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Abstract

This thesis addresses issues regarding updating of software systems in a dis-
tributed and mobile environment. Existing research has seen that updatable
systems are able to alter safely their runtime code, and that, distributed cooper-
ation allows components of systems to work together by sharing data via remotely
accessible instructions. The combination of these areas could allow systems to
alter their runtime code based on the resources supplied by other systems within
the same network. We investigate a proximity-based approach which will allow
systems within the same vicinity to share code and evolve based on the code of
other neighbouring systems. Such a technique would see systems cooperating by
forming localised communities in which the software resources of all systems are
exchanged and used for adaptation.

Current techniques, such as autonomic and adaptive systems, allow systems to
cooperate in a similar manner, however, they prove to be limited to specific de-
vices or supply a restricted level of system cooperation. While other techniques,
such as context aware systems, are able to alter behaviour in accordance with
their current surrounding, this is limited to predetermined possibilities. As such,
there is no current technique which allows systems to alter their current state
based on the other systems within the same locality.

This thesis takes as its starting point the problem of updating software in the
field. It presents novel techniques which also lead to novel applications. Building
on this, we explore the idea of communities formed by collections of mobile and
stationary ubiquitous devices, and examine how devices within these communi-
ties can interact and evolve. During this exploration, we assess the suitability of
current system cooperation techniques for community generation and identify the
attributes of a dynamic community. We find that a localised dynamic community
would allow heterogeneous systems to alter dynamically their state in accordance
with other systems in the same community. However, this assessment suggests
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that, although, some current techniques are seemingly suitable for such a level of
system cooperation, none incorporate all the required aspects that allow localised
dynamic communities to be established.

To overcome these short comings, a new middleware framework, Dynamic Up-
date Projecture Environment (DUPE), is proposed. This framework is designed
for heterogeneous devices using Java’s interoperability capabilities. DUPE takes
into account the requirements of localised dynamic communities and provides a
new means of flexible system cooperation, applicable to all system types. The
internal structure of the DUPE framework is designed such that it is applicable
to the many unique dynamic updating techniques for Java applications that we
identify during initial discussions. However, as a result of the heterogeneity of
the systems likely to be participating in dynamic communities, the specification
of DUPE’s cooperation and system resource sharing is tightly constrained. The
research details how the framework allows systems to interact within localised
dynamic communities, and argues that this can be used as a viable new tech-
nique in system evolution via software transfer.

An evaluation of the framework is provided through a series of technical and
analytical tests, and the benefits the framework provides as a system evolution
mechanism are presented using epidemiology modeling.

The principal contributions of this thesis are that it proposes and demonstrates
that a middleware framework can be used to dynamically update heterogeneous
systems, and that by this means location-based communities can be formed that
can adapt and evolve, and in turn affect, physically mobile agents.
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Chapter 1

Introduction

1.1 Motivation

The phenomenal speed of the emergence of mobile systems has resulted in the
research associated with system cooperation and usability increasing in impor-
tance. Old concepts have re-emerged and new ones have arisen. Included in this
is a renewed interest in dynamic system updates. The current research in this
area has successfully enabled systems to safely update their runtime code state
[51]. At the same time, another technological capability that has progressed is
distributed system cooperation. This area of work provides remote systems with
the ability to simply share resources. The nature of this is such that, systems,
including mobile systems, in the same location can communicate with each other.
The benefits from a combination of these areas, dynamic system updates and dis-
tributed system cooperation, are yet to be fully established. Of particular interest
is the effect that such a combination may have on mobile system cooperation.

A further area of interest, is the capabilities that have been provided by the stan-
dardisation of programming languages, such as Java. These languages provide
heterogeneous systems with a common medium. In fact, Java has been widely
applied in advanced distributed cooperation; examples include Jini [79], JXTA
[17] and RMI [105]. However, it has not been associated with updatable systems
and distributed cooperation. This then presents the possibility that heteroge-
neous systems, in the same proximity, can update their execution according to
each other’s capabilities. This may be achievable using a distributed association
of code constructs. Of significant interest, is the application of this concept to
mobile systems. To discover any benefits from this, we need to look into how,
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and where mobile systems are used.

It is inevitable that mobile systems, as a result of their prevalence in society, will
be found operating in the same location. Such a congregation has many similari-
ties to the everyday scenario of communities, except that all community members
are systems. If given the ability, these systems are in the perfect situation to dy-
namically adapt to each other. This ability may be provided through remotely
shared code constructs. If this occurs, then the community members obtain the
ability to alter their execution by using code from other members. This is simi-
lar to how people learn from each other. Moreover, the mobile members in this
situation are likely to move among different communities. The result of this is
that they present and take components with them. This entire concept is new.
The term that we apply to this type of a community is ‘a dynamic community’,
and the term we apply to the mobile members of a dynamic community is ‘phys-
ical mobile agents’, or, more commonly, ‘gypsy agents’1. The benefits that these
concepts may provide to systems have not, as yet, been analysed.

It may be argued that this concept in system cooperation is similar to that pre-
sented in autonomous systems [88], adaptable software [10, 71] and context aware
applications [31]. However, these techniques are either limited to specific devices,
have a restricted level of system cooperation or are limited to predetermined ex-
ecution changes. Therefore, it is evident that what is missing is a standardised
flexible means of system adaptation.

From this arises the concept that if heterogeneous systems execute in any dynam-
ically updatable JVM, and share Java code resources in a dynamic community
scenario, they can then dynamically adapt their runtime state based on their
current location. If so, as a result of system differences, a middleware framework
would best facilitate the community cooperation language. Moreover, the mobile
systems using this technique would present a new way to transfer code compo-
nents and facilitate system evolution.

In this thesis, in response to the possibilities presented in the previous discussion,
we present our argument to support our design of the Dynamic Updatable Pro-
jecture Environment (DUPE) framework for dynamic community cooperation.

1Others have used the term ‘gypsy’ within the area of mobile agents [67], however, this has
a different meaning to that used in this thesis.
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And, paying particular attention to mobile systems, we explore the resultant
benefits of this concept and present its contributions to the field.

1.1.1 Scope of This Thesis

Our research objective is the design of the DUPE framework. The framework
will provide systems with the ability to dynamically alter their runtime state as
a result of their interaction in a dynamic community. Moreover, as a result of
their continual movements, mobile systems bring many unique characteristics to
this concept. We, therefore, target the framework design at mobile systems.

With this objective motivating our research, we pursue the following core goals:

1. The first goal is to analyse the areas of importance to the establishment
of dynamic communities. We identify and discuss, in depth, the research
areas of dynamic updating and distributed cooperation. In Chapters 2 and
3 respectively, both areas are analysed from the point of view of mobile
systems. In Chapter 4, the concepts of dynamic updating and distributed
cooperation are utilised to establish the attributes and requirements of dy-
namic communities.

2. The second goal is to determine the best technique for dynamic community
interaction in order to design the communication language aspects of the
DUPE framework. There are two steps in the construction of the DUPE
framework. Firstly, we establish the core components of the framework
and its association, as a middleware, with its target application. This is
presented in Chapter 5. Secondly, we clearly identify the communication
language for system cooperation within dynamic communities, and apply it
to the framework. This second step in the construction of the framework is
realised in Chapter 6, with elements specific to security finalised in Chapter
7.

3. The third goal is to analyse the benefits of the DUPE framework, partic-
ularly for mobile systems. In Chapters 8 to 10 we present the details of
three framework implementations which aid our analysis. Following this,
in Chapters 11 and 12, we look to discover the benefits of the framework,
using our implementations, and determine other contributions to the field.
This analysis will conclude that dynamic communities, and its coopera-
tion technique, provides systems with a flexible means of adaptation that
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is not available through other techniques. Other additional benefits are
also identified as a result of such community interaction; for example, new
techniques in software component transfer and evolution.

These research aims have been achieved and consequently we present the following
as substantial, original contributions to the field.

• We identify how dynamic updates are applied to systems. This analysis can
be used to determine an appropriate means of dynamic updating for het-
erogeneous systems. This contribution is appropriate to dynamic updating
in distributed applications.

• We analyse distributed cooperation techniques from the perspective of het-
erogeneous systems. This analysis determines how a distribution technique
may be used for location based community cooperation. This contribution
is appropriate to all systems, including mobile systems.

• We identify the attributes of a dynamic community. This included differ-
entiating dynamic community interaction from community interaction and
the interaction of distributed cooperation techniques. The requirements of
a dynamic community were clearly detailed. This contribution provides a
basis concept for this work.

• We analyse the current research techniques that may be use for generating
dynamic communities. We clearly detail the limitations of each technique’s
deign, and identify the additions, or changes, required for its the use in
dynamic communities. This contribution can be used to determine the
technique that is most appropriate for allowing heterogeneous systems to
establish dynamic communities.

• We design a framework, termed the DUPE framework, that meets the re-
quirements of a dynamic community. The DUPE framework is designed for
heterogeneous systems. The DUPE community language is clearly specified
using a series of Java interfaces and classes. This provides all DUPE im-
plementations with a common communication medium. This contribution
is significant, as it is a result of the analytical contributions of this work.
The DUPE framework is extensively tested using three implementations.
This includes the testing of probable scenarios present in DUPE communi-
ties. This work confirms our claims on the benefits of dynamic community
interaction.
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• We demonstrate that heterogeneous systems can cooperate in a community
scenario by sharing code components. This contribution is significant, as it
is a new concept in system cooperation that is applicable to heterogeneous
systems. This contribution also relates to the previous contribution.

• We conceptualise physical mobile agents, termed gypsy agents. Gypsy
agents provide a new means of transferring system components. This con-
tribution is a result of the combined features of mobile systems interaction
in dynamic communities. The contribution is appropriate to all scenarios
displaying these attributes.

• We develop models on the movements of gypsy agents. These models
demonstrate the usefulness of gypsy agents as a software transfer mech-
anism. In doing so, we will develop a relationship to epidemic models, and
provided new ways in which such analysis can be shown. This contribution
is appropriate to all gypsy agent techniques. Moreover, the development of
the models on the movement of gypsy agents clearly shows the diversity of
the contributions of the entire thesis.

1.2 Thesis Overview

The structure of the thesis is as follows:

Chapter 2 explores dynamic systems. We initially detail the general approaches
to dynamic system updates, we then discuss those that related to the Java Vir-
tual Machine (JVM) and mobile system. During this analysis, we provide our
rationale for why the DUPE framework is designed for Java applications.

Chapter 3 discusses distributed cooperation. During this discussion, we focus on
discovery based distribution techniques, assessing their advantages from the per-
spective of remote heterogeneous systems. In this chapter, we determine the most
appropriate distribution technique for the underlining communication structure
for the DUPE framework.

Chapter 4 combines the conclusions from Chapters 2 and 3 and introduces the
concept of dynamic communities. This chapter outlines a core contribution of this
thesis. We discuss how dynamic communities are established and what systems
can achieve as a result of dynamic community interaction. This discussion allows
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us to determine the benefits that a dynamic community will provide to its inter-
acting members. Furthermore, in this chapter, we conceptualise the movements
of adaptable mobile systems as beneficial, and identify them as physical mobile
agents, which we term gypsy agents. In the following chapters this concept will
be seen to be a main contribution of this thesis

Chapter 5 introduces our design of the DUPE framework. In the chapter we
provide the internal construction of the framework’s design. This includes the
framework’s association with a target application and JVM. The design is pro-
vided in enough detail for implementation. In this chapter, we also identify a
dynamic community, resulting from the DUPE framework, as a DUPE commu-
nity. This term and concept is important for the remainder of the thesis.

Chapter 6 details the framework’s DUPE community interaction design, including
the aspects relevant to gypsy agents. However, as several sections of community
interaction are also sections of DUPE’s internal construction, elements of DUPE
community interaction are described in Chapter 5. These elements of the design
are referred to where necessary. The design of the framework is concluded by
defining the requirements of a compatible DUPE implementation. To finalise
this and the previous chapters, we identify and discuss several contributions to
the field of dynamic communities.

Chapter 7 assesses the safety elements of DUPE community interaction. In this
chapter, we analyse all the security and adaptation concerns that arise during
the discussions of the previous chapters and we provide solutions to the problems
that have been identified. These solutions are then included in the DUPE frame-
work specification2. This chapter concludes our discussions on the background
and the design of the DUPE framework.

Chapters 8, 9 and 10 provide three implementations of the DUPE framework;
these are DUPE Lite, DUPE 5.0 and DUPE JPDA respectively. The DUPE Lite
implementation is a limited compatible DUPE middleware. This implementation
is designed for a standard JVM. As a consequence of this, no runtime dynamic
adaptation is available. However, we include this implementation to show the
flexibility of the DUPE community language.

2The complete DUPE framework specification is provided in Appendix A.
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Our second implementation, DUPE 5.0, is a fully compatible DUPE middleware.
This implementation is designed using the J2SE 5.0 JVM, as it is capable of
achieving runtime dynamic code updates. However, as a result of the limitations
of the targeted JVM, there are some limitations on the code components that can
be used by this implementation. These limitations, however, are not detrimental
to its cooperation within a DUPE community.

Our third implementation, DUPE JPDA, is the most complete of our implemen-
tations. It contains advanced security features and flexible code component usage.

All our implementations have a common design structure, particularly in their
DUPE community communication elements. These sections of the implemen-
tations will be discussed in the early implementation chapters, and will not be
re-introduced in the latter chapters.

Chapter 11 provides an evaluation of the DUPE framework based on our DUPE
implementations. We present the results of both technical measurement and sce-
nario analysis tests. The tests are designed to determine the usability of DUPE
communities and to measure any overhead that interaction in a DUPE commu-
nity is likely to put on an application. The results provided in this chapter show
that the contributions of the thesis, as described in earlier chapters, are relevant.

In Chapter 12 we provide an analysis to determine the benefits of gypsy agent
movements. To do so, we make use of mathematical modeling. This is provided
to indicate the contributions that this concept makes to the field. The format of
this chapter differs from that of our previous chapters, as it is an assessment of
a separate conceptual theory. However, as the theory is directly associated to a
contribution that derives from the DUPE framework, it is necessary and relevant
to the conclusions presented in the thesis.

Chapter 13 provides our final conclusions and proposes new ideas and concepts
for future work.
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Chapter 2

Dynamic Systems

2.1 Introduction

The focus of this chapter is to provide a background into the concept of dynamic
system alteration. Our aim is to analyse dynamic updating techniques in order
to determine which techniques may be applicable in general, and in particular,
to mobile systems. We detail the different means of enabling dynamic updates
within systems as this ability forms the core aspect of the DUPE framework. We
will demonstrate that the framework can be achieved through the use of several
techniques, enabling us, in turn, to achieve our goals for the framework.

We begin by discussing dynamic updating techniques applied to different pro-
gramming languages in order to illustrate the many different ways in which dy-
namic code alteration is achieved. After analysing the different approaches to
dynamic updating we discuss their use within mobile systems. Following this dis-
cussion we then focus more specifically on Java techniques, analysing the different
means that allow dynamic alterations with the Java Virtual Machine (JVM). In
the final section of the chapter we conclude from the analysis which techniques
are best suited for implementation using the JVM.

2.2 System Updating

Dynamic system updating requires a balance between several factors, such as
system execution and type safety. As a result, it is possible to break a system
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with incorrect changes, examples include untimely changes and unfinished alter-
ation. Therefore, it is important to utilise appropriate techniques. To evaluate
the capabilities of updating techniques we first need to determine the best char-
acteristics of a system update technique. This information then provides the
necessary details to evaluate updating techniques.

Firstly, we clarify that dynamic updating is the runtime alteration of a system.
However, it is also known by several different terms: runtime manipulation, dy-
namic code, and system updating; we use these terms interchangeably. There
are many different aspects of dynamic updating; for example, the complex areas
such as version control, type safety, timing of an update and method of update.

The initial step is to define ‘good system updating’. A simple definition could
be: a good system update is one which alters the application correctly without
changing current execution state. However, we note that this definition is not
simple, but simplistic. Apart from this proffered definition, other definitions
focus on creating simple generic means of system updating [50] and still others
concentrate on type safety during system updating [53]. However, in general these
definitions all identify the same characteristics when determining the usefulness of
any system updating technique. These characteristics are: Flexibility, Robustness,
Ease of Use and Low Overhead. Hicks [50] presents an explanation of these
characteristics as follows:

• Flexibility: the ability to update all parts of the system without causing
any runtime pauses or difficulties

• Robustness: the ability to minimise system errors during alteration

• Ease of Use: simple to use. (This can be seen from either the program-
mer’s or the operator’s point of view.)

• Low Overhead: the ability to update should give minimal overhead in
both memory and processing power.

Any measurement of these characteristics is useful in analysing dynamic updat-
ing techniques if the techniques under analysis, in general, relate to the same
programming language or languages of a similar nature. For example, techniques
seen as flexible for C++ might use dynamic link libraries (dll) files, whereas,
flexible techniques for Java might be those that make use of Java’s interoper-
ability and distributed capabilities. These examples, show that the flexibility of
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a dynamic uploading technique can be determined by the core elements of the
language’s execution environment. Therefore, some measurements will be more
adequate for some languages than for others. Moreover, it is definitely the case
that for some languages it is much harder to create a dynamic updating technique
than for others. We identify three levels of dynamic updating complexity:

1. Languages which Include Dynamic Updates Capabilities: A lan-
guage has dynamic capabilities built into its standard structure, for exam-
ple, Erlang [4].

2. Languages where Inclusion of Dynamic Updates is Possible: A
language where the addition of the dynamic capabilities is seen as a mod-
erately simple addition. For example, dynamic capabilities in C++ can be
achieved via dll files [53, 49]. The research for these languages focuses on
the problems associated with dynamic updating, such as type safety [49].

3. Languages where Inclusion of Dynamic Updates is Difficult: A
language, such as Java [65] which was originally developed where dynamic
updating was either not considered, or a decision was made never to provide
it. Indicative of this is the list of different techniques that attempt to enable
dynamic updating for the the Java language [69].

