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Some character theory for groups of linear and antilinear operators

J.D. Newmarch?

Department of Physics, Universiti Pertanian Malaysia, Serdang, Selangor, Malaysia
(Received 5 October 1981; accepted for publication 20 November 1981)

Elementary group concepts are recast into a form applicable to finite magnetic groups of linear
and antilinear operators. Analogs of useful definitions for linear groups such as the Frobenius—-
Schur invariant, commutator subgroups, and ambivalent classes are considered. These are
applied to the 180 magnetic single and double point groups and it is shown that only seven

require independent treatment of characters.

PACS numbers: 02.20. + b

1. INTRODUCTION

The use of group theory in certain areas of physics and
chemistry is now well established. This generally proceeds
through some form of representation theory (vector repre-
sentations, ray representations, vector corepresentations, or
ray corepresentations) of a group of operators on a Hilbert
space. " The form used depends critically on the nature of
the operators, as to whether they are linear or antilinear
(Wigner® has shown that only these two types of operator
need be considered in quantum mechanics). For vector re-
presentations of groups of linear operators an extensive liter-
ature exists, with contributions from mathematicians, physi-
cists and chemists. Qualitative applications of vector
representations (such as selection rules) are based on charac-
ter theory*> whereas semiquantitative calculations through
the Wigner—Eckart theorem use both basis dependent infor-
mation in the #n-jm symbols®’ and character theory in the n-j
symbols and isoscalars.?? Characters, of course, need not be
considered as any information obtainable from them can
also be obtained from any realization of the vector represen-
tation, but their use enormously simplifies many calcula-
tions and justifies their detailed considerations.

Surprisingly, the character theory for the other types of
representation is extremely ill-developed. Backhouse' has
shown that a character table exists for ray representations of
finite groups and Newmarch and Golding'! (henceforth de-
noted as N-G) for the vector corepresentations of finite mag-
netic groups of linear and antilinear operators, while even
this is missing for ray corepresentations. Standard vector
representation concepts such as the Frobenius—Schur invar-
iant do not appear to have been considered. In part the pur-
pose of this paper is to fill in some of these gaps for the vector
corepresentations of finite magnetic groups by considering
one-dimensional irreducible corepresentations (ICRs), faith-
ful ICRs, and complex conjugates of ICRs (Secs. 6 and 8).

During the course of this investigation an even more
important gap became apparent. Magnetic groups are rather
special groups in that they possess a certain subgroup of in-
dex two. This subgroup corresponds to the linear operators
and its coset to the antilinear operators. The subgroup is
obviously fixed by physical considerations and linear opera-
tors cannot be changed into antilinear ones without chang-
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ing their physical applicability. This is reflected in the math-
ematics of corepresentations, and shows that a magnetic
group must be considered as a pair of groups. The following
three sections are devoted to the elementary group theory of
this situation where isomorphism, homomorphism, etc., are
discussed. Our own opinion is that much of the material of
these sections should be self-evident. However, inappropri-
ate statements—particularly in regard to isomorphism—
have appeared sufficiently often to prompt us to spell them
out. This vein is followed in Sec. 5, where it is shown that
direct products of magnetic groups can be usefully defined.

The third aim of this paper is to reduce the number of
magnetic single and double point groups (180 in all) requir-
ing separate treatment of characters. Assuming known char-
acter theory of linear groups, by isomorphism (Sec. 2}, factor
groups (Sec. 3), direct products (Sec. 5), and an examination
of the intertwining numbers (Sec. 7), it is shown that only
seven groups need be considered.

Examples are drawn from the finite magnetic point
groups. The theory is applicable by finite approximations to
the magnetic space groups,' the spin groups,'*!* and the line
groups of stereo-regular polymers.'* Much is readily trans-
ferable to compact groups, where it should find applications
due to the PCT theorem for elementary particles.'’

In general the notation is that of N-G. Magnetic point
groups are labelled as in Bradley and Cracknell,' with an
asterisk to denote the double groups. The ICRs of these
groups are also labelled as in Bradley and Cracknell,' save
for the typographical omission of the prefix D when there is
no increase in degeneracy in inducing ICRs from the linear
subgroup. E or e denotes the identity of the group, or the unit
matrix. A prefix M denotes the magnetic group analog of a
linear group concept. Proofs are usually omitted whenever
they are simple modifications of those for linear groups.

2. ISOMORPHISMS AND HOMOMORPHISMS

It is only the physical importance of the time reversal
operator which leads to the study of magnetic groups. Such a
group contains a subgroup of linear operators and a coset of
antilinear operators and clearly, to maintain their applicabil-
ity, we cannot arbitrarily change linear operators into anti-
linear ones or vice versa. The subgroup of linear operators is
just as important as the group itself. An abstract definition
which indicates this is

Definition 2. 1: A magnetic group M is an ordered pair of
groups M = (G,H ) where H has index two in G.

© 1983 American Institute of Physics 742



Classifications of groups into families are made accord-
ing to various criteria. For example, there is the equivalence
family of D,, consisting of all point groups mapped onto one
another by automorphisms of O (3). Such an equivalence con-
cept gives 90 families of grey and nongrey magnetic single
point groups and a further 90 families of double groups.' In
addition the fundamental group concept of isomorphism
may be applied to linear groups to reduce, say, the 32 fam-
ilies of crystallographically distinct point groups down to 11
nonisomorphic families. However, all statements sighted on
“isomorphic magnetic groups”” have been rather misleading
[M, = (G,, H}) is isomorphic to M, = (G,, H,) if G;=G,]
as the position of the linear subgroup need not be preserved.
For example, 622’ and 62'2' have ICRs of different dimen-
sion so degeneracies cannot be transferred despite G, =G,.
An appropriate definition is

Definition 2.2: Two magnetic groups M, = (G,,H,) and
M, = (G,,H,) are M-isomorphic iff there is a group isomor-
phism ¢:G,—G, for which ¢ (H,) = H,.

This is a very stringent condition and generally requires
explicit construction of the isomorphism. It cannot, for ex-
ample, be weakened to an isomorphism ¢:G,—G, and an-
other from H, to H,. To see this, consider the group 161 ;¢ of
order 16 with presentation (x,y{x* = y* = e,xy = yx* ) from
the tables of Hall and Senior.'® This group contains
(21) = Z, ® Z, once characteristically (i.e., invariant under
all automorphisms of 167°,¢,) and twice noncharacteristical-
ly. Setting G, = G, = 16I',¢,, H, the characteristic sub-
group and H, one of the noncharacteristic ones, then there is
no M-isomorphism of M, onto M, (which here would be an
automorphism) despite G, and G,,H, and H, being pairwise
isomorphic. The two magnetic groups are essentially differ-
ent. (In fact, the first has seven ICRs and the second has
eight.) A calculation for the 180 single and double magnetic
point groups yields 64 nonisomorphic families which are col-
lected in Table 1.

