 23, No.5, May 1982 

Li (u) = (LiOI(U) 0) 
Li2(U) , 

the same reasoning as before gives MEm as 

M = XI(~ ~) + X2e~ 
For fixed arbitrary aoEG - H, 

and 

D(ao) = (;2 

Li I(aOuao-
1
) = P1Li2(u)*P 1+' 

Li 1(aOuaO- I) = P2Li2(u)*P 2+' 

from which the character test follows: 

Ix.:l, (a2
) = IX.:l,(a2

) = 0. 
U a 
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