There is, of course, the existence of self modifying machine code, yet again, this
is highly system specific and as such flexibly is inadequate. However, alterations
of program flow and semantics can be achieved using .dll files or Universal Plug
and Play (UPnP) devices [72]. For example, many operating systems constantly
reload sections of code using both .dll files and UPnP (adding a new printer
may cause a UPnP exchange) [72]. Unfortunately, some of these techniques for
reloading programs are generally specific for each particular operating system
and sometimes require resetting, restarting or pausing of the entire system.

The more consistently well regarded and utilised methods of system updating,
and those included in our analysis, are those which incorporate C, C++ and
Java languages as these languages are widely adopted and, as is more the case
for Java, they maintain specific attributes making them useful in mobile devices.
The dynamic aspects of traditional languages such as C, C++ have been covered
by many researchers; for example, see the lists provided by either Hicks [49] or
Hjálmtysson and Gray [53]. The extensive coverage of this area indicates that the
ability to alter the behaviour of a system during runtime is difficult. Many appli-
cations that incorporate dynamic updates are designed for a specific purpose; for
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example, updating software and versions and remote alterations. Consequently,
many techniques are limited in generality.

Furthermore, the language type, and here we deal with interpreted (virtual ma-
chine) compiled languages, also provides an indication of not only the nature of
system updating techniques but also the methods that can be applied.

An analysis of the techniques for use in analysing the dynamics of these languages
is found in Hicks [49]1. The list developed by Hicks illustrates the rationale for
a new dynamic updating procedure targeted at C++ applications. Moreover,
Vandewoude and Berbers [116] reiterate many of the observation made by Hicks
during their analysis of dynamic updating techniques applicable for component-
based embedded devices. We reintroduce the list of techniques by incorporating
the more recent dynamic techniques and reintroducing those techniques seen as
beneficial to mobile devices and systems. Table 2.1 gives this (brief) up-to-date
reference for dynamic system techniques.

The table details the dynamic capabilities of each technique and gives an example
of its use. It represents only a small, unique section of the entire research area
and already we can see the large extent of the research. Other similar techniques
not analysed in Table 2.1 due to lack of suitable qualities, are available from the
literature (see [49, 50, 69]). With a few exceptions, the techniques, listed in Table
2.1, are generally Java and C++ based. This is a direct result of two factors:

1. these languages are the most widely adopted and have received the most
attention by researchers, and

2. other languages contain dynamic constructs in their basic state, for exam-
ple, Smalltalk [41].

1Hicks and Nettles [51] (to be published) have provided an update of Hick’s dynamic updat-
ing technique. During their discussions in this paper, they include the further analysis of other
dynamic updating techniques. However, as they point out, the new analysis provides no further
details on current updating techniques, neither does it note any new techniques for updating
systems. They simply refer readers to Hick’s PhD thesis [49].
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DVM [69] The Dynamic Virtual Machine (DVM) is a specifically designed Java Virtual
machine targeted with additional VM instruction support runtime alteration.
The alteration of the code is type safe and the mechanism uses multiple versions.

JDrums [2, 29, 1] JDrums is a virtual machine targeted at adding maintainability to Java sys-
tems. It is essentially an altered version of the Virtual machine much like DVM;
however, unlike DVM it uses standard Java byte code.

Dynamic C++
classes [53]

This is the development of a type safe dynamic technique for C++ systems.
Tested through the use of ftp and web servers, it has demonstrated the potential
of dynamic code updates across a network.

Dynamic Update
[49]

Dynamic Update is designed to provide C++ updatable applications with a
balance between safety and flexibility.

Erlang [4] Erlang is a dynamic logic language specifically designed with networking, con-
currency and dynamic code techniques. Although not widely adopted Erlang,
or the concepts discovered from Erlang, demonstrates that a language can be
designed as dynamically updatable.

Tcl/Tk[85, 112] Tcl is a scripting language which includes constructs for dynamic code updates.
Tcl is widely used for both simple and complex applications.

DUCS [12] DUCS is a Dynamically Updatable Component based System. It is designed to
allow distributed systems to atomically substitute new components.

Javaassist [24, 23] Javaassit is an aspect based Java development tool that incorporates some dy-
namic updating through reflection packages within the aspects. As Javaassist’s
primary development aim is Aspect Oriented programming the scope of dynamic
changes are limited and used for aspect manipulative purposes.

JMangler [61] JMangler is a framework for generic interception and transformation of Java
programs at load-time [60]. Although JMangler only alters the code at load
time this does give a choice as to which classes an application should load and
implement, giving it attributes similar to Runtime alteration.

Colomba [11] The Context-and-Location-based Middleware for Binding Adaptation (Colomba)
is a Meta-Data based Framework for the manipulation of system semantics
throughout a network. Colomba is designed to allow a degree of code sharing
and transportation based on Meta details for each class.

JavaSymphony
[39]

JavaSymphony allows a programmer to dynamically alter a distributed architec-
ture.

JOIE [25] The Java Object Instrumentation Environment (JOIE) is a framework for safe
Java byte code transformation.

J2SE 1.4 HotSpot
JVM [103]

The HotSpot Virtual Machine extended Sun’s Java Virtual machine with the
Java Platform Debugger Architecture (JPDA), using the Java Virtual Machine
Debug Interface (JVMDI) [103]. It is designed for debugging systems and code
tracking. The attributes of the JPDA have now been incorporated into the JDK
5.0 as a standard.

Java 5.0 Standard
Edition [108]

The newest version of Sun’s Java Virtual Machine has incorporated the concept
of runtime code manipulation. With the use of the java.lang.Instrument package
Java applications are able to define section class loading techniques that enable
a previously specified jar file to manipulate class bytes.

Table 2.1: Dynamic Updating Techniques and Applications
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2.3 Dynamic Techniques for Mobile Systems

Research in the area of dynamic systems in mobile devices is noticeably less ex-
tensive than in standard systems. We are specifically interested in the techniques
most applicable, or foreseeably applicable, to mobile devices and, therefore, we
will concentrate on further analysis of the techniques listed in Table 2.1. We will
firstly analyse the specific needs, nature and restrictions of a mobile system. This
will be used to derive a set of requirements that will in turn be used in a further
analysis of dynamic updating techniques to determine their use for mobile sys-
tems. However, not all techniques need necessarily be currently available within
mobile devices, only perceivably.

2.3.1 Limited Capability Systems

We consider a limited device to be one which has restricted capabilities as a result
of a specific attribute. A limited system has restricted capabilities as a result of
its execution on a limited device. We feel these systems will benefit significantly
with the use of our framework; particularly those which are mobile.

Sensor devices are extremely limited devices. In general, they have limited battery
power, processing capabilities and provide very little data storage room. How-
ever, they are physically small, and are getting smaller, and therefore can provide
valuable data from difficult locations. Current advancements in the technology
are providing sensor and embedded devices with communication and cooperation
techniques. However, the communication is limited to a single wireless protocol.
Although, this provides sensor devices with small-scale interoperability capabili-
ties, the analysis of current developments may provide valuable insight into their
future

Although sensor devices are generally developed for a specific use, more general
devices are beginning to emerge. These devices consist of adaptable mechanisms
to allow them to be applied to several different tasks. CSIRO’s Fleck device is one
such device [28]. A Fleck device consists of a low power CPU with additional flash
memory, a radio transceiver and built in temperature and charge current sensors.
It also allows for sensor boards to be added on to further device capabilities. In
order for a software application to execute on a limited device, operating systems
(OS) with small footprints are required; for example, Fleck devices run TinyOS
[52]. The operating system used by such a device may be written specifically or
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may be a standard OS adaptable to several devices; the TinyOS is an example
of the latter.

Some small operating systems offer advanced flexibility. Of interest are those
which are capable of dynamic code updating. The Contiki OS is one such ex-
ample [35]. Contiki is a lightweight operating system for networked sensor de-
vices. It includes support for dynamic loading and the replacement of programs
and services. Contiki’s ability to dynamically update its code is advanced for a
lightweight OS. For example, although it is theoretically possible to change ap-
plication code in the TinyOS, using the nesC language [40], it would be restricted
to full system alterations. This limitation is a result of nesC’s expectation that
code is compiled and distributed as a complete program [40]. Contiki on the other
hand is capable of reloading code at runtime. Moreover, this code may also be
downloaded at runtime from another remote system. Although Contiki systems
are able to communicate in such a scenario, they are limited to those using the
Contiki OS, which itself is limited to few devices [35]. Interestingly, the Contiki
developers note in their reasoning for Contiki that:

the possibility to dynamically load individual programs leads to a very
flexible architecture [35];

our work extends this concept by dynamically reloading program segments.

2.3.2 Analysis of Mobile Systems

By mobile systems we mean physical mobile systems not agent systems. Mobile
systems present several limitations and unique attributes due solely to the na-
ture of the devices. Mihailescu [75] gives a detailed analysis of mobile systems,
therefore, we only need to consider those aspects of a mobile system that deter-
mine the limitations or present new capabilities and requirements for dynamic
manipulation. The most obvious limitations of a mobile system are those which
are directly due to their size, power, I/O peripherals and connectivity. These are
shown in Table 2.2.

These attributes can be used to analyse the applicability of each dynamic up-
dating technique to mobile systems. The main attributes that determine if a
dynamic updating technique is applicable to mobile systems are:

• Size: The technique must be as small as possible in memory footprint.
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Size Memory use, CPU processing requirements, video
needs, speed requirements.

Power Peripheral use, speed, memory and CPU use.
I/O Peripherals User input needs, display needs, connectivity and in-

teroperability requirements, networking.

Table 2.2: Mobile Device Limitations and Associated System Requirements

• Memory Use and Speed: The technique should use as little as possible
of the device’s time and resources.

• Flexibility and Portability: The technique should be as flexible and
portable amongst as many devices as possible.

• Connectivity: The most advantageous techniques will make use of the
extended connectivity offered by Mobile Systems.

The ability to be compatible with the above four attributes makes a dynamic
updating technique appropriate for use in mobile systems. The next section will
investigate other feasible dynamic techniques in respect to this statement.

2.3.3 Appropriateness of Dynamic Techniques for Mobile
Systems

As previously mentioned most dynamic updating techniques are designed for spe-
cific reasons (see Section 2.2). JDrums [2, 29, 1], for example, was designed to
understand the implications of dynamic alterations of an object-oriented pro-
gram using the Java Virtual Machine (JVM) as its test case. As JDrums was
not designed with mobile systems in mind it contains many aspects which make
it unusable in such devices. Most detrimental to techniques such as JDrums is
that it is a modified JVM. This is fine for standard personal computers, however,
mobile devices are made using specific hardware and operate using specifically
designed operating systems (OS), they, therefore, require their own specialised
JVM. Consequently, most other modified versions of virtual machines are in-
compatible with the JVMs of many mobile devices. Therefore, this technique is
generally not suitable for mobile systems.

The exception is when modifications are applied with a mobile device in mind.
However, our research has yet to find such a case. Nevertheless, it is possible,
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and probable, that, in the future, some of the techniques we have discussed will
be deployable on mobile devices. Responding to such a probability, the following
analysis provides an indication of the likelihood of each techniques distribution
within future mobile devices.

A measure of the appropriateness of each of the techniques given in Table 2.1,
is now presented in Table 2.3. This Table indicates that some techniques are
significantly more appropriate for mobile devices than others. In particular, we
see that techniques of dynamic alteration using Virtual Machines, specifically the
Java Virtual Machine, provide greater flexibility. This point, in a similar fashion
to the questions raised by Vandewoude et al. [116] in respect to embedded sys-
tems, raises a new, important question:

Is a targeted language more appropriate for mobile systems than a specific dy-
namic technique?

To address this, we will split the techniques into several language groups according
to the levels of dynamic updating complexity developed in Section 2.2. These
groups are:

1. Languages which Include Dynamic Updates Capabilities.

2. Languages where Inclusion of Dynamic Updates is Possible.

3. Languages where Inclusion of Dynamic Updates is Difficult.

Furthermore, as discussed earlier, it is likely that Java will be the most appro-
priate language. Therefore, we will present a more extensive analysis of Java in
the Difficult Inclusion analysis, Sections 2.6, 2.7 & 2.8.

2.4 Languages which Include Dynamic Update

Capabilities

Some languages inherently allow applications to dynamically update their run-
time execution. Prolog, a logical programming language, is an example of such
a language. The extensibility of Prolog allows developers to use internal com-
mands and techniques to assert and retract code (multiple ways in which the same
code section can change) [8, 73], through the use of the specialised commands:
retract and assert. Such commands allow the dynamic alteration of Prolog
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Technique Current Situation Future Deployment

DVM Allows for runtime updating. Some hard
coded updating methods are required to
be included.

As a JVM implementation the DVM pro-
vides the possibility of designing an imple-
mentation specifically for mobile devices.

JDrums Development is progressive with this JVM
and has seen the arrival of JPatch [46]
which uses the JPDA structure [99].

The progressing developments of JDrums
are positive for its future use within mobile
devices.

Dynamic
C++ classes

Advanced updating is allowed with this
implementation. However, applications
that use this technique must be pro-
grammed with updating in mind.

This technique is only deployable within
specialised devices that it have been de-
signed for. This lack of interoperability
deems it unlikely to be deployed on mo-
bile devices.

Dynamic Up-
dating

This technique has been shown to work us-
ing web based triggered updates. It is a
safe mechanism for C++ updates. How-
ever, it is constrained by its need for hard
coded updating knowledge.

For much the same reasons as Dynamic
C++ classes, it is unlikely that Dynamic
Updates will be distributed among mobile
devices.

Erlang Erlang has been specifically designed to
be dynamically updatable from the begin-
ning.

Erlang was developed for the telecommu-
nications industry and has been applied
within several mobile devices.

Tcl/Tk Tcl is a scripting language which includes
constructs for dynamic code updates.

Tcl has been used on mobile devices for the
purpose of supporting other languages.

DUCS DUCS is a component based updatable
framework. Its work has progressed in
term of its distributed applicability.

As a component based architecture the ex-
tension to mobile devices is limited, how-
ever, its distributed concepts are an inter-
esting feature.

Javaassist Java assist allows byte code manipulation
during runtime. Code can be written, us-
ing the javaassit package, that changes the
class structure.

If the required packages are available
within a mobile device with enough pro-
cessing power this technique is deployable.

JMangler JMangler is a manipulation technique that
alters code during runtime. Run time sup-
port is minimal.

Due to its updating nature this technique
is not seen as applicable to mobile devices.

Colomba Columba is more than an updating tech-
nique it is a distributed means of achiev-
ing updates. Moreover it is designed for
mobile devices.

Although, Colomba is implemented on mo-
bile devices, it is not flexible in terms of
extension. Its structure is designed for a
particular purpose and would not be ap-
plicable for any separate techniques.

JavaSymphony The dynamic JavaSymphony uses dis-
tributed architecture to alter runtime be-
havour of distributed nodes. As such, it
has been included as part of a distributed
performance measurement tool.

This technique works for cooperating mul-
tiple systems, such as Grid systems, how-
ever, within an individual mobile system
the package is not effective.

J2SE 1.4
HotSpot
JVM

The usefulness of this technique is seen in
it inclusion in many debugging systems, in-
cluding JDrums new extension JPatch.

The JPDA structure requires a large
amount of system resources, however, as
mobile devices grow this implementation
would be possible to be included.

Java 5.0 Stan-
dard Edition

Allows for restricted class updates during
runtime, via direct JNI modification code.

We view this technique as the most likely
to be deployed on a wide range of mobile
devices.

Table 2.3: The Appropriateness of Dynamic Techniques in Mobile Systems
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code. However, due to their high flexibility, they are deemed to be ‘dangerous’.
Despite this, several other conventions that are necessary for our work, such as
discovery (see Chapter 4 and 5), are non existent.

Languages such as Erlang [4], Tcl/Tk [112] and Smalltalk [41] give strong and
specific means of dynamic alteration. Other languages, such as Prolog, Perl, Shell
and Lisp, also include, or have been extended to include, dynamic redefinition ca-
pabilities. Although, many of these are limited in functionality, of specific interest
are Erlang and Tcl/Tk. Both these languages inherently support several features
required for our framework, such as advanced dynamic updating capabilities and
distributed communication. They will now be discussed individually.

2.4.1 Erlang

Erlang is a concurrent programming language designed for distributed soft real-
time applications [4]. Erlang was initially deployed by Ericsson as a language
to develop large-scale telecommunication systems which required soft real-time
applications [4, 38]. The language has since been released as open source and is
now used in the development of a number of applications; for example Cellpoint
use Erlang applications within mobile services [21].

Erlang is required to provide continuous operation to applications. To achieve
this, runtime system upgrades are necessary. This particular attribute gives Er-
lang its fault-tolerant attribute. To allow for runtime upgrades Erlang can hold
duplicate instances of a single function module. This is possible as Erlang’s lan-
guage constructs limit the visibility of functions to associated modules. This
modular encapsulation is such that a function can only be accessed from outside
the module if it is exported to do so. A function can then be called using the
module and function names.

Understanding the modularity of the language provides an insight into how it
achieves dynamic updating. However, to completely understand Erlang’s dy-
namic updating capabilities knowledge of its use of process identification is re-
quired. A process is a key concept in Erlang and therefore all processes are iden-
tifiable. A process is referred to by its process identifier. Process identification
is used to establish Erlang’s easy-use distributed methodologies. For example,
any external resource, such as files and network connections, are identified as
a process by Erlang; although understandably, such processes do have certain
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restrictions [18]. In combination, Erlang’s process identification and modularity
allow it to trace all processes executing any specified module.

Therefore, the redirection of new process calls to a specified module can be
achieved without interfering in current execution. This is achieved by using mul-
tiple versions of the module. An Erlang system is able to redirect all new module
calls to a new module version while all currently executing processes continue
using the old version. The entire old module can be replaced once all the old
executing processes are finalised. Moreover, Erlang provides the necessary prim-
itives to gain access to the execution status of each module version [48] allowing
the programmer to fine-tune system updating.