We have dwelt on the concept of isomorphism at length
primarily to show that a magnetic group must be considered
as a pair of groups. These should now be obvious:

Definition 2.3: An M-homomorphism ¢ of
M, =(G,H,)into M, = (G,,H,) is a homomorphism ¢ of G,
into G, such that ¢ (H,)CH, and ¢ (G, — H,)CG, — H,.

This ensures that linear elements are mapped onto lin-
ear elements and antilinear onto antilinear. This definition
has been used by Janssen in discussing projective
corepresentations. '’

Definition 2.4: An M-normal subgroup of M = (G,H ) is
a subgroup of H (and hence of G ) which is normal in G (and
hence normal in H ).

The subgroups of G for the magnetic single point
groups have been listed by Ascher and Janner,'® and of
course only a few are M-normal. Later it is shown that they
may be obtained from the character table. For the moment,

Theorem 2.5 (First Isomorphism Theorem): Let
M = (G,H ) be amagnetic group and ¢ an M-homomorphism
of M. Then the kernel of ¢ is an M-normal subgroup L and
the image of M is naturally M-isomorphic to (G /L,H /L ).
Conversely, each M-normal subgroup L defines an M-homo-
morphism of M onto (G /L,H /L).
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The other isomorphism theorems can be similarly
adapted. However, this is all we need for now.

3. COREPRESENTATIONS

Definition 3.1: A corepresentation D is an M-homomor-
phism of a magnetic group into a magnetic group of opera-
tors (G,H ) over a complex vector space, where the operators
of H are linear and of G-H are antilinear.

Herbut ef al.'® have given a similar definition for their
unitary/antiunitary representations of magnetic groups and
introduced the term “‘antimatrix” for the matrix of an anti-
linear operator. Whilst we support their viewpoint in which
sense we have interpreted corepresentations, we consider
that the tensor notation from spinor calculus used by New-
march and Golding®® handles antilinear operators in the
most effective manner. We regard both the common nota-
tion used here and that of Herbut et al.'® to be “approxima-
tions” to the tensor notation, and use the common notation
on the grounds of familiarity and a mild preference for seeing
complex conjugates explicitly.

Matrices of linear and antilinear operators of a corepre-
sentation and irreducible corepresentations (ICRs) are de-
fined in the normal way. From these we have

Lemma 3.2: Let D be a corepresentation of M = (G,H )
with character y and let ueH. If n is the order of « and fthe
degree of D[ f= yle)] then

(a) D (u) is similar to diag. (€,,€5,...,€/),

(b) € =1 for all ;,

Cr=Se,

I=1

(d) Ly )<y (e) = £

Lemma 3.3: If D is a corepresentation of M, then the
kernel of D (ker D )is an M-normal subgroup of M, and ue ker
Diffy (u) = x (e).

Lemma 3.4: Let D = 3n,D, be a corepresentation of M
and D, be ICRs. Then ker D = n{ker D;:n; >0} and
n{kerD;:all ICRs} = {e}.

These are all proved in exactly the same manner as for
representations (e.g., Isaacs?'). The regular corepresentation
and its properties are given in N-G.

Every M-normal subgroup of a magnetic group may be
found from the character table by taking irreducible charac-
ters and sums of characters and finding those elements u for
which y (4) = y (e). For example, the group 4'/mmm has M-
normal subgroups { E,I | from E,, {E,C,,,0,} from
B,,(EC,,.C,,,C,,} fromA,, {Eo,] from
E,{E,C),,,0,,0,} from B,,, and {E,C,,} from B, & 4,.
(The character table is given in N-G).

One of the major features which distinguishes corepre-
sentation theory from representation theory is the different
form of Schur’s lemmas for the two theories. For linear
groups any matrix commuting with an IR is a constant diag-
onal matrix (quantitatively, the set of all such matrices form
an algebra of dimension one over C). In N-G it was shown

J. D. Newmarch 743



TABLE L. The M-isomorphic families of magnetic point groups. The families are listed by ascending orders of the groups. The notation for groups and group
elements is that of Bradley and Cracknell' with an asterisk to distinguish double groups. Elements isomorphic to each other in each family are listed in the
same order in rows of the “Isomorphism” column. A point group tabel is given for G under “Popular name for G ** although for double groups, 2 = Eand Gis
not in fact the point group. A ‘“‘dash’ here indicates a grey group. The comments are illustrative, not exhaustive.

Magnetic Popular name
Family Order group for G H Isomorphism Comments

1 2 11 C; C, 6 Character
T o} C, o1 table as
2 C, C, 6C,, H
m’ Cin C, 6o,

2 4 2272 D, c, C,,.0C,, Character
2/m’' C,, C, C,,,01 table as
21 fol (o C,.0 H
2/m' C,, C, 1,6C,,
2'/m C, Cin 0,0
1 C: C L6
*m' Ch ct Eyaaz
*2' cr cr E6C,
2m'm’ C,, C, C,,.00,
2'm'm C,, Ciu 0,,0C,,
ml’ Ci Cin o0

3 4 4 C, C, 6C ¢ Homomorphic
'y S, C, 6s image of
11 cr cr 4 family 8
T C* Cc or

4 6 32 D, C, C;,6C5, Character table
Im’ D, S, C,' 00, as 4

5 6 6’ C, C, ac s Homomorphic
3 C,, (0N A image of,
3 S, C, A e.g., family 13
31 C; C, 6c ;-

6 8 4/m' Cay C, (o) § Homomorphic
4/m’ Cyn Sa S.;.0f image of,
*ml’ cr Ct, a,,0 e.g., family 23
*2/m Cs, Ce, 0,61
21 cy Cc? C,,.6
41 C, C, C.;.0
Iy Si S, S..0
“2/m' cs, c* C,,.0I

7 8 422 D, D, C,,.0C ;L Homomorphic
2m' D,, D, C,,.08 ., image of
4'mm’ C,, C,, 0,,0C family 19
¥2'm D,, C,, 0,08,
*11 cr Cc* Lo

8 8 *4' ct c? 8c ;b
o St c? 68t~

9 8 42'2 D, C, C.6C,, Character
4m'm’ C.,, C, C 6o, table as H
“2m Dy, S S 4,0C;,
222 D? ) C,.,6C,
*m'm'2 cs, cs G, .00,
*m'm2’' Cs, Cct, 0,60,