Another interesting aspect of Erlang, in respect to our framework, is its dis-
tributed functionality. Erlang was developed to run in a distributed environment
[3]. The internal structure of Erlang provides simple techniques for distributed
communication allowing a system to treat a remote process as another node of
processing. Furthermore, all distributed mechanisms work synchronically with
both the concurrent and dynamic updating capabilities. Therefore, it is plausible
that Erlang may be applied to generate dynamic updates via distributed triggers
and code sharing. As indicated in Chapter 1 this attribute is a requirement of
our work.

However, although the development of Erlang has far surpassed its initial ex-
pectations, and although it is a useful tool for mobile applications [70], some
methodologies which we require for our work, such as service discovery, are not
currently available.

2.4.2 Tcl/Tk

Tcl/Tk is the combination of the Tool Command Language (Tcl) and the Tk GUI
development tool kit. Tcl is an interpreted scripting language which is powerful
and flexible enough for the development of both desktop applications and net-
working systems [112]. Much like Erlang, Tcl is another example of a language
with inherent dynamic update capabilities. The language provides constructs for
renaming and deleting procedures, and for loading new procedures via specified
files. These aspects of the language are in built. Furthermore, they are designed
to give a programmer control over the internals of Tcl [85]. By using a combina-
tion of these language constructs it may be possible to achieve triggered dynamic
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updating. Ousterhout [85] details how an application can rename a procedure,
for example change the procedure name myProc to myProcOld, and add a new
version of the old procedure, in our example a new myProc version. In addition,
it would be a simple step to provide the new procedure details using a file which
could be possibly downloaded from a remote server. This degree of flexibility
could prove useful for our framework.

Of further interest in this language is the Safe-Tcl sub-language [16, 86]. Safe-Tcl
is a restricted language. It has limited file access and it restricts the execution
of many system commands. Safe-Tcl code is executed using two separate in-
terpreters, a safe interpreter and a master interpreter. The safe interpreter will
execute all code from an untrusted source, however, if the code is known to have
come from a trusted source it may be given extended capabilities by executing
it using the master interpreter. Both interpreters are used together via an alias
mechanism from the safe interpreter to the master. Therefore, code from an
application can be interpreted using either interpreter depending on execution
circumstances; the selection process is generally automated [85]. This essentially
provides the language with an adaptable sandbox style execution for downloaded
code.

We can determine that Tcl/Tk, or specifically Safe-Tcl, provides the safe dis-
tributed technologies which are required for our framework, and we also note
that Tcl has clean, easy integration with other programming languages, espe-
cially Java; for example, Jacl [113] . However, Tcl/Tk does not currently support
interoperability among systems and does not provide high level mechanisms such
as service discovery.

2.5 Languages where Inclusion of Dynamic Up-

dates is Possible

C++ programming has several flexible features that aid development of dynamic
uploading. Pointers and dynamic memory techniques facilitate the creation and
removal of objects and variables and allow programmers to manipulate differ-
ent versions of a single object [50, 53]. Common issues associated with dynamic
updating are present in C++. These include problems such as type safety and
agility [50]. Irrespective of this, C++ has been used for such purposes. For exam-
ple, Hicks [50, 49] used C++ to construct a dynamically changeable web server,

20



Chapter 2: Dynamic Systems

FlashEd. FlashEd allows users to upload pre-tested code (compiled on a testing
station) over the web to dynamically alter its execution. This illustrates that, as
a result of its constructs, C++, and C to an extent, can achieve dynamic alter-
ation of a system if implemented correctly, and in a safe manner. Even though
mobile device usage of C++ is broad, it remains platform dependent due to its
compilation to specific machine code. The system dependent nature of the lan-
guages C and C++ restricts its implementation for a mobile environment. This
is a result of the instruction sets.

C# is immensely similar to Java. It has little access to pointers and consequently
is less flexible than C++ or C for dynamic update manipulation. Nevertheless,
its access to memory spaces and objects is achieved more freely than in Java [74].
Moreover, as C# runs within a Virtual Machine it provides a level of system
interoperability. Despite this, currently its inclusion within mobile devices is
limited. However, as C# is a relatively new language there is little research in
the area of runtime dynamic alteration. Moreover, as a result of its large footprint
size [74], its deployment within mobile devices is rare and likely to remain so for
some time.

2.6 Languages where Inclusion of Dynamic Up-

dates is Difficult

As previously mentioned we focus this analysis specifically on the Java language.
Java has a unique ability to provide uniformity to multiple operating systems
[65], a feature that is useful for mobile devices. This uniformity is possible as
Java is an interpreted (VM) based language that allows programs to (theoreti-
cally) be written once for use on multiple systems2. As an interpreted language,
the internal construction of any JVM must hold to a particular set of rules and
guidelines. If a VM can correctly execute Java byte code instructions written to
a particular level (the level is defined by Java configuration) then that VM can be
specified as a conforming JVM, or at the least a restricted JVM. For example, the
KVM [98] and CDLC HotSpot [107] JVMs are both designed for limited resource
devices. However, a conforming JVM may also provide extra capabilities via ad-
ditional byte instructions. As a result, although the VM conforms to standard

2In practice applications are at times written for specific operating systems due to con-
straints, system format and use of the Java Native Interface [63].
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JVM requirements, its extended capabilities deem it a non-standard JVM.

Section 2.2 indicated, in Table 2.1, that there are non-standard JVM implementa-
tions that are specifically designed for dynamic system alterations. It is necessary
to analyse their techniques closely to determine if Java is appropriate for our pur-
poses. Initially, we find that these techniques manipulate Java in different ways:
some involve redesigning the lookup and linking of Java class files, while others
allow direct inclusion of system code. For example, the use of specialised class
loaders within the JVM’s class loading structure provides a system with the nec-
essary flexibility to access the JVM’s internal workings [65]. As a result, Java
class files may be found and loaded in any specific manner.

To understand how Java dynamic updating techniques work, a simple under-
standing of a JVM’s structure and code manipulation is necessary.

2.6.1 The Purpose of Java

Java was developed with ideals of portability and mobility in mind, and, although
its growth has led it into more diverse areas these main objectives still remain
[65]. The JVM is designed in accordance to its original specifications. The most
important is that the JVM dynamically loads Java classes during runtime and
develops class instance objects as required using class loaders. This allows the
JVM to load a class once and reuse (referencing) the same class object each time
an instance of it is created [65]. For class loading to occur, the specifics of the
Java class file must be adhered to.

2.6.2 The Java Class File

As the Java class file format is specific, it includes mechanisms that allow it to
be identified as a Java class file, the most direct is the magic number [65]. The
magic number is a secret hash that corresponds to the compiler, target virtual
machine and class. Further details on the constructs of the actual class bytes, for
our purposes, are not important. What is important is how the class bytes are
verified and how they are used during runtime.
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2.6.3 Class Verification and Distribution

A JVM uses three steps to further ensure that the class bytes gathered from a
class file are correct and pass certain verification tests. These three steps remain
consistent, irrespective of how the class bytes are obtained, and are designed to
check class details before it is initialised as a Class object within the JVM. If any
of these steps fails, or if the magic number does not a match, a class will not be
loaded by the JVM. The steps are:

• Class Loading : Loading is the process of finding the binary representation
of a class or interface. Each Java class that is to be used by an application
will have its byte code representation loaded by the JVM when required.
This representation is then used to create a Class instance and generate all
object instances of that class [65]. Moreover, a class is never initialised and
distributed throughout the JVM’s Runtime Constant Pool [65] until linking
time.

• Class Linking : Linking is the process of taking a class or interface and
combining it into the runtime state of the JVM so that it is ready for
execution [65]. The time it takes to link a class is equal to the time it takes
for the JVM to create a corresponding Class object.

• Class Initialisation: Initialisation consists of the execution of a class or
interface. Class Initialisation is initiated via the <clint> method [65].

After the final steps of initialisation are completed, a reference to a class instance
(object) is achieved by using a pointer to an object handler that is itself a pair
of pointers. Of the pointers within the object handler, one points to the section
of a table that contains the methods of the object, which itself includes a pointer
to the representing Class object for correct method execution. The other pointer
indicates the actual memory space that is allocated from the VM’s heap for the
object data details [65]. This pointer structure is shown in Figure 2.1. (Further
information on the Java class bytes and details of the JVM’s structure are outside
the scope for this work and is available in Lindholm and Yellin [65].).

2.6.4 Java Class loading

Java’s dynamic class loading mechanism builds the data structure representation
of classes in the JVM. It determines the way the JVM manages class objects and
their instances. We have already mentioned that class loaders control all loading
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Figure 2.1: Class Instance Referencing in the JVM

of class files for an application. And, although loading, linking and initialisation
is controlled by the JVM, the class loader(s) always initialise the loading sequence
[65]. Java’s class loading structure includes the java.lang.ClassLoader class.
Subclasses of this can be used by developers to dictate the manner in which the
class files are found and loaded. New class loaders are loaded by existing class
loaders which results in a tree structure for all class loaders. For example, Java
applets manipulate the class loading structure to safely download files from a web
location.

Java’s class loading is optimally designed for safe dynamic linking and loading
of class files. Furthermore, whilst it allows files to be located, loaded, and linked
during runtime the class loader also aids in the segregation and distribution of
byte code within the JVM [65]. The dynamic nature of Java’s class loading and
its close connection with byte code allows designers to use specialised class loaders
to manipulate class files in unspecified ways. Moreover, the inheritance structure
that is produced when classes are loaded into a JVM allows a class loader to
define the entire loading aspects of an application. In this respect, as classes are
loaded via a class loader, any subsequent classes, or classes instantiated via an
already loaded class, will be loaded via the same class loader [65]. In practice
this allows program designers to load an initial class (generally a start up class
containing the main() method or init() method) through a specialised class
loader resulting in the entire system being loaded through this class loader (a
subclass of the java.lang.ClassLoader class). Furthermore, if the same system
then loads another different class loader, say for a specific application section, the
additional class loader will also be loaded through the first class loader. And, if,
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for any reason, the second class loader then fails to find a class, all class processing
will be delegated to its parent class loader (the first class loader) and so forth
[65].

2.7 Dynamic Updating Techniques for Java

We previously mentioned that the ability to update Java application is difficult
due to the restrictions of the JVM. Its inability to unload and reload classes
results from the bootstrap class loader disallowing such unloading for type safety
reasons. Officially the Java Specification book states that:

A class or interface may only be unloaded if and only if its class loader
is unreachable. The bootstrap class loader is always reachable; as a
result, system classes may never be unloaded [65].

From this statement, it would be reasonable to assume that a class can never
be unloaded from the runtime state of a JVM. However, Liang and Bracha [63]
identify a type safety problem with the JVM’s class loading which is related to
dynamic class updating. They describe how the combination of class loaders
and the Java Core Reflection API, or a predefined interface, can be used to
manipulate classes. The technique exploits the fact that a class loader enables the
unloading of classes that are no longer referenced, or indirectly referenced, by any
existing instance objects [117]. This is a result of the name space identification
of classes by the JVM using the full class name, including packages, and the
identifier of its class loader; for example, java.lang.String loaded by class
loader classLoaderA would be identified as classLoaderA.java.lang.String.
Therefore, if the java.lang.String is the sole loaded class of classLoaderA, and
if there are no instances of String remaining, then the String Class object will be
unloaded. Liang and Bracha’s technique loads a class using a predefined interface
and never directly refers to the class within the application. An example of their
technique is shown in Figure 2.2.

The example code uses an Interface when referring to a class that is targeted for
alteration (Service). It also uses a temporary class loader (MyClassLoader) to
load the class. Therefore, according to our analysis in Section 2.6.4, two versions
of a class can exist at the same time; for example, tmpClassLoaderA.MyClass
and tmpClassLoaderB.MyClass. And, as each of these class versions can be re-
ferred to via the predefined interface (ServiceInterface), a new version of the
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class Server{

private ServiceInterface service;

public void updateService(String location) {

MyClassLoader cl = new MyClassLoader(location);

Class c = cl.loadClass(‘‘Service’’);

service = (ServiceInterface) c.newInstance();

}

public void processRequest(...)

service.run(...);

}

}

Figure 2.2: Exploiting Java’s Class Loading

class can be defined. However, the new version of the class will only be used
for new instances. The old class version instances will remain the same until
their use is complete. Once all old class instances are complete and unloaded via
garbage collection, the old class version will have no more objects and it too will
be unloaded.

Although it is possible to write a complete application referring to classes via in-
terfaces and use a single class loader for each class, it is not a standard procedure.
Theoretically however, the technique does indicate that it is possible to unload a
class. However, the interface restrictions also indicate that the technique, up to
the point to which Liang and Bracha had researched, will not allow a complete
reload of the current instances of the class.

The authors of JMangler [61] indicate that the addition of classes and interfaces,
and the alteration of signatures and code structure are aims of their research.
These aims coincide with those generally set out for runtime alteration tech-
niques. However, all that has been achieved thus far in this area is outside the
scope of runtime dynamic updating.

Even though dynamically unloading and overloading class details and their re-
lated instances is extremely limited in standard JVMs, and the JVM’s controlled
structure seemingly inhibits the deletion or replacement of any running classes,
there is research being accomplished to change this. Malabarba, Pandey, Gragg,
Barr and Barnes [69] identified three techniques that are generally used to allow
dynamic updates within Java:

1. Virtual Machine Extension.
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2. Library Based Solution.

3. Language Creation.

A further technique for Java class alteration was introduced by Bellavista, Cor-
radi, Montanari and Stefanelli [11]. They successfully established a middleware
based means of altering the structure of Java class bytes during runtime. This
makes a total of four vastly different techniques. We will analyse each of the four
techniques and indicate any perceived benefits or implications of their implemen-
tation within mobile systems, current or futuristic.

2.7.1 Virtual Machine Extension

Virtual machine extension is the creation of a new non-standard JVM that is
based on a targeted JVM specification. It is designed to adhere to all aspects
of the originating JVM and incorporate the ability to dynamically update an
executing program [29, 69]. This technique is the most common of the four tech-
niques. It creates a fast and unique solution which is always open to further
development. Examples of such JVM’s include, DVM [69] and JDrums [29]. All
subsequent JVM’s using this technique must be able to execute all Java programs
(some are dependent on a specific API). However, as many ubiquitous and perva-
sive systems rely on interoperability, the simpler it is for a system to be adapted
to a device the more likely it can be adopted. This technique requires each device
to contain the extended JVM, therefore, limiting the scope of applicability.

As previously mentioned, JDrums [2] was initially developed for the simple dy-
namic alterations of Java programs however, the scope of the project has now
grown. JDrums is an altered JVM and associated toolkit which enables the up-
dating of Java class objects and their referencing instances. This was originally
designed for mobile devices, however, there were problems due to memory man-
agement. This change in direction of the scope is a result of its use of both an
OLD class object and a NEW class object for each overwritten class. This char-
acteristic means it must maintain storage space for two classes of the same type.
Further to this is the use of a toolkit which increased the footprint of JDrums.
JDrums may not currently be the best fit solution for dynamic mobile systems,
however, it does detail the implications and problems that exist when dynami-
cally updating Java applications in this manner. Moreover, continuing research
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is leading to a more efficient means of dynamic updating using JDrums3.

Other extensions of the JVM have led to the development of design specific virtual
machines. Such JVMs enable new operations to take place or to be achieved
more easily. Many virtual machines have been for developed limited devices, for
example Lego Mindstorms [118, 114]. However, unfortunately, these JVM’s limit
the user and it is impossible to execute a standard Java application.

2.7.2 Library Based Solution

Library packages may be designed to give a program the ability to update its
structure. As long as their constructs are followed, the library classes give a
program the ability to dynamically update its structure. In many cases, speci-
fied conditions must be satisfied in order for application updating compatibility.
This technique, unfortunately, leaves the programmer to determine what sections
should, or should not, be flexible in terms of dynamic updating. Library based
solutions give similar computational results to that of a JVM execution. How-
ever, there is an associated loss of speed and a likely need for program statement
inclusion that may be seen as a deterrent by prospective developers.

One major benefit of this technique is that it is more flexible than an extended
JVM as it does not require changes to the JVM. Logically, this seems to be
the best and most flexible solution for mobile systems. However, a need for
programmers to design specifically around the library, or at least include it within
their system, is a hindrance to applications [1] in that a system is only dynamically
updatable if it is designed to be. Furthermore, program inclusions may require
interface implementation, specific code inclusion or technique alteration, all of
which could limit the functionality and flexibility of a system.

2.7.3 Creation of a New Language

Although this technique does not allow an established language to become dy-
namically adaptable, a new language is generally based on an existing language
and mostly adheres to its specifications, thus giving it the same programming
‘feel’, ‘look’ and ‘use’ [4]. The creation of a new language is seen to be the best

3JDrums has recently been extended into JPatch, however, as at the time of this publication
there are no publications of subsequent findings, only web details available at the home page
[46].

28



Chapter 2: Dynamic Systems

solution for dynamic updating. From initial stages, anew language would adhere
to all necessary requirements and constructs. It would incorporate all aspects of
type safety, concurrency, communication and speed that are otherwise seen as
potentially dangerous for dynamic altering systems.

However, the creation of a new language results in just that, a new language.
Very few devices would be capable of implementation; it is likely that little work
would be achieved within it and consequently, various bugs will be present. This
is not to say that eventually a new language could not be widely adopted, as in
the case of Java, yet, for the purpose of a mobile system the use of an established
language is advantageous. This is due to existing reliability, multiple platform
compliance, population conformance and resource availability.

2.7.4 Middleware Application

Middleware application is a technique which takes a separation of concerns ap-
proach to system dynamic updating. By separating a target system from its dy-
namic updating framework, a middleware framework is able to change a system’s
execution via introspection or manipulation [71]. In terms of system updating,
the middleware framework is the most recent. This technique is particularly im-
portant as it incorporates the flexibility of a library technique, yet, much like
some altered JVMs [69], it excludes the need to program code in a specific man-
ner or use a specific API. This technique may rely on other techniques [11]. For
example, a middleware may be able to dynamically update any system by using
a specific library solution or targeting a specific VM.