10 8 2221 D; D, Cy,Cy,,0 Character
m'm'm’ D,, D, Cy,Cyy 01 table as H
mm2l’ C;, C,, 0,,0,,0
mmm' D,, C,, a,,0,,0
m'm'm D,, o C,,.19C,,
J. D. Newmarch 744
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TABLE 1. (Continued )

Magnetic Popular name
Family Order group for G H Isomorphism Comments
2'/m' cs, Cc* LE6C,,
2/mY’ Ci Cy C,, .10
11 8 4/m Can C Direct product
of 11’ with 4’
(family 3)
12 12 *31 cy c? Cc;t.6
3 s Cct C;r.6r
13 12 *6' (oF 4 c? C,0C, Direct product
*g (o4 A Cc? C b0, of 11" with 6
6/m’ Cen C Cg 6o, (family 5)
6'/m Cen C,, 85,00,
6/m' Cen S S¢ .00,
14 12 *3Im' Cs, Cct C;tbo,, Character table
*32 D, Cc? C,6C5, as H
15 12 3m' Dy, S, Character table
as H
16 12 6'22' Dg D, c;+,C5,0C, Character table
6'mm'’ C, C,, Ch04,,6C, as H
6m2 D;, D, C3,C;.00,
em2’ Dy, Gy Ci,0,,90,
Im D, D, C;+,Cy.01
Im D,, Cy, Cro4.,01
321 D; D, Cct.C;.0
3ml' Ci, C,, Ci,04,0
17 12 62'2' D, Ce Ch,6C;, Character table
6m'm’ Ce, Ce Ct,6oy, as H
6m'2 D,, C,, $,,6C;,
18 12 3 4 Se S¢.0 Homomorphic image
61’ C; Ce Cgt.6 of, e.g.,
61 i C,, S$;.60 family 29
19 16 *422 D} D% GG, ,0C
aom’ D, D} CrsCoy 85 &,
*'mm’ C? Ccs 0,,0,,0C
Am2’ D%, cs, 0,,0,,08
20 16 *am'm’ (854 c? C...00, Character table
*42'2 D¥ (o) 4 C.,6C,, as H
*A2'm'’ D Z‘d S: Sﬂt ’eclx
21 16 *2221 DY DY GG, 0 Character table
*mm2l’ (03-4¢ c, 0,,0,,0 as H
*m'm'm’ D3, Dy Gy, Gy, 01
*mmm’ D3, Ccs, 0,,0,,01
22 16 4/m'm'm’ D,, D, (O o N-) § Character table
4/m'mm D,, C,, Clr.o.0I as H
4/m'm'm D,, D,, S .Cax,01
221 D; D, CiG.b
4a2mY D3, D,, 5:.C8
4mm1’ Ci C,, Clo.0
23 16 *&/m’ Ccs, ct cr.er
*41' cy cs cl.e
*4'/m' (o} S* S.61
745 J. Math. Phys., Vol. 24, No. 4, April 1983 J. D. Newmarch 745



TABLE 1. (Continued )

Magnetic Popular name
Family Order group for G H Isomorphism Comments
*31 S¥ S* 5..8
24 16 *4'/m Ct, Ccx, Direct product
of T1" with *4'
(family 8)
25 16 *m'm'm D3, c¥, C,,,1,6C;, Character table
4/mm'm’ D,, Cyn C . 16C,, as H
26 16 *2/ml’ CY Cy, C,,. 10 Direct product
4/ml’ Ci, C., C:00C; of T1" with 41’
{family 6)
27 16 4'/mmm D,, D,, Homomorphic image
of family 42
28 16 mmml’ D;, D,, Character table
as H
29 24 61l cr Cc* Ct,0
*6/m'’ (oA c* [OPN-7 ¢
*6'/m ce, Cyy S..01
*6l’ cy Cc, Sy.0
30 24 *3Iml’ cy c* c;r6,,,0
*I'm DY c, C,' 040,01
*321 D¥ D* c.;h,C..0
Im' D*%, D* C;,C;.61
31 24 *62'2' D¥ cr C,0C5, Character table
*6m'm'’ ct c¥ Cl.6oy, as H
*om'2 DY, ct, §,,6C
32 24 3m' DY, S¥ Character table
as H
33 24 *6'2'2 D¥ D¥* c,C,,6C, Character table
*6'm'm ce ct, C,L,0,,,0C, as H
*6'm'2 DY, Dt c;,Cy 60,
*6'm2’ D%, ct, Ci,0,.00,
34 24 *6'/m’ C, S Direct product
of 11" with *6’
(family 13)
35 24 *31’ 4 S* Direct product
of 11" with *31’
(family 12)
36 24 6/ml’ Cen Cer Di[ect product
of 11" with 61’
{family 12)
37 24 6/m'm'm D, D, Se,C5,6C, Character table
6'/mm'm D, D,, S;,C5,.61 as H
6/m'mm D, C. Ceo4,,61
6221° D D, Cr,C5 .0
6mml’ Cé Co. Cehoab
é62my’ D, D,, C;,Cu.0
Im1’ D, Dy, S¢.Ch.8
38 24 6/mm'm'’ D, Cen Character table
as H
746 J. Math. Phys., Vol. 24, No. 4, April 1983 J. D. Newmarch 746



TABLE I. (Continued )

39 24 231 T T C;,C,..0 Homomorphic image
m'3 T, T C;,C,,.01 of family 53
40 24 3m’ 7, T C;1.Cs00,, Character table
4'32" 0 T C;,,C,,.0C,, as H
41 32 4/ mmml’ D, Dy, Character table
as H
42 32 *&'/mmm' Dy, D3, Direct product
of 11" with *4'22’
{family 19)
43 32 *&/mm'm'’ DY, Cct, Character table
as H
44 32 *4/m'm'm’ D%, Dt cr,C,..0I Character table
*A/m'mm D,, Cs, Cl,o.6f as H
*4'/m'm'm D3, D3, S 4z :Co 01
*4221" DY Dy Cii Gt
*4mml’ cy Ccy, Clo.0
*2my’ DY D%, $:,Cf
45 32 *mmml’ DY D%, Character table
as H
46 32 *4/ml’ cy cs, Direct product
of 11’ with *41’
{(family 23)
47 48 *6'/m'm'm Dy Dy, Character table
as H
48 48 *6/mm'm’ D%, ce, Character table
as H
49 48 *6'/mmm’ D¢, D%, S,,C5,.6I Character table
*6/m'm'm’' D2, D* C¢,C5,,61 as H
*6/m'mm D?, cy Cho4,61
*6221' D¥ D C¢,Cy,0
*6mm]l’ cy ce, Cio4.,0
*62ml’ DY Dy, §:7.C0.0
50 48 6/mmm1’ D¢, D, Character table
as H
51 48 *m'3 T T* o SN )
31’ T T+ Ci.GuGyy 8
52 48 *33m’ T T* €;,Cy,C, 00,  Character
*4'3) 0* T* C;,C..C,,,0C,, tableas H
53 48 Iml’ DY Dy, Direct product
of 11" with *321’
(family 30)
54 48 *6/ml’ cy Cct, Direct product
of 11’ with *61'
{family 29)
55 48 m'3m’ 0, 0 ClL.Ci,C, 601 Character table
4321 0 0 CL.Cy1,C0 as H
r_n’3m 0, T, S :,C 51,04,,01
43mY’ T; T, S 4x:C 31,04,
56 48 m3l’ T, T, Homomorphic
image of
family 62
747 J. Math. Phys., Vol. 24, No. 4, April 1983 J. D. Newmarch 747



TABLE 1. (Continued )

57 48 m3m'’ 0, T, Character table
as H
58 64 *4/mmml’ DY Dy, Character table
as H
59 96 *m'3m’ or o* C,C,Cyp,01 Character table
*m'3m or T, SiirC 11,045,001 as H
*4321' o~ 0 Cé&:CiCopb
*m1’ T T* SCii04.0
60 96 *m31’ Ty T Direct product
of 11" with 231’
(family 53)
61 96 *m3m’ or T Character table
as H
62 96 m3ml’ 0;, 0, Character table
as H
63 96 *6/mmml’ DY D¢, Direct product
of 11’ with
*6221" (family 51)
64 192 *m3ml’ or’ oy Character table

as H

that the algebra of such matrices is of dimension one, four or
two over R (i.e., is isomorphic to R,Q, or C). Labelling the
ICRs as types (a), (b), and (c), respectively, in concordance
with standard usage, the intertwining number J was intro-
duced: for an ICR of type {a), I = 1, for an ICR of type (b),
I =4, and for an ICR of type (c), I = 2. The row orthogona-
lity relation for ICRs was then shown to be

S xiluly;(w)* = 8,1, |H |.

These next results all follow as for representation the-
ory (e.g., Isaacs?').

Theorem 3.5: Let Dbe a corepresentation of M = (G,H )
and L C ker D an M-normal subgroup of M. Define D on
M /LbyD(gL) = D(g)for all geG. Then

{a) D is a corepresentation of M /L,

(b) D is irreducible iff D is irreducible,

(c) if D is irreducible with intertwining number / and D

has intertwining number I I=1

Conversely,

Theorem 3.6: Let L be an M-normal subgroup of
M = (G,H ) and Dacorepresentation of M /L. DefineDon M
by D (g) = D (gL ) for all geG. Then

(a) D is a corepresentation of M with L C ker D,

(b) D is irreducible iff Dis irreducible,

(c) the intertwining numbers of D and D are equal.

In terms of characters:

Corollary 3.7: Let y be a function on M, ¥ a function on
M /L, and y (gL ) = y(g). Then

(a) y is a character iff y is a character,

(b) y is irreducibleiff y is irreducible, and then they have

the same intertwining number.

These three results can be used in exactly the same man-

748 J. Math. Phys., Vol. 24, No. 4, April 1983

ner as they are in representation theory. In particular, every
magnetic single point group is an M-homomorphic image of
a magnetic double point group and hence the single group
does not require separate treatment. While this result has
been implicitly assumed by many authors we feel a proof is
important as many other equally “obvious” transfers from
representation theory are known to be false. In this case we
may eliminate the 31 isomorphism families containing single
groups from any separate calculations, to leave 33 noniso-
morphic families of magnetic double point groups.

4. MAGNETIC CLASSES

An M-class Cof M = (G,H ) was defined in N-G tobe an
equivalence class of elements of H: u,,u,eC if there exists
either uc Hwithu u, u™' = u,ora e G-H witha u,
a~ ' =u, ! (orboth). (The term C class was used in N-G for
what we here call an M-class. The prefix M is more appropri-
ate as it is a group concept rather than a corepresentation
one.) The character y of a corepresentation is an M-class
function and from this follows the column orthogonality re-
lation for ICRs

g Xl _ 50 o L

i 1 i u,
where n, = |C, | (N-G, Theorem 16).

It is well known that for ordinary groups the order of a
class equals the order of the group divided by the order of the
centralizer of any element of the class. A similar result holds
for magnetic groups—once the centralizer is defined.

Definition 4.1: The M-centralizer C (L ) of a set of linear
operators L in M is

CIL)={u,ae M: ul = lual =1"'a VieL }.

J. D. Newmarch 748



Lemma 4.2: C(u) is a subgroup of M.

C(u) may consist of linear elements only or of both linear and
antilinear elements.

Theorem 4.3: If u is an element of an M-class C of M
then

|C|X|Clu)| = |M]|.

This may be shown by adapting the ordinary group
proof of, say, Jansen and Boon.? This means considering
linear and antilinear elements separately and consequently is
a little tedious. Similar adaptations are required in dealing
with the class multiplication constants:

Definition 4.4: Let C; and C; be two M-classes. The class
multiplication constant 4 § is the number of pairs u,€C, and
u;€C; whose product is any fixed element u, €C,.

Lemma 4.5: h}; is independent of the element u, €C,.

Proof: We prove this simple result only to demonstrate
the alterations necessary for magnetic groups. Let u, ,u;€C,

(a) If u, = uuju™", then to each pair u,€C,,u;€C; with
u,u; = u, corresponds another pair u; = u~ ', ueC;
and u; = u~ 'u;ueC; with uju/ = uj,.

(b) Ifu, = au} 'a™', then to each pair u,€C;,u,€C; with

u;u; = u, corresponds another pair

’ -1, -1 1

ul =a" 'u'aeC,, u) = (@ 'u,)u;” '@~ ;)" 'eC;
with
uiu; =u;.

Hence the number of pairs u/u; = u;, equals the num-
ber of pairs u,u; = u, .

Similarly,
Theorem 4.6: With C, = {e} and C_, = (C,)™!
(a) hy=1Cl6_,
(b) R =hk=h "

g i—Jj
(c) if D is irreducible and S, = > D («’) then
w'eC,
C 7
s, =[G lxt¥)
f
where [ is the intertwining number of D and f the

degree of D (This follows from Theorem 12 of N-G.),
(d) with S as in (c)

3

S,S., = RES,,

all classes

© |C. | IC, xwlylw)=f >  hGIC, [x(u)

all classes

1 IC.||C

(ﬂh$=TH—, > T’—x,,(u,-m(u,.)muk)*,
all pip

ICRs
P
(g) (van Zanten and de Vries?)