Middleware architecture implementations are commonly used within distributed
systems [79]. They have led to the development of several separate techniques
that extend distributed interaction through the implementation of an application
[11]. Bellavista, Corradi, Montanari and Stefanelli [11] approach dynamic ma-
nipulation from a distributed systems point of view. We discuss their technique
in full later in Section 4.4. This particular method of updating combined with
distributed activities will be closely analysed throughout this entire thesis as it
is the core of the framework.
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2.8 Standardised Dynamic Virtual Machine

Developments in standard JVMs, in particular from version 1.2 to 1.4 to 1.5,
reflect the progress in dynamic updating. Most notable, for this research, are
advancements in Java’s standard API [108].

Since Sun sets the standard for Java, they are able to evolve the JVM standard,
unlike non-standard JVMs such as DVM [69] and JDrums [29]. This means that
any new standard JVM creates a flexible and interoperable means of dynamic
updating. Moreover, if combined with a middleware solution, as described in
Section 2.7.4, it is possible that any system implementing on any device could
be manipulated via the middleware to become dynamically updatable. This is a
situation which previously had not been achievable.

There are two main developments in standardised dynamic updating of virtual
machines: the Java 1.4 HotSpot Virtual Machine and the Java 5.0 (1.5) Standard
Virtual. We will now briefly discuss these developments as they are discussed in
detail in Sections 10 and 9, respectively.

2.8.1 J2SE HotSpot Virtual Machine

The Java HotSpot Virtual Machine, available in J2SE version 1.2.2 to 1.4, al-
lows dynamic class manipulation. This feature is provided through an extension
to the Java Platform Debugger Architecture (JPDA), or more specifically, the
Java Virtual Machine Debug Interface (JVMDI) available through the Java De-
bug Wire Protocol (JDWP) and the Java Debug Interface (JDI) [103]. It is
these sections of the JVM which give it the ability to substitute class code in an
executing application. The JPDA structure is designed to use a monitoring sec-
tion (front-end) and an implementing section (back-end). The front-end is able
to monitor the back-end as a JVM object executing a target application. This
allows the front-end to watch and control the progression of the targeted program.

We provide a technical analysis of this JVM is Section 10.2.

30



Chapter 2: Dynamic Systems

2.8.2 J2SE 5.0 Instrumentation

Even more recently, the J2SE 5.0 [6, 108, 104] has incorporated dynamic class up-
dating as a functional feature of the standard JVM [5]. This is achieved through
the inclusion of a new system package java.lang.instrument. When included,
this package gives a program deeper capabilities than standard introspection.
The java.lang.instrumentation enables applications to access their own class
structure and alter running class procedures. The technique is aimed to aid in
the creation of debugging and analysis tools [104]. However, we maintain that it
can be used for other purposes of system manipulation. This would be the most
desirable technique if it becomes available in small machines.

We provide a technical analysis of this JVM is Section 9.2.

2.9 Dynamic Code in Mobile Systems

As previously explored, limited memory devices, such as PDA’s, mobile phones,
embedded systems, and wearable devices, represent a technology inhibited by
their platform specific software and hardware restrictions. However these are
trade-offs for portability. Mobile devices contain software that is designed for
use on its hardware platform and operating system. For example, many devices
contain a JVM that has been specifically designed. The individualistic nature
of these system designs limit the methods that may be used for dynamic system
alteration.

Throughout this chapter, we have continually indicated that there are limitations
in the application of dynamic updates in mobile systems. However, for now, let
us pretend that this is not the case. This will allow us to analyse the extra ca-
pabilities dynamic procedures can give to mobile systems.

The usefulness of dynamic updating within a mobile system differs from that
in a standard system. Firstly, as with standard computing and server systems,
software updates, bug fixes, and maintenance are still beneficial to a mobile sys-
tem. However, the unique nature of a mobile system allows the reason for change
to be different. The novel applications that can be built using this capability
are explored in Section 6.6. The differences in the use of dynamic updating for
mobile systems are due to one specific quality: portability, which itself leads to
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cooperation and interoperability. Furthermore, all systems on mobile devices can
be split into two categories: those that interact by any means with other systems
within the network, for example browser, email client application, and those that
are device bounded and have no, or very little, interaction with the network at
all, for example, word processing, calculator and a calendar.

Recently, system behaviour alteration has been used to change the state of mobile
devices. The use of these techniques in current systems is such that some degree
of consideration must be applied when coding an updating system [11]. This
shows that there is a need for a dynamic updating technique that has no coding
requirements and that makes use of the attributes of mobile systems. This tech-
nique would be designed to exploit many of the aspects of mobile devices that we
have previously discussed, and, in particular, target their portability and network
diversity. The design of the technique is such that most systems can utilise its
capabilities for their own benefit. We explore this in Chapter 4.

2.10 Problems Associated with Dynamic Alter-

ation

We differentiate between dynamic alteration and dynamic updating. The prob-
lems with dynamic alteration are: updating continuous looping sections of code,
changing class instance to a Global instance, and those associated directly with
the updating of an existing class object, for example, alteration of private vari-
ables, reverse referencing from within a new object from a new class (passing in
a current object), and changing all same type objects into a single global object
[2]. We do not attempt to solve the problems associates with dynamic alteration
we are concerned with aspects of dynamic updating.

During our discussions in this chapter, we have noted the problems which are seen
to be detrimental to mobile systems, however, we have not taken into account
the problems associated directly to a system updating technique implementation.
We have determined that it will be such complications that will determine the use
of any framework implementation. Therefore, what we do assess in this thesis
is the use and reason for dynamic updating. This is covered in the respective
implementation chapters (Chapters 10 and 9) and evaluation (Chapter 11).
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2.11 Summary

This section has provided a background on dynamic updating and the many dif-
ferent techniques used to allow this. We have targeted our discussion to dynamic
techniques within mobile systems. It is also suggested that although not all tech-
niques are appropriate for mobile systems many are, and others are likely to be
in the future. It can, therefore, be argued that our framework can specify that a
system must have the ability to dynamically update, however, it is not necessary
for the framework to specifically designate the method used to achieve the up-
date. We will present two different mechanisms for use in two of our framework
implementations, (see Chapters 9 and 10).

The chapter also suggests that for mobile applications the restriction of any
dynamic technique is best limited to a single language. We have also argued
that the most appropriate language for mobile systems is Java and, therefore,
the framework will specify that all target applications will be written in that
language. In the next chapter we explore the benefits of discovering the code
remotely and analyse it in terms of dynamic updating.
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Chapter 3

Distributed Cooperation

3.1 Introduction

In the previous chapter we analysed the dynamic updating capabilities of differ-
ent languages and assessed their use within mobile systems. The focus of this
chapter is the analysis of techniques for distributed system cooperation. We anal-
yse the techniques in order to establish a means of remote code loading for our
framework. However, to take into account the requirements of mobile systems
we must initially detail the communication capabilities of mobile devices. This
information is provided to demonstrate how mobile systems communicate and
to introduce the physical aspects that all distributed cooperation techniques are
built on. Following this, we analyse the different discovery techniques used for
remote activities, such as client server and peer-to-peer applications. In addition,
we differentiate between their use as standard networked environments and ad-
vanced system cooperation.

The chapter will detail the different capabilities each distributed technique con-
tributes to system cooperation paying particularly attention to their use within
mobile systems. A primary aim of this chapter is to analyse and determine an
appropriate distributed technique for the cooperation and remote code transfer
aspects of our framework. This will provide the basis for community communi-
cation and information transfer1.

1Further reasons for the choice of the distributed technique for DUPE will be presented in
the chapters on framework design (Chapter 5) and community cooperation design (Chapter 6).
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3.2 Advancements in Mobile Technologies

There are many, new technology advancements that are changing the capabilities
of mobile systems. Among these, the most influential lie in the areas of wireless
communication speed and range, personal identification, and device connectivity
[83]. Speedy communication allows system interaction to be smooth, and any
extension to network transmission range gives users larger areas to work (play)
within. The impact of these advancements can be seen in the progress of mobile
phones. For example, originally these devices were used solely for telecommuni-
cation, however, with advancements in the related technologies, they now provide
capabilities such as video phone (3G network) and image transfer.

Transmission speed, however, is not the only factor involved in creating greater
functionality in mobile and wireless devices. Other factors include: storage tech-
niques, minute processing capabilities and communication technologies. These
factors are generally device specific. However, in all devices, greater processing,
storage capacity and the downsizing of components would facilitate several new
areas of technology that would govern the evolution of wireless networks.

3.2.1 Related Advancements in System Cooperation

Within wireless networks and mobile environments, announcements, postings and
acknowledgments of available services allow devices to discover the capabilities of
any network services they have encountered. Current discovery protocols, such
as Jini [79, 36, 56, 45, 47] and UPnP [72], along with developing techniques,
such as PdP [20] and JXTA [26, 17], allow for the dynamic discovery of services
within a network. Some discovery techniques provide communication between
ad-hoc devices within the network while others allow interconnection through
use of Peer-to-Peer (P2P) [17] ideals. However, there will always remain various
restrictions within portable technologies. These restrictions are a result of the
lack of storage space and processing speed that continue to exist.

Along with these changes in the mobile industry there have also been several
advancements in discovery technologies. The main aim of these advancements
is to allow mobile systems to cooperate in a similar nature to standard systems.
For example, JMatos [20, 87] is designed to allow restricted mobile devices to
utilise Jini networks. There are different versions of JMatos, some developed
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for Java applications and others for C++ applications; however, they all give
complete use of Jini techniques to their respective systems by placing a compact
lookup service on a mobile device. Developments like this are enabling mobile
devices to interact with other systems and, therefore, it is no longer necessary
to consider them separately. In terms of system connection and discovery, the
new distributed developments provide an interoperability among differing types
of systems that previously did not exist.

3.2.2 Mobile Device Connectivity

Some ubiquitous devices, embedded systems and other portable devices inter-
act and alter states without need or want of user interaction; for example, au-
tonomous applications for decentralised communication [88]. Moreover, there are
other embedded applications which alter their execution in accordance with their
environment [125]. In these cases, the devices are connected to others so that they
can all work together according to changing conditions. Whilst this type of inter-
action is a fully automated and independent pervasive system, there is, however,
no true relationship between the embedded systems and their environment; there
is just controlled reaction to a predicted situation. Some portable and embedded
systems can change code according to different situations [64]. This capability
provides them with real time data, however, their limited communication and
restricted hardware limit their flexibility and overall network cooperation. For
example, car systems consisting of multiple embedded devices, each controlling
a separate section, are unable to cooperate during unpredicted circumstances
[77, 125]. This is a result of each embedded device working separately or with a
few selected devices.

3.3 Wireless Communication Techniques

Network communication is achieved using an interactive link: wire, radio waves,
power lines and infra-red, to name a few. Within wireless networks, Bluetooth
[14, 13] and the 802.11 family [55] have emerged as the most useful and adaptable.
In assessing the advantages of any communication technique, the cost, range,
bandwidth reliability, speed and adaptability are all major factors. Distributed
system cooperation requires reliable, accessible and standardised communication.
Consequently, these are also measured as essential requirements for our frame-
works communication standard. Only Bluetooth and the 802.11 provide these
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requirements within mobile devices. We will now present an overview of each of
these communication standards.

3.3.1 802.11 family

The 802.11 family, sometimes known as WiFi, has become the common standard
communication for wireless networks [55]. According to the 802.11 implementa-
tion, there are different degrees of connection range and speed applied within a
device. The 802.11 family definitions, according to [55], are shown in Table 3.1.

Standard Transmission
Rate

Communication
Band

Communication
Method*

802.11 1 or 2 Mbps 2.4 GHz FHSS* or DSSS**
802.11a 54 Mbps (max) 5 GHz OFDM***
802.11b 11 Mbps (max) 2.4 GHz DSSS
802.11g 20+ Mbps 54

Mbps (max)
2.4 GHz OFDM or DSSS

802.11i# Added security to 802.11 standard
802.11e# 802.11a,b with QoS

*FHSS - frequency hopping spread spectrum **DSSS - direct sequence spread spectrum

***OFDM - orthogonal frequency division multiplexing. #was scheduled for approval in 2004

Table 3.1: 802.11 Standards

The specification of the 802.11 communication standard is continually evolving.
However, as Table 3.1 indicates, each version, other than 802.11a, uses the 2.4
GHz communication band providing backwards compatibility. This level of com-
patibility is important as it allows devices that are only capable of using the
earlier versions to communicate. Of course, unless upgrades are available, each
device will only ever communicate at the rate applicable to the standard to which
their hardware is designed.

802.11 standards which use 2.4 GHz maintain a communication range of ap-
proximately 100 metres although range is highly susceptible to interference from
obstructing objects, such as walls. This standard is commonly used when creat-
ing a wireless local area network (WLAN), as it has similar attributes to a wired
network, yet, allows wireless devices to connect to the network. However, the
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speed is slower in comparison to wired networks. WiFi was initially expensive to
produce and the hardware was large in size compared to other communication
techniques. As a result, its merger into mobile devices, particularly into smaller
sized devices such as mobile phones, was slow. However, it is now becoming a
standard component of mobile devices, such as iPaq PDAs.

3.3.2 Bluetooth

Bluetooth was initially developed for short range communication. It is able to
wirelessly connect devices within a spherical range of approximately 10 metres,
on the 2.4GHz ISM band. However, much like 802.11, it is susceptible to inter-
ference [14].

In a Bluetooth network all devices are identified via the use of a Bluetooth Identi-
fication and Stack [13]. The Bluetooth Stack holds, and periodically updates, ref-
erences to Bluetooth enabled devices, using their Bluetooth identification. Blue-
tooth communication devices are generally cheap and relatively small. Their low
price and small size have extended their availability, and as a result, the standard
has seen enormous growth in the mobile communications market.

Bluetooth is seen as the best communication option for short-range areas. More-
over, its small size has seen it included in many mobile devices. However, Blue-
tooth is generally not used for large scale networks. As a result, its use for
advanced distributed activities is not prevalent throughout the field. This is not
to say that it can not be used for such purposes, only that, in general, other
communication techniques prove more simple and more convenient to adopt.

3.3.3 Emerging Standards

Wireless communication standards are continually evolving. New standards emerge
continually and probably will do so for the foreseeable future. A current example
of an emerging standard is the 802.15.4 (ZigBee) communication technique [126].
ZigBee uses much less power than both Bluetooth and 802.11b, however it has
a slower transfer rate of 250 Kbps [126]. Like Zigbee, a new standard will offer
specific capabilities not provided by other techniques. However, not all develop-
ments are of technological capabilities. Standardisation and device compliance
is also driving the technologies, particularly as more mobile devices are devel-
oped. This trend indicates that communication standards are not exempt from
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the current interoperability and compatibility evolution which is seeing the devel-
opment of programming languages such as those within the .Net framework [74].
Within communication standards, ZigBee is an example of a major development;
for example its many different contributing parties include competing technology
companies such as Phillips, Motorola and Siemens [126].

3.4 Distributed Cooperation

Distributed techniques make use of remote files, objects or procedures to connect
systems. This means that it is important that the means of invocation between
systems is well established and clearly defined. Similarly, a clearly defined dis-
tribution discovery technique is equally important to our framework. However,
before we can determine what systems can achieve using distributed cooperation,
we will assess the best means of cooperation. Therefore, we will now look at some
standard techniques and determine their benefits. This analysis will also clarify
the difference between remote discovery and remote invocation. Table 3.2 shows
the areas of these techniques that we will be analysing.

No Discovery
Mechanism

Discovery
Mechanism

Local
Invocation

Invoke a class locally
using details from a

known location.

Invoke a class locally
using details from an
unknown discovered

location.
(required capability)

Remote
Invocation

Invoke a class remotely
using details from a

known location.

Invoke a class remotely
using details from an
unknown discovered

location.

Table 3.2: Techniques of Distribution and Invocation
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The table also indicates the area of discovery and invocation that we require for
our framework: a discovery based mechanism that allows local invocation. The
aim of our discussions is to determine if a current technique exists that provides
this functionality. We will analyse each of the appropriate techniques according
to the categories established in Table 3.2.

3.4.1 No Discovery, Local Invocation

This level of distributed cooperation allows local invocation of an object that is
based on the details from a known remote server. Included in this category are
methodologies such as Java Applets and Web Start.

This technique does not use any discovery for code transfer, instead it accesses
remote code via a URL reference2. The use of URL addresses gives implementa-
tions of this technique the ability to load program code that does not exist on the
client’s system. And, unlike object based distributed techniques, they are able
to load class files without a representing remote object.

Although this technique does not use remote objects, it must still generate in-
stances of classes that are not available on a client system. Java Applets, for
example, use a specific class loader (sun.applet.AppletClassLoader) to direct
clients back to a server (usually the originating HTTP server of the applet) to
gather code. This is illustrated in Figure 3.1.

The client’s class loader will download class files as required to create local ob-
jects based on the remote byte code [97]. This allows clients to run applications
that do not exist on their systems.

A side benefit of this approach is that it gives vendors control over versioning,
security specifications, personalised attributes and upgrades. However, there is a
lack of dynamism and anonymity which may disadvantage the client as it must
know the correct server location to locate class files [102].

2Some service discovery techniques, such as Jini, make use of URL references to gather
required information from a specified code base, however, this is used in combination with
remote services. Therefore, we do not classify them as web based discovery techniques.
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Figure 3.1: Description of a Web Class Loading - Applets

Much like Applets, Java’s Web Start gives a client the ability to generate a
program via web based links [109]. However, Web Start can run with or without
a web browser and is able to generate applications from scratch [109]. Web Start
was initially created to remove the confusion that surrounds the installation of
multiple applications and their version control. Although, it is similar to Applets
it is unique, and there are some distinct differences:

• Web Start handles much larger applications and is not specifically confined
to the browser.

• Web Start uses caching to allow the user to run applications when not
connected to a network.

• Web Start, when compared to Applets, gives a greater flexibility to its
programs allowing for greater control and creativity.

• Web Start needs to be installed on a user’s machine before it can be used.

Yet, as with Applets, Web Start still has the restriction of a URL. Although it
can cache previously run applications [109], initially, it still must know exactly
where to get the application from.