749 J. Math. Phys., Vol. 24, No. 4, April 1983

C, I
St = H| S
ijk |Cu,-|'|cuj|

| £
a'TCRs f ,2,
P

5. DIRECT PRODUCT GROUPS

On the face of it, direct product groups are not particu-
larly useful. For example, Cracknell** considers m'3 as the
direct product 32 X 1’ and concludes that this is not profit-
able as the three ICRs of m’3 are not direct products of the
four IRs of 32 and the one ICR of 1'. However, if we return to
the group idea of direct products being formed of ordered
pairs, then 32 X 1' is a very odd group indeed as it contains
the element (E, 61 ), for example, which acts linearly in one
space and antilinearly in another. Whilst it is possible that
such mixed magnetic/linear groups may yet find applica-
tions, we investigate in this section a direct product which is
conceptually simpler.

Definition 5.1: Let M, and M, be magnetic groups and
set the magnetic group

M
M=M XM,

to be their M-direct (outer) product if

(a) the linear subgroup of M is the direct product of the
linear subgroups of M, and M,.

(b) the antilinear coset of M is the direct product of
antilinear cosets of M, and M,.
Symbolically, if M, = (G,, H,) and M, = (G,, H,) then

M

M\ XM, = (G, — H|)X(G, — H,) H | X H,), H, X H,).

Some standard result for ordinary direct products do
not transfer to magnetic direct products:

M
(a) |M, X M,| = |M,|-|M,|/2. This follows from the or-

ders of the linear subgroups.
{b) Neither M, nor M, need be M-isomorphic to a sub-
group of

M
M XM,

as neither {M,, e} nor {e, M,} are subgroups. For example
4’I>u<21’= {(E, E), (E, C)), (Cy, E), {C,, Cy),
BCH,0), (6CF, 6C,), (6C, 6), (6C; 6C,)}

and 21’ is not a subgroup.
(c) If C; and C; are M-classes of M, and M,, respective-

ly,
then C; X C; need not be an M-class of

M
M, XM, .
Again this is because of the absence of elements (a,, ¢) and
(e, a,) from
M
M\ XM,.
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However, each direct product of M-classes splits into at most
two M-classes of

M
M, XM,
For example, in
M
3" x3r
the product {C;", C5 } X {Cs", C; | gives the two M-
classes {(C5",C5"), (C5,C5 )} and

{(Cst, C57),(C5, C57)}. On the other hand, many results

are transferable:
{d} The M-direct product is commutative,

M M

M XM,=M,XM,,

and associative,

M M M M

(M X M) X My = M, X (M, XM,).

{e) M, is naturally M-isomorphic to
M

(M, XM,)/H,.

(f) M is naturally M-isomorphic to the diagonal sub-
group of

M M M
MXMX .- XM.

So as for ordinary groups the inner direct product may, if
desired, be treated by descent in symmetry from the outer
direct product.

(g) If d, and d, are corepresentations of M, and M,,
respectively, then d = d, X d, is a corepresentation of

M
M =M, XM,.

From (c), irreducibility of d, and d, does not necessarily
imply irreducibility of d = d, X d, as the number of M-
classes may increase. The ICRs of

M
M XM,

are, however, easily obtained:
Theorem 5.2: Let d, and d, be ICRs of M, and M,,
respectively, and d = d, X d, be a corepresentation of

M
M=M xXM,.

(a) If d, is of type (a), then d is irreducible and of the
same type as d,.

{b) Ifd, and d, are both of type (b) then d is reducible to
four equivalent ICRs of type {a).

(¢) Ifd, isof type (b)and d, of type (c) then d is reducible
to two equivalent ICRs of type (c).

(d) Ifd, and d, are both of type (c) then d is reducible to
two inequivalent ICRs D, and D, which have the same de-
gree and are both of type (c). Further, let C;; be the product of
M-classes C; X C; of M, and M,, respectively. If C;; is an M-
class of M, then D, and D, have equal characters on C;;. If,
however, C; reduces totwo classes Cand C', the character of
D,(D,) on C equals the character of D,(D;}on C".

Proof: A character based proof is possible but not par-
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ticularly useful for finding the ICRs for
M
M 1 X M 2

as in general a transformation is required to reduce d. Conse-
quently we give a constructive proof based on the definite
matrix forms given in the Appendix of N-G. Most of the
ICRs so far given in the literature are of this form or differing
by a simple transformation.

(a) This is irreducible so no transformation is required.

bl Letd _(Ai(”i) 0 )
(b) Letd,(y;) = 0 Afw) and
0 P

d““=(_p 5)

with 4, an IR of H,. Then d is equivalent to d ' = 4D, where
D is the ICR of type (a),

D ((u, u,)) =4 {u;)XA5(u;)
and

D((a(’,,aé)) =P XP,

Mmmw=@f”419,m¢=kilg)

and
4,(u,) 0 ) 2 ( 0 P 2)
= ’ d = .
dy(u,) ( 0 Asus) 2(ag) P, 0
Then d is equivalent to d ' = 2D, where D is the ICR of
type (c),

(A ()X Ayfu) 0
D {(u;, u)) —( 0 Al(u,)XA3(uz))’
0 P, 3
D((aé,aé))=<_Pxp §P)-
A;fu;) 0 P

(d)Letdi(ui)=( 0 A_,(u'))andd,»(aa)=(1(,), 0)

Then d is equivalent tod ' = D, & D,, where D, and D, are
the two ICRs of type (c),

N B (A,(u,)XA 5 () 0 )
iy, wo)) = 0 A 1{u,) X A45u,) ,
0 P, XP;
Dl((aé,aé))=(1,,><‘p 0 )
and
A (u4) X A ,{u,) 0
Di(u;, u,)) =( 0 A (u)X4 ;(uz))’

Dol & ( 0 P, ><P2)
2((00,00))— Pixpi 0 .
The second part of (d) follows by the equality of the traces of

D,((u,, u,)) and D,((u,, au, 'a™")).
We still have to show that this gives all ICRs of

M
M, XM, .
Firstly, if an ICR D is contained in both d, X d, and d, X d,
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then d, = d; and d, = d, by nonequivalence of characters in
M, and M,. Secondly, Theorem 14 of N-G related the de-
grees and intertwining numbers of all ICRs of a magnetic
group to its order, and by calculating degrees and intertwin-
ing numbers of the ICRs of

M
M XM,

obtained from those of M, and M,,
Theorem 5.3: Each ICR of

M
M=M,XM,

is a component of d, X d, for some ICRs d, and d, of M, and
M,, respectively.

Restating all this in terms of characters

Corollary 5.4: Let ¢, and ¢, be irreducible characters of
M, and M, with intertwining numbers I, and 7,, respective-
ly, and let y = ¥,9, be a character of

M
M=MxXM,.

(a)If I, = 1 then y is irreducible with intertwining num-
ber I = I,. (Of course, the subscripts “one” and
“two” may be interchanged throughout).

(b)IfI, = I, = 4theny ' = y /4isirreducible with inter-
twining number one.

(c)IfI, = 4and I, = 2theny ' = y /2isirreducible with
intertwining number two.

(d)IfI, =1, =2theny =y '+ y ",wherey 'andy " are
both irreducible of the same degree with intertwining
number two. Further,

x (w1, w2)) = x"((uy, auy 'a™")).

Example: *4' has three ICRs A, DE, and DB with inter-
twining numbers one, two, and four, respectively (the char-
acter table appears in Table II). The M-classes of

M

*4 X4
are C, = {(E, E)}, C, = {(C,., E), (C,,, E)},
G = ((E, Cu), (E, Cu)}, Co = {(E,B)}, Cs = [(E, )},

Co= (G E}, (Con E & = (E, b [

s = {(Cps C2)}, Co= {(sz: Ca:), (Cas, Cy: )}, and

C,o = {{E, E)}. Only one direct product of M- classes splits,
t0Cy ® Cy. A XA,A X DE,A X DB,DE X A,and DB X Aare
all irreducible. (DB X DB )/4 is irreducible with I = 1, and
(DE X DB)/2 and (DB X DE /2 are both irreducible with
I=2. DE XDE = D, ® D,, both irreducible with I = 2.
They have characters y, and y, (respectively) equal on C,
through C,, and Cy,. y,(Cg) = ¥2{Cy) = a and
¥1(Co) = x»(Cs) = b. Since the character of DE on C,, is
zero, a = — b. Row or column orthogonality fixes |a| = 2.
To determine the argument of a, additional information ap-
pears to be necessary. For example, C;; and C, are ambivalent
and so a is real (see next section). Alternatively, a? = 4 fol-
lows by the class multiplication rule [Theorem 4.6, part (e)].

The major problem with direct product groups is that of
identifying when a group is a direct product. One case is
always easy to spot, though: a group containing the inversion
group 1 = {E, I}.
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Corollary 5.5: Let M contain the linear subgroup 1.
Then

M—
M=M'Xx11",

where M’ = (G, H') = M /1. To each ICR D of M’ corre-
sponds exactly two ICRs D, and D, of M with equal matri-
ces on (H', E') and opposite matrices (in sign) on (H ', I).
Asin representation theory, such “inversion” magnetic
groups may now be dealt with trivially from the “noninver-
sion” groups. In Sec. 3 the number of families of magnetic
point groups requiring separate calculations was reduced to
33. Eliminating now the inversion groups leaves only 16.

6. SPECIAL GROUPS AND ICRs

Groups with only one-dimensional ICRs have, of
course, a particularly simple character theory (inner direct
products, for example, are trivial). If the degree of an ICR is
only one, the intertwining algebra can only be R and so the
intertwining number must be one. If all ICRs have degree
one, from Theorem 14 of N-G the number of ICRs, which is
also the number of M-classes, equals the order of the linear
subgroup. Every M-class consequently has only one element
and the group must satisfy the relations

Uy, = Uiy, Vuy,ueH

and
Yue H,aeG — H .

Conversely, this guarantees that ICRs have degree one.
While H is abelian, G is in general nonabelian [for example,
M= (D,,C,)for all n>1 satisfies the relations]. Abelian G
may have two-dimensional ICRs (for example, 4').

To calculate the number of one-dimensional ICRs for
general M we need the commutator subgroup.

Definition 6.1: The M-commutator subgroup M’ is the
subgroup of M generated by

au=u"a,

{u "uy 'uyuga™ 'uau,u,u,e HaeG — H ).

Lemma 6.2: M’ is an M-normal subgroup of M.
Proof:

(@) wlu "u; 'uuju~'e M,

(b) u(a_‘ulaul)u_l = [(aual)_lul(au_l)ull

fur tuuu= e M,

u; "wau; ']
[lau; ™!

ua,uja = ((a,a)" 'ula,a)u"]

llau=")"'ulauYule M.

() @™ (uy 'uy 'uuzle = (@)
ulau; Yu,leM’,

(d) ™ (@

The proof then follows that for ordinary groups.
Theorem 6.3: M ' is the minimal normal subgroup L
such that M /L possesses only one-dimensional ICRs.
Corollary 6.4: The number of one-dimensional ICRs is
MM = [H|/\M).
Recently Butler ez al.>**>-28 have developed and used a
recursive method for generating 6/ and 3jm tensors for
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TABLE II. Selected chara:cter tables of the magnetic point groups. The group appears on the upper left with the ICR labels beneath. In the middle, the classes
are llxsted along the top with the characters beneath. To the right are successively the intertwining number 7, the Frobenius-Schur invarant ¢, and n, the
minimal power for the occurence of each ICR in an (arbitrarily chosen) faithful ICR.
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groups of linear operators. When certain problems regarding

the 6f tensor for grey groups have been resolved?” it is likely

that the method can be adapted to magnetic groups. It is one
of the few which involve properties of faithful representa-

tions and in anticipation of future use.

Theorem 6.5 [Burnside-Brauer (Ref, 21)]: Let y bea

faithful character of a magnetic group M = (G,H ) and sup-

pose y(u) takes on exactly m different values for #ueH. Then
every irreducible character of M occurs in the nth inner
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Kronecker power y " for 0<n <m.

In the accompanying character tables a faithful ICR is

given wherever possible and the minimum value of n. A
faithful ICR has kernel {e} and hence y («)#y/e) for u#e.
Finally, in this section, we consider real-valued
characters.

Definition 6.6: An M-class C is ambivalent if for each

J. D. Newmarch

ueCits inverse is also in C. Alternatively, if u is any arbitrary
element of C, then there exists u,€ H with uuu; ' =u~

lor
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aeG — H with au = ua.

Every grey group (i.e., containing the commuting oper-
ator &) has every M-class ambivalent.

Theorem 6.7: The number of ICRs of a magnetic group
with real character equals the number of ambivalent M-
classes.

Thus the grey groups have only real characters.

7. THE INTERTWINING NUMBERS

The intertwining numbers have been seen to play a cru-
cial role in the character theory of magnetic groups. It we
already know the character table then of course the inter-
twining numbers are already known. However, as in the last
section it is of interest to see if information can be obtained
purely from group or class properties, particularly if the
character table has not been determined. Here is a simple
result.

Theorem 7.1: The number of ICRs with intertwining
numbers one or four equals the number of M-classes C; with
the following property: for any ueC, there exists acG — H
such that au = u™'a.