Unfortunately, this technique provides no anonymity to services. Consequently,
a remote class cannot be located without the knowledge of its location; a major
requirement of our framework.
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3.4.2 No Discovery, Remote Invocation

This level of distributed cooperation allows the remote invocation of an object
that is based on a reference on a known remote server. The main technique in
this category is Web Servers.

Web Services allow system to cooperate through the use of the already estab-
lished HTTP internet protocol. A web service is the implementation of server
applications that can be invoked using SOAP calls over HTTP. The W3C have
standardised Web Services and the syntactic elements of SOAP [122]. They define
Web Services as:

A Web service is a software system identified by a URI, whose pub-
lic interfaces and bindings are defined and described using XML. Its
definition can be discovered by other software systems. These systems
may then interact with the Web Service in a manner prescribed by its
definition, using XML based messages conveyed by Internet protocols.

As this definition indicates, the description of Web Services is achieved using a
XML based description language, specifically the Web Services Description Lan-
guage (WSDL). The WSDL provides a similar service to that of CORBA’s IDL
and RMI’s Remote Interface (discussed in the next section) in that it provides
the necessary details to describe what the remote service looks like. Although,
by using a discovery technique such as UDDI, web services are able to provide a
discovery mechanism, in general, they are not applied. This is a consequence of
the complexity, poor searching capabilities and lack of complete standardisation
of their application to web services [80]. This being the case, for our purposes, we
consider web services to have no discovery capabilities. Therefore, the location
of the service must be known.

Notably, Web Services have, at times, been seen as the most appropriate dis-
tributed technique for common systems. This view derives from the fact that
its underlying infrastructure, HTTP, already exists. However, Web Services also
rely heavily on their XML descriptions, have a need for server address knowledge,
are at times unreliable, and are represented as a stateless service. Again, this
technique does not incorporate the necessary attributes for our framework.
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3.4.3 Discovery, Remote Invocation

This level of distributed cooperation provides a local reference to an existing re-
mote service. Included in this category are the techniques: Corba, RMI and Jini.

The discovery of remote objects throughout a network has become a standard
technique for distributed interaction. CORBA [82], RMI [105], Web Services [122]
and .NET [74] are the most widely used forms of object based system coopera-
tion. Remote objects provide a link between a client and a server allowing them
to interact through remote invocation. An example of distributed cooperation
using remote objects is provided in Figure 3.2.

Figure 3.2: Description of Remote Objects

CORBA and RMI make use of similar remote object manipulation to achieve
distributed communication3. They use naming based discovery of remote objects
to link a client to a server. CORBA uses an IDL description class to identify pro-
cedures that may be called remotely [82], and RMI uses a common subinterface of
the java.rmi.Remote interface for the same purpose [105]. CORBA is generally
seen as a difficult technique. However, its complex structure is an overhead of its
ability to connect multi-language services. RMI on the other hand is simpler to
understand but confined to Java systems.

Fortunately, as both RMI and CORBA use object definitions to connect a service
and client, techniques that allow them to work together have been developed. For
example, RMI over IIOP allows the creation of Java RMI services that are un-
derstood by Java CORBA clients [100].

3Although, CORBA clients supply the proxy for the server [82], and RMI servers supply the
proxy for the client [105], in essence, they achieve a similar task.
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Jini [36, 56, 79] is a similar concept to distributed remote objects. However, it
uses remote objects as conceptually defined remote services where each object
represents an available service or proxy to a service. Jini is an object orien-
tated method of discovering services and objects within a network that aims to
eliminate the need for direct knowledge the physical or logical address of any
server/service [79]. Therefore, it enables the discovery of services without any
knowledge of their whereabouts or the location of the associated registry. This
is known as anonymous service discovery or location independence.

Jini’s anonymous dynamic discovery of services is extremely useful within ad-hoc
connected networks such as mobile wireless networks. For example, it enables a
client to discover a system with a randomly assigned address; without the need for
systems to know the actual address of a service. Furthermore, as mobile systems
are likely to be used within several different networks, Jini’s discovery flexibility
allows them to access all the networks resources using a single application.

The discovery of services and objects, no matter what technique is involved, re-
quires matching a request to an available remote object or service. This matching
process may be achieved using direct matching, such as names and namespaces
(CORBA, RMI), or, it may be achieved more flexibly through descriptions of
system requirements (JINI). As mentioned, wireless networks have a need for a
flexible cooperation. Consequently, the same remains for any discovery technique
that is applied.

Discovery techniques that find services using name matching techniques provide
searching systems with a perfect match, similar to the matching of a google search
string. However, without the knowledge of the exact lookup name a service can
not be located. Therefore, although this technique is exact, inherently it gives
no leeway for simple searching errors or a lack of knowledge of the service being
searched for. This restriction is most limiting if a client has a need to search for
a ‘type of’ service where the exact service details are unknown.

The discovery of services based on a list of needs provides flexible lookup [36].
This type of discovery technique allows a searching client to find a ‘type of’ service
by specifying required methods. Jini is one distributed technique which makes
use of this type of service discovery. Therefore, a wireless network is likely to
benefit from Jini discovery techniques as it is able to handle ad-hoc movements.
To further aid the use of location and physical specific services, such as a toaster,

44



Chapter 3: Distributed Cooperation

printer or coffee machine, details of their physical location can be included as
part of their searching information.

Although, most existing distributed techniques seem to be beneficial to all system
cooperation, they are constrained by design. For example, within Jini and RMI,
an object, class or proxy service that is advertised for remote access must im-
plement the java.rmi.Remote or java.io.Serializable interfaces somewhere
within its structure [79]. Furthermore, a subinterface of this interface must be
known to both the server and the client [79]. Only then is a remote object able
to be discovered and manipulated by each client.

Remote objects and services are ideal for remotely invoking sections of a server
that exist for the use of clients, and the sharing of information. Moreover, by
specifying the methods of a remote object, using its common interface, the pro-
cessing that may be performed by a client can be established.

However, there are several areas that these techniques do not cover. For example,
a client may wish to run a process using a remote object yet wants the computa-
tion to be performed without the knowledge of a server. This case represents a
situation where the client creates an object that has no reference to an object on
the remote server, even though the associated byte code is discovered from that
server.

We can see why this limitation is present by looking into the way remote ob-
jects and services are transferred. Several distributed systems use marshalling
for object transfer, and consequently, there is no passing of byte code unless it is
associated with a remote object. In this case, when a client discovers a remote
object it is in the form of a marshalled object. This then points the client to
a server for further required details [36]. This technique is, therefore, unable to
create an instance of a class without having a reference to at least one existing
object on the server side.

The ability for remote object applications to create instances of remotely based
classes is a result of stub files. However, the creation of the remote class in-
stance is still achieved using a class loader [65]. In the case of RMI and Jini
the java.rmi.RMIClassloader is used. The RMIClassloader is designed to load
classes using the codebase URL reference that is stored within a discovered mar-
shalled object. It uses this information to find the class bytes of a remote object
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and generate a class instance. The class instance is then merged with the se-
rialised object information from within the marshalled object to establish the
remote object representation [36, 97].

Other than limiting the applications to a single language, this limitation of mar-
shalled objects and discovery services is generally not noted as a disadvantage.
For example, Jini applications are usually designed to make use of this unique
distributed flexibility and discovery technique, but not to manipulate the load-
ing of remote class files. Unfortunately, for our framework, this technique does
not provide the necessary local invocation. However, as we will now discuss, in
combination with proxy techniques, this technique may allow the discovery and
local invocation of objects.

3.4.4 Discovery, Local Invocation

This level of distributed cooperation allows a local service to be invoked on dis-
covered remote information. This is the level of cooperation we require for our
framework. Unfortunately, no direct technologies exist for this level of coopera-
tion. Therefore, we now suggest the base component of a solution and extend on
this in Section 3.6.

The previous section discussed discovering remote object and invoking remote
objects. However, what we have not yet discussed is the concept of using remote
objects as proxy services. A proxy service is a remote object that allows a client
access to server side processing. When using a proxy service, application process-
ing can be achieved on the server and results can be passed back to the client.
To achieve this, a proxy service object must implement a specified common inter-
face(s), and once again that interface must be known to both server and client.
Figure 3.3 shows how remote objects can be used as a proxy to a server.

We believe that using this type of structure may allow the discovery of class
details that can be locally invoked. Before we detail how this can be achieved,
we will continue our analysis of distributed methodologies.
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Figure 3.3: Description of a Proxy Service using Remote Objects

3.5 Mobile Agents

Prior to describing our solution to distributed cooperation using discovery mech-
anisms for locally invoked objects we wish to discuss Mobile Agents as a unique
technique of distributed cooperation. We discuss these to ensure that our analysis
is comprehensive. Mobile Agents were developed to enable mobile applications
to gather details from a remote server by dispatching an entire program; for ex-
ample, Java Mobile Agents using Aglets [62]. When using Mobile Agents, both
the client device and the server device must provide room for agents to be exe-
cuted: the mobile agent environment. Therefore, most mobile agent applications
are written for interpreted languages such as Java byte code. However, this does
provide benefits such as heterogeneity and the use of sandbox security [22].

In terms of distributed cooperation, mobile agents are designed to give a new
capability to a system. They aim to provide the system with the ability to execute
applications on other devices that they may not be able to process themselves.
This gives mobile agents two unique abilities not present in other distributed
methodologies:

1. A client is able to run an application (mobile agent) on a server, or other
client (in a peer-to-peer situation) and obtain all responses.

2. A client is able to distribute a mobile agent and then leave the network.
They can do this as a result of their ability to return to the network later
to gather the responses from their agent’s execution.

This level of code exchange is of particular interest for our work as it enables
mobile devices to run applications that they could not previously run. However,
in terms of distributed cooperation, the technique possesses no real advantages
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in comparison to other distributed techniques [22]. Moreover, our studies de-
termined that, as a result of the disconnected distributed connectivity that the
technique uses, a server, at times, may lose valuable processing as a result of
agent use (although the agent environment setup should disallow such a situa-
tion). For example, Figure 3.4 depicts an agent being implemented within the
servers agent environment.

Figure 3.4: Mobile Agent Execution

During this implementation, the client is processing very few, if any, tasks that
are related to the agent. This means that the server is doing all the client’s work.
In a resource sharing network, if an advertiser of a resource essentially processes
all accessing clients, then the advantages of resource use may seem to be out-
weighed by the negative aspects of network interaction. Consequently, the server
(advertising system) may choose not to participate.

Although, this is not always seen as a disconcerting attribute, and has actually
been used advantageously in context awareness, for example, REDMAN [9]. We
must still reject its use for community cooperation as it does not provide the
two-way resource access that is required.
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3.6 Remote Anonymous Class Discovery

This chapter has so far discussed the methods that can be used for a program
to be initiated and executed via distributed techniques. There are many stan-
dard uses for distributed techniques, such as client server applications, however,
there are many other more advanced applications of its use. For example, OSGi
[84] systems give devices, mainly home based devices, the opportunity to access
information from within their home network. The connection of systems within
the network may enable them to configure their internal structure via other sys-
tems. The information gathered from the network can then be used to alter
their behaviour. For these changes to occur, details in the form of files or system
attributes must be located in an accessible section of a task based services [84].
Typically, these are: database information, or at times information on context
such as temperature. We pose the question:

What are the benefits if these resources are system byte code components?

We have seen so far, that, remotely accessible services enable systems to gather
information, generate programs, access server data and cooperate throughout
networked environments. However, we have also found that there is no current
technique which allows localised invocation of objects based on discovered infor-
mation. This is imperative as our framework requires a class loading structure
that expands the reach of a JVM beyond that of its host system, yet, does not
restrict itself to knowledge of addresses.

In the previous chapter, we discussed how Java class bytes are normally loaded
into a JVM through the use of a class loader. In this chapter, we discussed
this further indicating that the class loading can be achieved via Java’s standard
bootstrap loader or a specialised loader such as URLClassLoader, AppletClass-
Loader(s) or RMIClassLoader. Many of these specialised class loaders instruct a
program to gather Java class bytes from specified places or in a particular fashion;
for example, we discussed the attributes of the AppletClassLoader. However, our
previous question of whether or not class bytes can be discovered anonymously
via a distributed connectivity, and initialised locally remains unsolved.

To determine which of the system cooperation techniques may answer this ques-
tion, we can categorize them into two distinct types:
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• Direct Remote Access (Web based techniques).

• Indirect Remote Access (Remote Objects and Agents).

We determined that each of these methods is developed for specific reasons and
use: indirect remote access provides a flexible means of finding a service, whereas
direct remote access is designed to enable thin, minimally connected clients. Un-
fortunately, none of these techniques are able to construct an application, or a
section of an application, from class files that the application does not have, nor
knows it will need to discover.

The anonymity essential for our remote class discovery eliminates all direct remote
access techniques as they require direct URL referencing knowledge. Regardless
of this, these techniques remain the only methods that exchange code for direct
implementation of a class. In order to hide this technique directly we suggest
burying them in a local class loader. This class loader will be able to contact a
remote class loader to gather class details and avoid the need for remote objects
combining both discovery and local invocation. This could be achieved by using
the remote proxy service structure we described in Section 3.4.3.

Adding to this, as we indicated in the previous chapter, Java is the most common
language for mobile devices, and therefore, a distributed technique designed for
this language is most appropriate. Therefore, we see the discovery technique Jini
as the best fit for our solution. We will now demonstrate how this technique can
anonymously discover class details, and we will discuss its use in our framework
in Chapter 6.

Figure 3.5 illustrates how a Jini service may be used as a proxy to a remote class
loader. The common interface of the Jini service will determine the degree of
access a distributed system has to other systems. (This will be demonstrated
throughout Chapters 5 and 6.). The interface would provide the service with
access to a procedure which can pass the byte code of a specified class. This
byte code can then be used by the discovering system to invoke a local object
in a similar manner, for example, Applets. The exact implementation of this is
discussed in Chapter 5. At this point, we only wish to describe the concept.
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Figure 3.5: Discovery of Class Details Using Jini Proxy Services

3.7 Summary

This chapter has discussed many different techniques of distributed cooperation.
It suggests that all techniques have one core component in common: they all
allow a client to access information on, or from, a server. For our framework we
used this analysis to determine if there is a specific technique that allows remote
anonymous code sharing. However, our research indicates that no exact method
is specifically designed for code transfer in a sharing manner. We therefore sug-
gested a solution.

We demonstrated that some discovery techniques, such as Jini, provide anony-
mous interaction but directly lack code transferring flexibility, while other dis-
covery techniques allow for code transfer but are not anonymous. However, we
suggest that a class loading structure based on Jini proxy service could be used
as a means of two-way code transfer. How our solution relates to the current
distributed cooperation techniques, as found during our discussion, is shown in
Table 3.3.

In the previous chapter, we concluded that there is such a large range of dynamic
updating techniques designed for Java applications that most systems have the
ability to include one of these techniques if so wished. These two conclusions
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No Discovery
Mechanism

Discovery
Mechanism

Local
Invocation

Java Applets
Web Services

Suggested Solution:
using discovery

techniques, such as
Jini, to create remote
class loader proxies.

Remote
Invocation

Web Services RMI
CORBA

Jini

Table 3.3: Distributed Cooperation Techniques

raise a further question:

What can be achieved when dynamic updatable systems have the ability to transfer
and gather code remotely and anonymously?

This question is directly related to our second question in this chapter (Section
3.6):

What are the benefits if these resources are system byte code components?

The following chapter will discuss these two questions using concepts in localised
dynamic communities and adaptable systems.
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Chapter 4

Dynamic Communities

4.1 Introduction

The focus of this chapter is to analyse the concept of a dynamic community. In
doing so, we will also determine the attributes of the systems acting as com-
munity members. Essentially, the chapter derives from the concatenation of the
analytical conclusions from the previous two chapters concerning the use of dy-
namic updates and distributed cooperation for our work. Consequently, during
this chapter we will return to several previously discussed areas and discuss them
from a different viewpoint and within a different context, examining them from
the perspective of dynamic communities. To aid the understanding of the con-
cepts that arise during our discussion, we include an analysis of other research
areas that are of a similar nature, or that we perceive as applicable.

Any particular definition of a community is difficult to grasp within the full con-
text of system interaction. Therefore, initially, we clearly formalise the meaning
of a community from our point of view.

In sum, this chapter will provide the final conceptual details for the DUPE frame-
work and suggest a technique to achieve dynamic communities and adaptable
systems.
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4.2 Defining a Community

Protocols, such as TCP/IP, describe to systems how to send data, but they do not
define what to send or why it is sent. These aspects of transfer are achieved by
communication protocols. However, our research in Chapter 3 into such technolo-
gies, for example distribution techniques, indicates that system communication
is never straightforward.

We demonstrated Chapter 3, that a system can download information, or make
use of remote objects, to establish a meaningful relationship. The most prevalent
of these techniques is a client-server relationship. This relationship allows coop-
eration by enabling systems to share information, objects and services across net-
works. To do this some protocol is required. Consequently, the normal function
of a service is constrained by this protocol, and as a result, all such communi-
cation is restricted in type and content. This can be seen as controlled system
interaction. We want to examine a broader concept of system cooperation; one
in which components have individual roles and the result of any communication
is incidental of these roles. To achieve this, we suggest community cooperation.

A community is a flexible interaction between different entities; each entity is a
member of the community. The present definition of a community provided in
wikipedia.com [121] is:

A community is a loosely coupled collection of individuals where the
interaction is informal and spontaneous rather than procedurally for-
malized, an end in itself rather than goal-oriented.

Within a community, the reactions and interactions of each member are a result
of what information, or capabilities they may acquire from the other members.
For example, in a home community the fridge may be able to synchronize viewing
stations with the TV as a result of details found in a new DVD player. In this
case, the TV asks the DVD player what it can do. The DVD player replies that,
among other things, it can synchronize with the TV. The fridge likes that, so
asks how it is done and then applies the technique. Some other more complex
examples may include: the learning capabilities of artificial intelligence (AI) tech-
niques, or the reaction capabilities of spawned agents. In each of these examples,
the members grow, or learn, concurrently with the combined knowledge of the
community. It has been demonstrated that the dynamic cooperation established
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among these techniques can be used for knowledge collaboration [123].