Proof: Let u,,u, be arbitrary elements of C; and
a,eG — H witha,u, = u~'a,. Then u, and u, are equivalent
by a linear element. To see this, suppose they are equivalent
by a nonlinear element a,:

u, = a,u; 'a; .

By substitution,

(@ @)u; 'a; ' =u;'a
or

upla,ay) ! = (a,a,) " 'u,

so they are equivalent by a linear element. It is readily
checked that au = u~'a is a class property independent of
the choice of u. Hence any such M-class remains irreducible
on restriction to ordinary classes of H. Conversely, if an M-
class does not possess this property then it branches into two
ordinary classes of H. But from the relations between IRs of
H and ICRs of M (N-G, Appendix) the number of ICRs with
intertwining number two equals the number of M-classes
which split on H, and hence the number with intertwining
number one or four is the number of irreducible M-classes on
H as required.

This theorem completely determines the number of
ICRs with I = 2 by M-class properties. The problem of de-
ciding between the number with 7 = 1 and the number with
I = 4 is much more complex. For example, for a grey group
it becomes the calculation of the number of IRs of the first
and second kinds, respectively. van Zanten and de Vries*
and Gow*' have given various lower bounds for these, but
only in certain cases are there presently exact solutions.

For the remainder of this section we aim at a special
case, namely when all ICRs have 7 = 1. In this case the char-
acter theory of the magnetic group reduces to that of the
linear subgroup and, especially for magnetic point groups,
this may be very well known. Extensions along the lines of
van Zanten and de Vries*® will be obvious.

Definition 7.2: Let £ P(u) be the number of square roots
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of u in G-H.
Lemma 7.3: £ @ is an M-class function.
Lemma 7.4:£® = Z.c;y;, where¢, = 1if I, = 1,

¢, = —}ifl, =4,and ¢, =0if I, = 2.
Proof: From N-G, row orthogonality gives
1 (2) *
= — uly:(u)*.
¢ TH] §u‘,§ () (u)
But
FPupur= Y xildd),

aeG — Hia*=u

SO

— 1 2
< —Ii|H| ;X:’(a )-

Substituting by Eqgs. (20), (24), and (28) of N-G the result
follows.

Theorem 7.5: All ICRs of a magnetic group have inter-
twining number one iff

£ %) =3 xile)

Proof: Immediate from the possible values of ¢;.

Corollary 7.6: Let the set of irreducible characters of M
be ICR(M ) and the set of linear irreducible characters of H be
Irr(H ). Then ICR(M ) = Irr(H )iff

)= Z @;(e) for @,elrr(H ).

Proof-If ICR(M ) = Irr(H ) then all ICRs of M'must have
intertwining numbers of one to avoid branching, and hence
the previous theorem applies with gelrr(H ) replacing
yYelCR(M ).

Conversely, suppose

%)= pile).

Break this up into a sum over j[IRs inducing ICRs of type
(a)], & [IRs inducing ICRs of type (b)], and 1 [IRs inducing
ICRs of type (c)]:

e =3 ajle) + X ulel + 3 pile)

By the relations between IRs and ICRs this is

£70e) = 35l +4 3 el +3 3 e

But we know from Lemma 7.4 that

£%e)= T x,(0) =4 T e

and as the sums over X and / are nonnegative they must
vanish. Hence all intertwining numbers are one and
ICR(M ) = Irr(H).

Example:The group *6'2'2 has antilinear elements
{6C & ,6C & ,6C,,6C,,0C%,,,0C 1, ) and eight of these
square to the identity. The linear subgroup *32 has six IRs
and the sum of their degrees is also eight. Hence *6'2'2 has
the same character table as *32.

The character theory of this type of group follows from
the linear group and may be found in many places.'>° Elimi-
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nating these from the remaining 16 families of magnetic
groups leaves only seven families—a very manageable num-
ber! Their character tables are given in Table II.

8. COMPLEX CONJUGATES OF ICRs WITH REAL
CHARACTER

As with representations, a corepresentation is equiv-
alent to its complex conjugate iff it has real character. The
row orthogonality relations of N-G give an immediate
character test

S (w)?#0 iff D=D*.

For linear groups the well-known Frobenius—-Schur in-
variant®' divides IRs with real characters into orthogonal
IRs (¢ = 1) and symplectic IRs (¢ = — 1). This division is of
great importance for Racah algebra methods of linear
groups as it completely determines the 1 — j phase which is
required for, amongst other things, permutation properties
of the 6 tensor.®” (For complex IRs the phase is undeter-
mined. However, the concept of quasiambivalence®” has
proved useful for a partial determination of the phase.”**)
Newmarch and Golding® have similarly found the 1 —;
phase important for the Racah algebra of grey groups but
have noted that for ICRs of types (b) or (c) of these groups the
phase is not uniquely determined.** Thus the relations be-
tween complex conjugates and to the 1 — j phase deserves
further investigation.

For the remainder of this section, D will be a unitary
ICR with real character, D * the ICR with matrices complex
conjugate to D (that D * is an ICR is easily shown) and p the
set of matrices giving equivalence of D to D *:

p={ P:PDu)=Du)*P,PD(a) = D(a)*P*Vuac M}.

m is the commutator algebra of D, i.e., the set of all matrices
commuting with D.

These are all simple generalizations of results on
representations:

Lemma 8.1

(a) If Pis any element of p and M any element of m then

both PM and M *P are elements of p.
(b) If P, Q are two elements of p, there exist M,M ‘em
such that P= QM ' = M*(Q.

(c)If Pep, P*Pem.

While not affecting his conclusions, Rudra** makes an
error in stating P *P = AE, as can be shown by example (a
similar error is made by Kotzev and Aroyo®® in connection
with isoscalars). Consider the two-dimensional ICR of 4'
generated by

(0 1)

D(6C _(_1 o)

From the reality of D, p = m and the most general form of
Pepis

24 23
P= " .
—2Z; Z

Trivially, P *P # E except for special cases. The meat of this
section is that such special cases must occur.
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Theorem 8.2: Let D be a unitary ICR with intertwining
number I. Then there exist Py,P,, . .. ,P,_ € p such that
(a) P, = P, M, where the M, form a group of

m{+E +M,+M,..J}
(b) P*¥P, = ¢,E withc?=1,i=0,1,...,/—1,

(c}if I =4, cocic03 = — 1.

Proof: It is sufficient to take D of type (b) with intertwin-
ing number four as the other two types follow as special
cases. Choose any unitary P € p and set M = P*P. M is also
unitary and may be written

M=xFE+x,M,
with x,x, real, x] + x} = 1,and M;e m’ = m — {A1E: AeR}

with M? = — E. Suppose x,#0. Then M possesses an in-
verse square root

M2 = il + X, E_ ﬁ_xl M.
V2 ve
From P*P = M and PP* = M * PM = M *P and so
PM, = M*¥P. Hence
PM —1/2 _ M _(1/2)*1').
If now we set

P,=PM ~'?and P, = PM ~'?M,
it follows that

PYPy=FE and P*P,= —E.

Continuing with this case of x, #0, by a suitable 4 — D
rotation in m M, can be taken as an element of the group of
m:{+E +M,+ M, + MM,} with M, arbitrarily lying
in a plane orthogonal to E and M |. Set P, = P, M, and define
M’e m by

M'=P*P,

A simple equation relates M’ and M. Consider
(Po M\M,)* (Po M\M,) = (PSM TPy} (P3M $P)M M,
as PPY=FE
= —M 'M'M;'MM,
as PP, =PX*M*P, M, = — FE
and P*M*P, =P¥P,M;'=M'M;'
= —MMMaMM,= —M,M andM; = —E.

But this also equals

(Po MoM\¥(Py MM\ ) = M
in a similar manner. Writing M’ as a linear combination of
MM, and M, M, and equating these gives

M =y,E+yM,.
By unitarity of all matrices, y3 + y2 = 1. If in this equation
VY, =0withy, = + 1, set

P, = P, M\M,.
Then P%¥P, = P¥P, = y,E and indeed, for all real linear
combinations P’ = z P, + z,P, with 23 + 22 =1,

P'*P' =y.E.
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If, however, y, #0, a contradiction rapidly follows. For then
taking the inverse square root of M’ as with M, a real linear
combination P} of P, and P; exists with P;*P) =yE and
this 2} may be used in place of P,. From this it follows that
y, must have been zero after all.

The case excluded so far was of x, = 0. However, either
for all P ‘e p the corresponding x5 is zero, in which case there
is nothing to show, or there is at least one for which x} #0
and this P’ may be used in place of P in the above analysis.

For an ICR of type {a), m=R and there is nothing to
show. For an ICR of type (b) m == C and either all P € p satisfy
P*P = cE or P, and P, can be constructed as above.

Part (c) follows from the equation

coPYPy= —PEMY P, P3 M3 Py MM,

to complete the proof.

Character tests may be established in a fairly straight-
forward manner from the orthogonality relations for ICRs
given in N-G Sec. 3.

Theorem 8.3: Let D be a unitary ICR equivalent to D *,
and let P, c; be as in the preceding theorem. Then

S =Ze

u

In conjunction with ¢} = 1 and ¢y¢,c,¢; = — 1 for
ICRs of type (b), this shows that the c; are essentially deter-
mined by character theory alone, independent of any specific
choice of P, or of the basis for D. As usual, ¢; = 1 means P; is
symmetric, ¢, = — 1 means P, is antisymmetric. Setting the
Frobenius—Schur invariant to be

c=2c‘,~

gives
Corollary 8.4: Let D be a unitary ICR equivalent to D *.
(@If Dis of type (a),c =¢c, = + 1.
(b)If D is of type (b), then ¢ = + 2. If ¢ = 2, three of the
¢, are positive and one negative, whereas ifc = — 2,

three of the ¢, are negative, one positive.

(c)If Disof type(c),c = 2,0, — 2. Ifc =2,¢o =, = 1, if
¢c= —2,cg=c¢,= — l,andifc =0, ¢ and ¢, are of
opposite sign.

It can be seen that for all type (b) and some type (c) ICRs
there is a freedom in the choice of 1 — j phase which does not
exist for linear groups. For quasiambivalent linear groups a
useful simplification for Racah methods is that the product
of three 1 — j phases is one whenever the triple product of
IRs contains the identity IR.”*32*3 By considering, for ex-
ample, *31’ and *4' it can be verified that the product of
phases is not unity for all choices in magnetic groups even
when the character is real. Whilst we do not wish to pursue
this here in any depth, we do note a special case of particular
relevance to grey groups: if 4 is some antilinear element of a
magnetic group M which commutes with all elements of the
group and for which D (6%} = + E for all ICRs of M, then as
in Newmarch and Golding,?° D (€ )e p for each ICR. As
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D(@3)=D(6)D(6)*,
(D4(8) ® Dy(6))*(D(6) ® D,(6))
=D,0%* ® DJ#*)*= +E.

Hence for any D, in this direct product, ¢,c,¢3 = 1.

Another well-known property of the Frobenius-Schur
invariant is its relation to the multiplicity of the identity IR
in the symmetrized and antisymmetrized Kronecker squares
D and D " of an IR. From Eq. (20), (23), and (27) and Sec.
5 of N-G the Frobenius-Schur invariant for magnetic
groups similarly characterizes these multiplicities for ICRs
with real character. The results are summarized in Table I11,
from which it may be observed that the occurrence of the
identity ICR in the symmetrized (antisymmetrized} Kron-
ecker square equals the number of ¢; with value one (minus
one).

Finally, a word about matrix forms. If P € p with
P *P = Eis symmetric then exactly as for linear groups, D is
equivalent to a real ICR.? Similarly, if P € p with
P*P = — Fisantisymmetric, then D is equivalent to a sym-
plectic ICR.***37 Any type (b) and some type (c) ICRs (with
¢ = 0) with real character are equivalent to both real and
symplectic ICRs. For example, consider the ICR of type (c)
with¢ = 0, DE of 41". Constructing the ICR in the usual way
from the linear subgroup gives

1

ear-(; ) wioo-( )

A symmetric Pepis
P—(O 1)_(1/\/2 1/v2 )(1 0 )
Ao/ \iv2e -1\ —1
1/v'2 ) .
=r wr.

(1/\/2
/v2 —=1/vV2

Transforming D by w,r, where o} = w, gives

viea=(2, ) mivo-() )

which is real. On the other hand, transforming D by AE with
A% =igives

el *) mon? )

which is in symplectic form. These provide alternative

TABLE II1. The multiplicity of the identity ICR 1 in symmetrized and
antisymmetrized Kronecker squares of ICRs with real character.

Type of Frobenius—Schur Multiplicity of ~ Muitiplicity of
ICR invariant 1in D@ 1in DUY
(a) 1 1 0

-1 0 1
(b) 2 3 1

-2 1 3
(c) 2 2

0 1 1
-2 0 2
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“standard” forms to the one obtained by induction from the
linear subgroup.

9. CONCLUSION

In a single paper it is, of course, impossible to consider
all aspects of character theory used for linear groups and we
have singled out a few of general interest. They should be
sufficient, however, to show that character theory is a viable
tool for the examination of magnetic groups.
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