We have explained in Chapter 3 that, within a client server situation, the com-
munication is precise and meaningful; for example, a statement such as: ‘Run
this method on your object’, or, a question such as: ‘Do you contain this partic-
ular service?’ This type of communication protocol directs the response to be
specifically tailored. In the previous statement, the response to the statement
will always be the designated return type, and the only answer to the question
must be a boolean response. We conceive that the communication within a com-
munity is an open ended query(s) that does not require a precise response. Some
examples include: ‘What did you just do?’, or, ‘What do you know how to do?’
This type of communication has unknown response ramifications. For example, a
response may be an array of object types, or, as is the case of the second question
example, the return of a specific object type that can consist of information with
unknown implications. Using this protocol, a community establishes communi-
cation based on random and unknown responses, rather than a set of common
questions and answers.

The previous discussion of community broaches the topic of ‘community’. The
research area of the behaviour of emergent systems has defined ‘environment’ in
terms similar to what we are considering for a community [34]. However, their
definition is complex, as its intelligence is based on its encompassing sub-systems;
the primary task of these systems involves interaction, whereas, in our concept,
a community is separated from the tasks of the system. Even so, it seems that,
within both definitions, communication involves uncontrolled system interaction,
or more specifically, uncontrolled system reaction. This unique attribute has yet
to be harnessed as a system cooperation technique without associating it to the
task of the systems.

We see that it is therefore evident that a community is a gathering within a
network where the controlling entities are the community members and not the
underlying network protocols.

4.2.1 Identifying Dynamic Communities

The view of a community that we have now established comprises two factors:
unknown members and unknown messages and responses. However, this is only
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a theoretical view of a community and in reality only the use of Artificial Intel-
ligence (AI) techniques, such as those applied within multi-agent systems [119],
would allow systems to interact with no previous knowledge about the other
members. In fact, without the knowledge of what another member may look
like, there is an extremely low possibility of a system joining a community at all.
Therefore, a system which wants to become a community member must have two
things in common with the other members of the community:

• the system must be able to be seen as a community member, or possible
community member and

• the system must be able to understand the community language of com-
munication.

This is not to say that the communication within a community needs to be strin-
gent and highly specified. It indicates only that a member must be able to talk
via the same means as the other members in order to successfully communicate
within the community; the communication content remains variable. We be-
lieve that it is this communication flexibility that will enable dynamic systems
to establish a specialised type of community. As each system in the community
represents a community member, and, as each member has equal opportunities
within the community, each member has the ability to affect the overall status of
the community. Moreover, systems are free to move in and out of the communi-
ties, adapting as they go.

This level of a community produces a dynamic community.

Furthermore, as each member is a dynamic system (one able to alter its runtime
state, as discussed in Chapter 2), the state of a community will continue to alter
as a result of any change within a member. This is a direct result of dynamic
members altering behavior based on other members. Considering the continual
movements of mobile systems through communities, such as that illustrated in a
park analogy that we are about to introduce (see Figure 4.1), community states
will alter continually as new members enter and old members leave or change
state. Together with the findings from Chapters 2 and 3 this provokes the ques-
tion:

Will a gathering of systems, all with the capability of sharing structure (code)
resources and dynamically altering their runtime structure, generate, in a section
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of a network, a dynamic community?

To respond to this question, an understanding of a community’s communication
language and the attributes of its members is required. To begin, we develop a
detailed view of a dynamic community.

4.2.2 Painting a Picture of a Dynamic Community

To further understand the concept of dynamic communities we now provide an
analogy as shown in Figure 4.1.

Figure 4.1: Community within a Recreational Park

In this analogy the physical area of the park is the community structure and the
people within the park are the community members. There are several impor-
tant patterns of behaviour that arise from the member interactions within this
situation:

• the members are in no way confined to the community;

• each members has the ability to alter their behaviour based on the state of
the community and the state of other members. For example, if it begins
to rain a member is able to find shelter under a tree, or, if a member
encounters another unknown member they are able to choose whether or
not to communicate. In both of these cases the reaction is a new behaviour.
That is, before entering the park the member did not know to run to a tree
if it rained, this knowledge and the resultant action was obtained from
community interaction;
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• other than in circumstances where an individuals behaviour threatens an-
other member, a community in no way restricts the behaviour of members;

• members are able to communicate and interact freely within the community;

• there is no requirement for the community to monitor, limit or define com-
munication requirements. That is, the people may communicate in any
manner they please within the park. Of course, whether or not the be-
haviour is irresponsible is assessed on an individual basis.

The behaviour patterns present in this scenario are features that can be identi-
fied in all communities. Such communities are established in true life and created
through a gathering of people. The communication within the community can be
seen as the process which enables members to inform and learn from each other
during conversation(s). Moreover, as the community develops over time, each
member will understand more of the information that exists within the entire
community. This learning process is a communal learning process. A communal
learning process is one in which each member continues to either add information
to the community, and/or learn information from the community. Such is the
interaction within dynamic communities that the shared information is not neces-
sarily just facts. The information may be behavioural (how to achieve something:
shelter under a tree), community specific (how the community achieves a task:
directions within the park) or even an update on past knowledge or behaviour
(how it now works: how to use the new equipment within the park).

It may be derived from this analogy that the communication language within a
community is relatively unspecified. However, for a dynamic community consist-
ing of computational applications using tightly prescribed protocols, this situation
is never likely to occur. Therefore, we will now detail how an appropriate level
of community communication can be established.

4.3 Dynamic Community Communication

The nature of community communication lies within open ended query, and this
comprises a combination of common communication protocols. Subsequently, any
definition of the level of interaction required for dynamic communities to exist
will form from a simplistic communication base and build to a non-complex sub-
section of a complex communication protocol. That is, without the underlying
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structure of a simple protocol, and the discovery capabilities of a complex dis-
tributed technique, dynamic community communication is difficult to establish.

We have determined that, community communication requires a simple common-
ality protocol for interaction. This is similar to how TCP provides a common
definition to establish a means of data transfer. However, unlike such low level
communication protocols, which only describe how to send information, dynamic
communities must also know how to understand the information. Moreover, irre-
spective of member discovery and community resource usage, the communication
protocol must provide a level of commonality among all members.

If we return to the home example from Section 4.2, we can visualise this level
of communication. Initially, each individual appliance has a specific task; the
fridge keeps food cold and the oven cooks food. There is no communication. The
introduction of a simple communication to this scenario allows the appliances
to communicate, however, there is no meaning to the communication transfer.
Currently, the next step is complex communication; for example client server
protocol. In this case, the appliances share information via task oriented queries;
for example, the fridge will send cooking instructions to the oven when asked.
What is required in a community is a communication that sits in-between sim-
ple and complex. Although, less intricate, it needs to remain descriptive enough
for system cooperation. For example, an oven can be taught by the fridge to
understand complete recipes instead of the fridge continually sending individual
instructions. Therefore, if the home establishes a community, the communication
among appliances will be according to what they wish to achieve.

Interestingly, for system connectivity, this level of communication relies on a com-
plex communication technique, such as distributed cooperation. We identify that
community communication is a new communication level that lies between simple
and complex communication. The communication levels as we have established
are presented in Table 4.1.

The creation of the community communication level is, however, an intricate
task. There must be a level of simplicity combined with a complex overhead
layer. We will now discuss how the complex layer of distributed cooperation can
be combined with a simple single question that induces the response of a usable
code resource, enabling the establishment of community communication.
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Communication
Type

Structure Examples

Simple Transfer No Structure: this level only de-
fines the appropriate manner to
send data

TCP/IP. UDP

Community
Communication

Exploitive Structure: this level
is a general question level. Al-
though the number of questions
is limited, the replies are varied.

(Example
queries) What
can you do?
What do you
know? What do
you eat?

Distributed
Cooperation

Task Structure: this level pro-
vides a structure to be able to
ask specific questions with spe-
cific replies. It is a very tight
structure.

(Example
queries) What
is the time?
Where are we?
Do you like
Pizza?

Table 4.1: Levels of Communication

4.3.1 Generic Communication Response

The specification of community communication states that it does not ascertain a
precise response. However, for system cooperation to be maintained the response
must be understandable by all members within the community. Therefore, the
problem is:

How is it possible to establish community responses when a level of commonality
within the communication must exist for it to be legible?

In answering this question, although the uniformity of the responses required for
community communication is difficult to establish, there are methods that may
allow it to occur. However, before determining the best response we suggest that
a single communication question should be established. We have already sug-
gested questions such as ‘What did you just do?’, or, ‘What do you know how
to do?’ The concern is that there are many different types of communities based
on the types of questions that can be asked. For example, asking ‘What do you
know how to do?’ leads to communities such as typical discovery communities
(for example, Jini) where discovery is followed by task interaction. Instead, we
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ask a different question, leading to a different type of community. Our question is
‘What can you teach me?’ or, ‘What can I borrow?’ This will lead to a particular
type of community. And, we further this to suggest that the answer for system
based communities be in the form of code components. Moreover, in contrast
to the semantic annotations of methods, we deliberately do not identify exactly
what the code will do. For example, the code may achieve a general task but
is created according to its current context. This statement holds true through
the rest of the thesis and we will make reference to it when appropriate. We
will expand on the full details of this type of community in Section 4.5, however,
before we do so we provide general discussions on community members in Section
4.4.

This communication suggestion is indicative of the required aspects of a dynamic
community that we established at the beginning of this chapter. Moreover, as can
be derived from Chapter 2 and 3, it demonstrates that a standard language is the
most suitable means of establishing the system commonality and interoperability
in dynamic communities. For example, a community based on a communication
transferring standardised Java class details, such as the common standard J2SE
1.4, can be utilised by a variety of systems. This includes, mobile systems, server
applications, desktop systems and possibly some embedded systems. Moreover,
this is a system based community and as a result it maintains different charac-
teristics from those found within a human community. One main difference is
understanding knowledge. In a human community learning is a process in itself;
it takes time and practice to know how to do a task. However, as system tasks
are defined by code, knowledge is instantaneous; as soon as a system is given
knowledge it can use it.

This level of system interaction is a technique yet to be explored in the field and
is the principal topic of this thesis.

4.4 Community Members

A simplified version of our established definition of dynamic communities is: dy-
namic communities are a convenient means of dynamic system cooperation at a
particular point in time. More importantly, we can determine that their useful-
ness is dependent on its members. Consequently, we suggest that a productive
community is one where members frequently gain from their interaction. In or-
der for this to occur, each, or most, members must continually change state. We
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use the term system adaptation to identify this change. If members frequently
join and leave, then a community must be extremely flexible in terms of member
handling and control. Furthermore, as the members determine when they enter
or exit, their adaptation capabilities determine the flexibility of the community.
Here again it is evident that members themselves are governing the community.

4.4.1 Mobile Community Members

To extend this discussion, we move our attention to the devices containing the
member systems, as member movements throughout communities are essentially
controlled by the devices in which they are being executed. The movement of
mobile members is likely to be continuous and random, as a result of human
movements; consequently, it is necessary that each system has individual control
over its community entry and exiting reactions. For example, if a member leaves
the community they may, or may not, take away the new information that they
have gathered from the community. Moreover, their departure should have little,
if any, impact on the other members of the community. There are several differ-
ent movements of systems through a community. These are presented in Figure
4.2.

Figure 4.2: Movements of Systems throughout Communities

The movements are the causes of systems’ states change through system adapta-
tion. However, they do not determine how adaptation is achieved. For example,
at times, members may be stopped during communication, or left looking for an-
other system from which to gather resources due to the departure of a community
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member. In such cases, the community as a whole, should continue as normal as
long as some members still exist. In the same sense, the entry of a new member
will have little impact on the community members. The entry of a new member
could in fact be a positive gain for the community. The new member may bring
new information with them that they are willing to contribute to the community.
Here, not only will the current community members gain from the involvement
of the new member, but the community as a whole.

The movements of members define several key factors that facilitate the gen-
eration and stabilisation of dynamic communities. The following is a list of
attributes that each member within any community must be able to carry out
without hindering communication and the cooperation process:

• discover other community members

• access the resources offered by other community members

• be seen as a community member

• offer their resources as part of the community.

With these attributes, members contain all the required qualities that allow them
to establish dynamic community communication. These attributes enable mem-
bers to enter and establish communities, learn from their interaction within the
community, contribute to the community, and exit safely from the community.
These attributes in terms of systems interacting within communities are:

• systems establish, discover and join dynamic communities;

• community communication and information transfer between members, must
induce the adaptation of dynamic systems;

• members can leave a community without interrupting the execution of other
members;

• dynamic systems are capable of generating communities wherever they see
it is necessary or beneficial.

This list of attributes comprises the specifications that each member of a dynamic
community should hold. These attributes are most important for the mobile
members of communities. We apply them to the DUPE framework.
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4.4.2 Movement of System States

A dynamic community should allow systems to move and adapt as they wish.
A community has access to shared resources, such as printers or code libraries.
An entering system can share these resources and also bring in its own resources
to be shared by others. In particular, code can be shared. Furthermore, in any
community there may exist portable devices which a user is likely to continually
carry with them, such as a PDA, mobile phone or laptop. The probability of this
type of a system discovering many different communities is high.

As previously mentioned, to get the most from a community a system should be
able to adapt to the current status of the community. This is achieved by ensur-
ing that as a system encounters a community it is able to access all the available
resources. Furthermore, it is also possible that an entering system will carry into
the community a more apt version of a specific resource; for example a system
upgrade. In such a case, the already current members of the community are likely
to adapt to the system state the new system has brought along. If this occurs, the
entire community state may be altered. Furthermore, the movements of systems
throughout communities may be unpredictable. As a result, over time a mobile
adaptable system might travel through all communities, potentially spreading
common resources.

This is achieved by ensuring that when a system encounters a community the
possibility exists that they will be able to access the same resources that every
other member uses. In turn, members can alter sections of their code that depend
on a commonality among the other systems within the community; for example,
communication protocol files, location specific code or enhanced versions of cur-
rent system code.

This attribute is unique to the mobile members of dynamic communities and is
the basis for the concept of a physical mobile agent, or a gypsy agent, which will
be discussed further in Section 4.4.3.

As some members will maintain the resource state of their past communities
as they move throughout other communities, a single state is likely to spread
through many different communities. Currently, this concept is only used by
viruses and file sharing systems. We have a wider more positive view. To identify
the requirements of systems to become gypsy agents, we will detail some of their
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simple attributes then describe the techniques which enable such attributes to be
present. We will continue our analysis of gypsy agents from a wider perspective
in Chapter 12.

4.4.3 Gypsy Agents

As a result of their direct relationship with human movements, gypsy agents move
in much the same way as a human gypsy. During their travels, gypsies gather
and give information. For example, the human gypsy learns how to achieve tasks
such as cooking particular foods or understanding information communicated in
a previously unknown dialect according to the standards of each community they
encounter. The transfer of structure that gypsy agents achieve is also related to
other human examples including the transfer of trust from friend to friend and
business to business trust transfer relationships.

4.4.4 Standardising Gypsy Agents

To determine how gypsy agents might be established we will now look the nature
of mobile systems. Specifically, we take into consideration the interoperability of
heterogeneous mobile system.

Most mobile devices provide connectivity via technologies such as Bluetooth,
GPRS, WiFi, WAP or some other medium. These communication capabilities,
as we have already discussed in Section 3.3, should, theoretically, enhance device
usability and interconnectivity. However, we have continually pointed out that
the interoperability of systems is flawed in that it restricts the degree of system
interaction allowed. For example, mobile phones are simply able to communi-
cate with each other via telecommunication, however to exchange information,
or play a multi-player game, there is either a specific need (as a generalisation)
for all devices to be developed by the same manufacturer (in many cases the same
model). This restriction in interoperability is a direct contradiction to the needs
of dynamic communities.

Fortunately, this flaw has not gone completely unnoticed by some developers.
Techniques aimed at providing device flexibility, or countering a lack thereof, have
been supported by manufactures and software developers. They are generally
achieved using three main techniques:
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• Standardised Operating System

• Standardised Programming Environment

• Common Communication Protocol

We will discuss each of these in detail in the following sections.

4.4.5 Standardised Operating System

Operating systems, such as LinuxOS, VxWorks, QNX, MSDOS and Symbian are
designed for embedded systems, and accordingly, have specific characteristics.
Symbian [111], a standardised limited operating system (OS), is able to be im-
plemented as the OS for several mobile devices, including mobile phones, PDAs
and PDA-phone devices. Symbian’s communication and interoperability tech-
niques adhere to standardised formats, and therefore, the installation of Symbian
as the operating system of a device is beneficial. Symbian allows for connection
between separate devices, including those from different manufactures, including
different models by the simplification of the transfer of information, voice and
data.

Currently, Symbian is installed within a number of devices (see the Symbian
home web page [111] for a full list). This list is growing, and once it is applied
to more devices, mobile interconnectivity may be simplified. However, due to
the competitive and lucrative nature of the embedded OS industry, a single OS
implementation is unlikely, as is any significant co-operation between existing OS
designs.

Other techniques of interoperability and adaptation have been established. For
example, many operating systems achieve updates trigged at startup. Microsoft
and Linux operating system upgrades require hard-coded addresses of update
hosts. It is not in their nature to allow a discovery based mechanism. Further-
more, Version control techniques for file management, such as RCS [115] and
SCCS [91], represent a dynamic control mechanism. Although none are specific
to automated evolution of a system, they do encompass the ability to main-
tain versions of a component. Mobile device upgrades represent most closely
the changes that can occur with a mobile device. For example, a firmware up-
grade to a mobile phone can enable it to achieve faster computations, yet still
below all restrictions set by the hardware. However, adaptation techniques for
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both operating systems and version control are specific methodologies and are
not representative of the attributes required for dynamic systems, therefore, we
will not provide an extensive analysis.

4.4.6 Standardised Programming Environment

A common communication language will establish system standardisation. Most
commonly this is achieved through the use of a standardised Virtual Machine
(VM), such as the JVM. The Java programming environment standardises com-
munication by equipping devices with a common programming and communica-
tion platform. Although, there are several differing versions of the Java spec-
ification (as can be defined by Virtual Machines and corresponding APIs) the
underlying goal still remains the same: commonality and adaptability [43, 65].
We have already established in Chapter 2, that Java’s machine independence
gives it platform independence. This independence is necessary for the dynamic
community. This can be seen through the deployment of distributed systems
running over multiple platforms, for example a Jini application [79].

We have already discussed the interoperable aspects of the Java language in both
Chapter 2 and 3, therefore, we will not extend this discussion further.

4.4.7 Common Communication Protocol

Other means of communication standardisation include the creation of a com-
munication protocol such as the XML Meta Data [11]. Common protocols are
used as communication standards to produce a separation of concerns approach
to the system and the communication of a mobile application. However, a nec-
essary requirement is that device-side code be implemented through whatever
means possible. Many different languages are able to understand particular com-
munication standards, and are therefore standardised. In these cases, program
semantics are not precisely detailed and the communication details any informa-
tion for the systems to interpret. This allows information to be transported from
device to device; however, it does not specify exactly how it should be handled.
Specific formats may incorporate specific programming techniques, as is the case
with [11] XML format. However, there are no specifications to say that we cannot
find the XML data and interpret it in a separate manner.
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An example of such an implementation was given by Bellavista, Corradial, Mon-
tanari and Stefanelli [11] who created standardisation through middleware and
a clearly defined Meta-Data (XML), termed Columbia. Flexible in its approach,
Columbia is otherwise restricted by its own methodology and use of context
variables. Concerned with security and plausible reasons for dynamic change, a
Columbia enabled system must detail a specification for update, which in turn,
represents a need for programmer interaction. The restriction shown by Columbia
is similar to that of context aware systems in that they require a system to know
how to react before encountering context variables.

We see that system adaptation (the ability to incorporate any program into the
middleware) should not be limited to the constraint of the system but should be
based on the flexibility of all systems forming the environment. The importance
of simplicity when programming the target system is essential in this concept, in
that the less a programmer has to consider about the updating requirements of
a system, the more efficiently they can generate the program as a whole.

4.5 Middleware based Community Architecture

We suggest that it is evident that due to the dynamic updating nature of dynamic
community members, the use of a standard language would prove more adapt-
able for system cooperation. We also acknowledge that the use of a common
protocol would enable each system to utilise the communication as they wish.
However, our definition of a community system interaction comprises, or is the
majoring factor, in the act of generating a community. Therefore, a well estab-
lished method of system interaction and adaptation generates a well established
community. Moreover, the flexibility of system interaction and co-operation de-
termines the use and adaptable properties of the community. The degree of
flexibility within a community must not be such that the community becomes
unstable, yet system interaction must still be kept at a level at which tasks are
achievable, and the zero configuration of devices is possible. The separation of
these two properties of community flexibility is difficult and dependent on the
methodologies applied to the concepts of the system interaction.

Middleware has been applied to establish adaptable software [71]. We see that a
dynamic community can also be generated through the use of system side version
of a software middleware. The members within a community consist of systems
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running within a compatible middleware. The communication between the mem-
bers is irrelevant to the running of the actual system. All information gathered
by, and from a system by a middleware is based on the progress and needs of the
system itself, and in accordance with the community. Code segments available
from the community will not be gathered by a middleware if they are not ap-
propriate for the system. The appropriateness is determined by class structure
dynamic settings.

As already discussed, all possible members of a dynamic community exhibit sev-
eral characteristic:

• ability to discover communities

• dynamic adaptability according to the community

• ability to share their resources (code) throughout the community.

The middleware structure provides these aspects to systems. Furthermore, when
designed as a framework, any compatible middleware (a middleware which ad-
heres to the specified design of the framework) can provide the community at-
tributes to a system.

We established earlier that community communication includes a discovery com-
ponent. Each member can discover community members and regularly check for
needed code or replacement code. In doing this, members access an up-to-date
reference to another member, not the member itself. This reduces latency and
overuse of bandwidth by connecting to members only when necessary. Further-
more, each member continually maintains their own reference within the commu-
nity, allowing other members to listen for update events to occur and check the
new details. Consequently, all members can maintain appropriate code within
their systems without having to contact other members until download of code
is necessary.

The cooperation of the members is controlled by the discovery technique. What
each member decides to do with the community resource is an individual choice.
However, to generate a dynamic community, it is specified that each member
have the minimal capability to dynamically re-define their class structure. This
enables them to contribute and ameliorate in accordance to the current commu-
nity. Figure 4.3 shows that each system may be different in nature, yet, still able
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to cooperate and gain from a community structure.

Figure 4.3: Transfer of Code Resources Using a Middleware

In the figure, each member (consisting of the middleware and the target system)
can transfer code (dotted line) while maintaining their reference object. Remem-
bering that each member is able to search through reference objects without
affecting any other members, the diagram shows the interconnection and coop-
eration of the members within the community. Moreover, as the communication
protocol is simple, being a single question, all reference objects easily supply all
necessary information to questioning members.

4.5.1 Discovery and Member Management

We have now described how a member of a community can be a system executing
within a middleware that is capable of interacting with other members of the
community, where the middleware includes: the ability to advertise a remote
representation of the system details; a proxy to middleware resources and code
gathering algorithms; and, the discovery of other members. Figure 4.4 shows the
link between the middleware, the target system, the remote representation object,
the proxy to the middleware and the code source files of the target application.
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Figure 4.4: Discovering other Community Members

The figure depicts the representation object and the proxy link as two separate
entities. However, they should be considered closely related and essential to each
other. There are two main reasons for the link between the remote object and
the proxy:

1. to update the information within the representation object in order to effi-
ciently reflect the status of the target systems

2. to upload and download code details during interaction within the commu-
nity.

As previously noted, when the connection between the middleware and the rep-
resentation object is used to update current status details, a community event is
generated. Such events are created and handled by the discovery technique and
thus have no, or very little effect, on the inducing member.

4.5.2 Generating and Stabilising Communities

In an effort to minimise the added weight to the bandwidth of the communities
discovery mechanisms, all members make use of in-built events mechanisms and
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advertising proxies. Only when a member discovers a wanted code component is
the message size and frequency raised. During this process several main transfer
messages are sent, a corresponding discovery notice to the searching member, a
forwarding request for the code details to the source member, and finally, the
transfer of the code details from the source member to the searching member.
During this process, the searching member’s system may incur slight delays,
particularly whilst redefining its structure. Furthermore, the source member’s
system might have a very slight delay during the code uploading process. How-
ever, this delay time period is minimal and should only be noticeable on systems
with limited computation abilities.

As a community is based on discovery techniques, it does not rely on physical
address knowledge. Therefore, a community can be established by any system
within any network. The flexibility of this aids the establishment of the main
idea behind the dynamic community: the adaptation of remote systems to their
surrounding environments, communities and other systems.

To show how the techniques we discussed can be use create dynamic communities
we will now analyse other similar or relevant areas of research.

4.6 Possible Methods for Developing Commu-

nities

Thus far we have outlined much of the theory behind the main contributions of
this thesis. Specifically, we have discussed:

• using dynamic updating techniques and distributed activity to establish
adaptive systems;

• creating a middleware framework, using dynamic systems and distributed
activity, for Java applications providing interoperable adaptive systems;

• defining the attributes of a dynamic community;

• using adaptive systems to generate dynamic communities and

• analysing the effects of mobile adaptive systems within dynamic communi-
ties, gypsy agents, and their ability to spread the state of system compo-
nents.
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We will now discuss the techniques that we see as applicable to creating a dynamic
community. However, we state that the concept and definition of a community
that we have established thus far is unique to our research; no other research has
discussed the dynamic cooperation of mobile systems in the same manner, nor
the specific cooperation techniques for use within a community.

4.6.1 Required Attributes of Dynamic Communities

In analysing the techniques that may be applicable to dynamic communities,
firstly, we point out that system adaptation is more advantageous than a simple
system updating technique. There is a greater flexibility given to a system which
can react to its current community as it is allows the system to change its im-
plementation to be more appropriate at a given time. Moreover, the alteration
of a system appropriate to the community is also beneficial to the community
by generating community states that are consistent throughout all members. To
gain such a reaction to the community, a system must have access to variables
to react to.

There are several different areas of research which could be used to establish the
community attributes we have described above and at the beginning of the chap-
ter (see, for example, McKinley, Sadjadi, Kasten and Cheng [71]). Although,
each technique has more specific research targets, they all display some capabil-
ity in the creation of communities. Specifically, we identify the research areas
of most interest to be subsections of the wider areas of Adaptive Software [71]
Autonomic Systems [66, 120], and Context Aware Systems [31].

To determine the usefulness of a concept for community generation, deriving
from our description and analysis of dynamic communities, we have found several
features which are advantageous:

• Mobile and Static Interaction: dynamic communities are sections within
a network through which systems may constantly pass on a regular basis.
Furthermore, within a community, the ad-hoc movements of mobile sys-
tems are unpredictable, whereas, stationary systems provide continuity to
the community by ensuring there are always systems present. However, a
dynamic community may not necessarily require the stability provided by
stationary systems, therefore, a dynamic community may also be estab-
lished completely by mobile systems. This degree of community establish-
ment may be temporary and eventually disappear.
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• Interchangeability: there are many different types of devices interacting
within any dynamic community. Each device has a specialised operating
system and, in many cases, also a specialised JVM. We established in Chap-
ter 2, that the use of a standard language for dynamic updating is more
useful than a particular means of dynamic updating. The same can be ap-
plied to community interoperability. Therefore, a community establishing
technique that contains the ability to adapt to a system is preferred to a
technique to which the system must adapt.

• Interaction and Communication: a dynamic community may contain
multiple methods of communication and different levels of system inter-
action. By limiting these communication protocols to a single type, we
effectively generate a static environment, as discussed in Chapter 3. How-
ever, we also discovered that in order to know what a community member
looks like there must be a commonality among the systems. Therefore, any
technique must have the flexibility to establish community communication
whilst also providing a means of community member recognition.

We must also include in our analysis of the three research areas, Adaptive Soft-
ware, Autonomic Systems and Context Aware Systems, the perspective of mobile
systems. We do so, as at times, the change of software states is reliant on some
community members acting as gypsy agents. In the beginning of this chapter, we
determined the key factors of a dynamic community. We will use these to iden-
tify whether a research area shows the potential to allow the establishment of
localised dynamic communities. The following is an expansion of the key factors:

• Dynamic Community: like any community, a dynamic community is a
gathering of members that are able to cooperate within a set proximity
(location). A dynamic community is a community where members are able
to join and leave and are able to adapt to the current requirements or state
of the community. Furthermore, the community may also respond by an
adaptation of the entire community. Therefore, a dynamic community is a
community where each member is able to benefit from their interaction via
adaptation and change as a result to community resources, and where the
community is also continually adapting.

• Community Establishment: the establishment of a community derives
from the ability for a network to allow the discovery of systems to such a
degree that all systems within a particular location are able to communicate
and share resources at a high and anonymous level. This will automatically
enable them to establish a community.
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• Community Evolution: community evolution is the result of the evolu-
tion of the dynamic systems within a community. As such, a community
will only evolve at the rate at which its members are evolving. For example,
if there is an alteration to all community member protocol details then we
can say that the community has evolved to the new protocol details.

Further to these attributes, a localised dynamic community in the simplest form
must allow any system, including mobile systems, to act as a member. This
requires a high degree of interaction and communication. The level of interaction
allowed by a community is determined by the method and technique that has been
used to enable member cooperation. However, in researching the relevant areas
we have chosen not to include complex areas such as AI and agent swarming as
generally they are designed specifically for particular systems, and consequently,
they are limited in flexibility and compatibility.

4.6.2 Adaptive Software

Adaptive software is an extremely large area of research which has recently at-
tracted a significant amount of interest. This is a result of the emergence of
pervasive computing and advancements in distributed techniques and dynamic
systems [71].

McKinley et al. [71] detail two approaches to the implementation of adaptive
software: Parameter Adaptation and Compositional Adaptation. However, as
they also point out, Parameter Adaptation, which is the modification of program
variables that determine system behaviour, is inadequate in that it will not allow
the addition of new algorithms or components. This restriction is detrimental
to its use for generating dynamic communities, consequently, we will not analyse
Parameter Adaptation.

Composition Adaptation [1, 9, 11, 12, 92], is the exchange of algorithms or system
components between systems to allow the adaptation of a system to its environ-
ment [71]. We also include in this area the techniques of creating dynamic systems
that are applicable to mobile devices, such as JDrums [2]. The reason for this
is that, with the inclusion of a distributed technique such as Jini [79], more so
JMatos [87] for mobile devices, we believe it is highly possible to create a com-
munity establishing technique.
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McKinley, Sadjadi, Kasten and Cheng [71] presented an analysis of the different
techniques in compositional adaptive software. They sought to review how, when
and where adaptation should occur. What they discovered was that the answers
these questions are dependent on the technique applied for system adaptation.
However, they do state that there are several techniques that are generally used
to achieve system adaptation:

• Separation of Concerns: this is the separation of the functional be-
haviour of a system from other concerns such as quality of service and fault
tolerance. This technique has been used in aspect oriented programming
[59], for example AspectJ [58]. Although, this approach provides a means
of separating sections of a system for adaptation, it does not provide a true
means of adaptation. That is, its dynamic capabilities are limited [71].

• Computational Reflection: reflection is the ability for a system to anal-
yse and reveal the details of its current execution. Computational reflection
is used for system updating. It is in fact the basis of the manipulation of a
JVM, such as J2SE 5.0 to extend the capabilities of its dynamic updating.
This was discussed in detail in Chapter 2.

• Component-based design: in this technique software components are
used by a system for adaptation. This approach can be entwined with late
binding machines for dynamic alteration [71]. However, components must
be associated with another level of identification in order for them to be
used. Moreover, a form of adaptation reasoning must exist for a system to
adapt to each component. This research area is seen to be important to
adaptive systems [71].

The research into adaptive software by McKinley et al. [71] provides an analysis
of adaptive systems and gives an indication as to how they are achieved. Unfor-
tunately, other than indicating that adaptive software gives systems the ability
to adapt to their environment, the research does not further the analysis of what
is achieved overall as a result of systems adapting to each other. Moreover, in
further analysis of the area, it is noted that other than achieving adaptive sys-
tems, it does not indicate the advanced implications of a technique, nor do they
take into account the heterogeneity of systems prevalent in society. Furthermore,
many of the techniques currently being developed lack interoperability [71] and
are therefore not currently adequate for dynamic communities. Consequently, we
ask a two fold question deriving from adaptive software:
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Using dynamic updating within the JVM in combination with anonymous resource
sharing, is it possible to create a generic adaptation framework for heterogeneous
systems which remain interoperable? And, will this level of interaction be suffi-
cient to establish dynamic communities?

To determine a response to these questions we will now analyse how adaptive
systems concepts have been used for similar reasons.

The capability for adaptive software to be used as a community establishing
technique and enable the transfer of system states is best demonstrated by the
Context and Location based Middleware for Binding Adaptation (Colomba) sys-
tem [11]. Colomba is middleware based structure which allows system component
exchange based on binding strategies. Colomba based mobile systems establish
connectivity similar to communities by using their ability to dynamically alter
based on software components achieved via logical mobile agents. This is achieved
using XML for communication standardisation and a dynamic Java Virtual Ma-
chine. It is a separation of concerns concept which uses a middleware architecture
for separation.

Colomba represents a relatively new concept in the updating of mobile devices.
It is not targeted at just the updating of the system but at furthering its use
and adaption to networks and environments. For example, service providers can
express binding strategies at a high level of abstraction using unique binding poli-
cies. The purpose of the abstraction is to present changes to the system without
any intervention into the applications logic [11].

However, Colomba is restricted by its security based properties and use of context
variables. Furthermore, it requires XML knowledge which gives it a large over-
head. In addition, Colomba maintains that, as binding policies are determined
by the providers, there is a combination of context awareness and a middleware
system [11]. Moreover, it is the use of binding policies that allows a system to
describe to other systems what it is capable of. This description, in the form of
metadata (XML), then allows each system to bind to an environment and thus
alter execution. However, as a consequence of this, Colomba is reliant on a new
set of program information that is not common to many systems. Therefore, it
use is limited to applications designed specifically for Colomba.
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Apart from this, Colomba does demonstrate that it may be possible to establish
dynamic communities using an adaptive middleware.

To support this statement we note that code discovery and consequent system
alterations is a low level approach to system adaptation that may be used to
manipulate systems semantics [92]. It has been shown that such a procedure
is extremely flexible in that it allows systems to alter their behaviour according
to the other systems it has encountered by gathering code, remotely. Advanced
manipulation techniques, for example, error removal and system upgrade, are
achievable using code updates via system alteration. Moreover, when this is
combined with community cooperation it may allow system to continually rede-
termine their execution based on their current situation.

4.6.3 Context Awareness

Context awareness is the concept of a system being in tune with its surroundings
by making use of the environmental context that has been made available [31].
Its significance to the field was established with the emergence of the pervasive
mobile device, where the context awareness capabilities allowed mobile systems
to determine how to react to the variables from different environments1 [44].

Today, there are many different areas within the Context Awareness sector. The
most relevant to community and system state transfer is in the area of middle-
ware based developments [7, 31, 30, 44, 76, 89, 94] and self administering systems
based on context [68, 76]. These areas give a commonality to systems by allow-
ing them to gather context via a middleware. By using a middleware to locate
context from within the environment, a system is able to react to it according to
its own predetermined logic.

Most context aware applications are developed to aid, complement or enhance
the usability of a system when it is operated within a particular situation. For
example, Dey, Mankoff, Abowd and Carter [32] use a context aware toolkit to
provide information to three different applications: a word predictor system, an

1The definition and related arguments as to the use and meaning of context are outside our
scope of research. We establish that context is a ‘something’ derived from an environment that
gives a system a degree of knowledge into the environment’s use. This in turn enables it to be
used as a means of system adaptation.
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In/Out Board and a reminder tool. These are all applications that were devel-
oped to alter as a result of the current environmental context. In this case, the
reactions are based on the requirements of the system; for example, the In/Out
board can only change a person’s status from in to out and visa versa. It is not
possible for the context to alter the system to identify a person as leaving.

The applications used by Dey et al. are an example of how a reaction to envi-
ronmental context can only occur if the system is aware that the context may,
at some stage, be encountered. Consequently, context information that is useless
for many systems may exist in a particular area. This remains even if the context
is gathered by a standardised middleware. This is a result of a context aware
system not being able to make use of the unknown context available; if it is not
known, the context is ignored [10, 93], This indicates that a context aware sys-
tem is not adapting to an environment, it is altering the execution of its already
known semantics depending on context discovered from within an environment.

Context aware systems are a technique which is able to gain the most informa-
tion from its environment. This includes the use of sensor equipment and small
embedded applications. However, even though context aware systems seem to
alter their behaviour based on current situations, they are much like Parameter
Adaptation in that they are unable to alter their algorithms. This further in-
dicates that context aware systems only change their execution according to an
encountered context. This restriction is an inhibition Schilit, Adams and Want
[93] describe as the IF-THEN relationship between the system and the environ-
ment.

The IF-THEN limitation of context aware systems does not completely rule out
its use as a dynamic cooperation and adaptation technique. There are instances
in which a generic context detail may be established [10]. For example, the use
of XML type descriptors may allow systems to present contextual to the envi-
ronment such as that used by Colomba [11]. Although this is not specifically
adapting to the context, it is generalising it into non-pure context which may en-
able adaptation to occur. However, an argument against context aware systems
remains as they require preprogrammed changes. We see a need for the influence
of context that presents the potential for systems to grow in ways not seen by
the programmer, and thus change dynamically according to an environment.
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In order for context aware systems to be used as a community establishing tech-
nique, we therefore note the need for two concept extensions. Firstly, to create
community type cooperation, context aware systems must be able to view and
use the context of other systems; currently they, generally, only allow for one-way
evolution. Although, this capability exists to an extent in some context aware
implementations, the enhancement of this ability would allow a better knowledge
of the movement of neighbouring mobile systems. Secondly, for the transfer of
system components the ability for systems to present their system code as con-
text, or the response to a context, is required. This attribute could allow the
mobile context aware systems to locate new system components based on con-
text awareness, and become dynamic community members. The combination of
both these extensions within context aware systems could readily enable them to
establish dynamic communities and allow for community establishment and com-
munity evolution through systems state transfer. This is an attribute we have
not found in any context aware research.

4.6.4 Autonomic Systems

The concept of Autonomic Systems relates to creating high level operations where
user intervention is never required; that is, the creation of self-managing system
components [120]. The goal of research in the field is to allow autonomic elements
to achieve self-healing, self-configuration, self-protection and self-optimisation
[120]. Furthermore, that other design techniques will give planning mechanisms
to autonomic systems allowing them to decide on how a task is best achieved
within an environment [66]. Both these elements of autonomic systems are es-
sential for its use as a technique for establishing dynamic communities.

As autonomic systems have the ability to perform high level tasks without the
intervention of a user, they would essentially be able to cooperate easily with
other systems. Moreover, autonomic systems that react to the environment are
already displaying some attributes of community cooperation. And, essentially
the ability for an autonomic component to self-manage is, to a degree, adaptation.
Of particular interest is the capabilities of self-protection and self-optimisation
within autonomic systems. If alterations to the component are based on the envi-
ronment, including other systems within the environment, then many autonomic
systems may already (or could be simply altered to) enable community establish-
ment, community evolution and system state transfer and thus allow for dynamic
communities.
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However, autonomic systems are high level applications. Their implementation
as a middleware has not been achieved and the research in the area focuses on
embedded devices, for example Flecks devices [28].

4.7 Summary

Dynamic communities are simply a location specific network which allows sys-
tems to interact on a more intricate level than is generally achievable. However,
during this chapter we determined that the creation of a dynamic community is
not a simple concept. And, although, we have discovered that some of the main
aspects in generating a dynamic community are found in different research areas,
not one of these areas contains all the required aspects of a community.

We have established that in order to create a means of dynamic community co-
operation, any technique must overcome the problems associated with system
interoperability and allow for system adaptation and cooperation. Moreover,
if a technique is truly designed for full community interaction then only minor
limitations should be placed on the community members. Consequently, we sug-
gested that a middleware design is the most appropriate technique for creating
dynamic community cooperation between heterogeneous systems. We further
suggest that, for interoperability reasons, the middleware make use of Java dis-
tributed communication and dynamic updating capabilities. We have discussed
throughout Chapters 2, 3 and 4 that this would allow systems to adapt to code
resources made available within a proximity based community. This is supported
by McKinley et al. [71] as part of their suggestion for future works in adaptive
software.

The remainder of this thesis details our solution.
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Chapter 5

Architecture and Design

5.1 Introduction

The previous chapters provided an analysis of dynamic systems and distributed
cooperation methodologies, and introduced the concept of dynamic communi-
ties. During the discussion that followed the analysis, it was determined that a
technique does not yet exist which provides mobile and stationary systems with
the ability to share system components in the form of discoverable distributed
resources, nor adapt to the current resources available within a localised area.
We also established that, system cooperation in the form of community resource
adaptation could be beneficial within several different operating scenarios: loca-
tion specific application states, mobile system adaptation, and system state trans-
fer via mobile adaptable systems (gypsy agents). The remaining chapters of this
thesis present a solution to the use of adaptable systems in creating dynamic
communities. This is provided in the form of a framework, designed for hetero-
geneous systems, named the Dynamic Update Projecture Environment (DUPE)
framework.

In this chapter we detail all the specifics of the DUPE framework’s internal design
and architecture. The level of specification provided makes it is possible to create
an implementation. The chapter begins by giving an overview of the DUPE
framework and its use for community cooperation. Following this, we describe
the main sections of the framework:

1. Distributed System Communication and Code Sharing

2. Dynamic Systems Alteration and
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3. Community Interaction and Cooperation.

These sections of the framework incorporate the key areas that we established in
Section 4.6.1. This has been achieved by controlling class loading within a target
JVM, discovering and advertising in a dynamic community, initialising a target
application, and managing mobile movements. The three main sections of the
framework each comprise several different sections. The relationship among the
different sections of the specific areas will be outlined in Section 5.4. Beginning
with this section we provide an overview of all the DUPE sections, however, first
we introduce some new terminology and provide a general view of the framework.
Most of the sections of DUPE are addressed in this chapter, however, several are
further discussed in the next chapter, and the complete details of the security and
adaptation control aspects of the framework are presented in Chapter 7. The de-
scription of the framework will be provided beginning with a top-down approach.

5.2 Terminology

Before we begin our discussion we will describe the new key terms that are used
throughout the remainder of the thesis.

DUPE: A framework that gives heterogeneous systems adaptive capabilities.

DUPE Middleware: Any middleware implementation that holds to the stan-
dards provided by the DUPE framework.

DUPE Compatible: An application becomes DUPE compatible when it is im-
plementing within any DUPE middleware.

DUPE System: Once an application is DUPE compatible it is referred to as a
DUPE System.

DUPE Community: A localised group of DUPE systems that are interacting
based on the DUPE resource cooperation specifications. The state of a com-
munity is the state of all resources within the community (this is detailed
in Chapter 6).

DUPE Member: Any DUPE system participating in a DUPE community.

DUPE Service Object (DSO): The remote service as advertised by a DUPE
Member within a DUPE community. The DSO represents the resources
that the DUPE member is offering to the DUPE community.
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5.3 The DUPE Framework

The first section of our DUPE framework discussion provides a basic structure
overview. This overview is designed to give the simplest view of the framework.

5.3.1 Discovering and using Remote Classes

Essentially, the DUPE framework allows an application to redefine its runtime ex-
ecution using classes obtained from other applications within the same location.
The downloading of remote classes1 is achieved through a remote class loader
structure using a distribution technique designed according to our recommenda-
tion in Section 3.6. For DUPE we have applied Jini as the distribution technique
for reasons discussed in Chapter 3 and 4. Figure 5.1 provides an illustration of
how the remote class loading works. The figure shows how the proxy access setup

Figure 5.1: Remotely Gathering Class Details

is used for a middleware and target application. The middleware is able to look
up other systems which contain requested class files. Then, via their proxies and
remote services, the two systems communicate and transfer required class details.
Figure 5.2 details specifically how the conclusions from Section 3.6 have been ap-
plied to the DUPE framework. This figure depicts the proxy setup clearly and
depicts the direct path that remote class transfer takes (shown as a red path). If
it is the first time the class has been used by the DUPE system, no redefinition
is required and it is instantiated as normal. However, if during execution a new
class version becomes available, it can then be used for creating objects. Exactly

1It is not appropriate for some Java files to be loaded remotely using the DUPE structure.
For obvious security reasons, the following should be excluded: standard J2SE packages, and
the group of sun.* packages.
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Figure 5.2: Remotely Gathering Class Details using Proxy

how this redefinition is achieved is specific to the dynamic updating technique
used for a framework implementation. However, what must be achieved is an
alteration in the system based on Java byte code. Furthermore, all byte code is
obtained in the form of a complete Java class.

5.3.2 Establishing DUPE Communities

Although the technique we have described for discovering remote classes and dis-
tributed resources is simple, it is also very useful for system cooperation. For
example, we established in Chapter 4 that the communication in a dynamic com-
munity consists of a single query with unknown repercussions. That is, a commu-
nity maintains a non-task oriented protocol. DUPE’s class discovery technique
incorporates a communication protocol that, in its simplest form, asks for a class
and receives in return Java byte code. The content and exact implications of
the byte code are unknown. Furthermore, all remote resources advertised by a
DUPE system can be discovered by any other DUPE system. This is achieved
using Jini multicast which also restricts it to localised cooperation. According to
our definition, this level of cooperation can form a local dynamic community.

We will discuss DUPE communities in detail in Chapter 6. The focus of the
remainder of this chapter is to provide a comprehensive understanding of the
DUPE framework. This is necessary as a complete understanding of DUPE
communities is essential.
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5.4 Framework’s Internal Structure

DUPE is a middleware framework. It has been designed so that it can be imple-
mented as different compatible middleware applications to allow dynamic com-
munal cooperation between heterogeneous systems. All systems executed within
any DUPE middleware are DUPE compatible. This provides the application with
the ability to participate in DUPE communities irrespective of its intended use.

The following is a description of the core components for the framework. It is
suggested that the reader view this list in conjunction with Table 5.1 and Figure
5.3.

Distributed Class Sharing: the DUPE framework uses the discovery of re-
mote resources that are advertised by members within the DUPE commu-
nity. Links to these resources are contained within the DSOs that represent
each of the community members. During Chapter 3, we established that
Jini provided the necessary anonymous discovery attributes, and, that when
implemented as a proxy, Jini service can act as a gateway to the resources
located on a member’s system. Moreover, Jini services provide a means
of maintaining DUPE communities via its event mechanisms for entering,
exiting and adapting members.

Dynamic Systems: all members of a DUPE community should be dynami-
cally adaptable. That is, all DUPE compatible systems must have the
ability to continually adapt to the state of their current community. In
Chapter 2 we established that there are many different possible meth-
ods for creating dynamic updating within a JVM; for example, J2SE 5.0
java.lang.instrument package [108]. The technique to be applied needs
to be chosen according to each separate DUPE implementation. Moreover,
the DUPE specification states that a DUPE implementation that can com-
municate within a DUPE community, yet can not achieve runtime dynamic
updates may be known as a limited DUPE middleware. This flexibility is
significant to DUPE in that it demonstrates that the framework can be
heterogeneous.

Adaptation and Security Controls: as a result of the dynamic interaction
of systems within DUPE communities, including the sharing of code, it is
possible that any discovered code may be illegitimate, and therefore, all
system adaptation must be tightly controlled. In order to maintain the
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DUPE Sector Description Section

Distributed System Communication and Code Sharing 5.6
Gateway Proxy Provides the link from a DUPE service object to the ad-

vertising system.
5.6.1

DUPE Class Loading
Structure (DCLS)

The overall controller of the class loading for the target
system. It includes DUPE’s unique class loader: Remote
Upload Class Loader (RUCL), and is generally coupled
with functions of several other components.

5.6.2

DUPE Service Object
(DSO)

The remote representation of the DUPE compatable sys-
tem.

5.6.3 &
6.3

DynamicClassEntry An external representation of a class resource available
within the DUPE system.

5.6.3

Dynamic Systems Alteration 5.7
Target Application The system which has been elected to become DUPE com-

patable. This can be any Java program.
5.5 &
5.6.2

Dynamic Instrumen-
tation Layer

This area of the framework is dependent on the chosen
JVM and specified dynamic updating technique. It is dis-
cussed in during discussion on the JVM and implementa-
tion

Ch. 2 &
5.7

Java Virtual Machine The specific JVM used for each DUPE framework impli-
mentation and is not detailed within the framework.

Ch. 2 &
5.7

Dynamic Class Man-
ager (DCM)

Manages all dynamic manipulation of the target system
and its JVM during adaptation. This section is specific
for each DUPE framework implimentation as it is linked
to each specific JVM.

5.7.1

DynamicClass An internal representation of a handled class. 5.7.3
Class List Manager The controller of a dynamic list of all class details instan-

tiated by the target application. Class details are stored
as a DynamicClass format.

5.7.2

Community Interaction and Cooperation 5.8
Discovery Manager Handles all communication within the community. Con-

tains the key sub-sectors: Community Observer and Event
Generator.

5.8.1

Community Observer Listens for alteration within the community. Main duty is
listening for community events.

5.8.2

Event Generator Is able to trigger events within the community based on
changes within the target system. This is achieved via the
DUPE service object

5.8.3

Security Control Ensures all adaptation and resource gathering is acheived
safely. A combination of security and trust measures.

7.2

Adaptation Control Manages the reasoning for adaptation of the target system. 7.3

Table 5.1: Section Reference for DUPE Framework Discussion
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Figure 5.3: DUPE Framework Architecture

safety and reliability of all interacting systems, the framework stipulates
several security and adaptation controlling mechanisms.

Framework Consistency: all the aforementioned aspects of the framework
must be integrated in the correct manner. A generalization of the formula-
tion and the interconnection of each sector is shown in Figure 5.3. Together
with the main components, those stipulated in the previous points, several
other key linking sections are required within the framework. However,
as long as a DUPE middleware implementation can cooperate with other
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members of a DUPE community, via DSO discovery and resource gather-
ing, and achieve dynamic adaptability, the middleware can be termed a full
DUPE compatible implementation.

Table 5.1 describes the sections of the framework and provides a reference to
their discussions throughout this work. The internal associations and processing
links of these sections is shown in Figure 5.3. The pathways that represent inter-
nal communication flow are indicated in the figure by directional arrows. These
internal links allow the framework to control class initiation and redefinition.

Many areas of the DUPE framework are designed to ensure that an implementa-
tion can share files, data, and design structures and maintain the correct execu-
tion of the target application. Most important of these is the DUPE Class Load-
ing Structure (DCLS). The DCLS provides the framework with a class loading
mechanism to control the initialisation of all target system components. Work-
ing together with the DCLS is the Dynamic Class Manager (DCM). The DCM
controls the dynamic adaptation aspects of the target application by maintain-
ing a list of current resources (class files). As previously mentioned, the extra
flexibility, in terms of dynamic class adaptation, available to DUPE compati-
ble systems, makes them vulnerable to greater risk of unwanted intrusion. The
framework counters such threats by using security measures. The framework
is structured so that all external communication, such as resource gathering, is
filtered through security and adaptation controls. This is discussed in detail in
Chapter 7.

DUPE maintains a link between itself and the bootstrap class loader of a targeted
system using a combination of the DCM and DCLS. Here, the DCLS overrides
all the core class loading methods of the JVM controlling all the class loading of
the target application. The use of the DCM and the DCLS for this task is indica-
tive to each implementation and dependent on the dynamic updating technique
applied2. There are no constraints or obligations that inhibit this association
between the DUPE middleware and a target application. Moreover, we do not
specify any particular policy for updates. Some examples will be given in Chapter
7.

2Depending on the framework implementation, multiple JVMs may be required to separate
the DUPE middleware from the target application. We provide an implementation using both
a single JVM (Chapters 8 and 9) multiple JVMs (Chapter 10).
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5.5 Target Application Handling

We discussed in Chapter 2 that the class loader mechanism of the JVM con-
trols the loading and initialisation of all classes associated with a Java program.
We also detailed how a program’s class loading procedure can be manipulated
by defining a subclass of the java.lang.ClassLoader class. The DUPE frame-
work makes use of this technique to control the target application’s execution.
The DCLS is a personalised class loading structure that includes a redefined
class loader: dupe.discovery.RemoteUploadClassLoader (RUCL). The RUCL
is used by the DCLS to control the underlying loading mechanism for any Java
based program. Where this relationship sits within the DUPE framework is
shown in Figure 5.4.

Figure 5.4: Target Application Section of DUPE Architecture

The RUCL must be implemented in such a way that it is able to execute and
control, correctly, any Java application. It is the job of the DCLS to make sure
that all attributes, such as environment variables and command line arguments,
are accessible to the target application in the same manner in which they would
normally acquire them. As a result of this, any DUPE implementation is able to
load the starting class of a program in the exact same manner as a JVM would
normally achieve. Moreover, it should also be designed to search the targeted
start class for the main() method, and if found invoke it through the use, gener-
ally, of reflection techniques3. Once the initial class has been loaded by DUPE, all
the subsequent classes, as initialised by the target system, will be loaded via the
DCLS’s class loading mechanism according to the JVM’s class loader hierarchy
[65]. This means that all classes instantiated by any DUPE system will also be
loaded using the DCLS.

3For further information on reflection see Lindholm et al. [65].

90



Chapter 5: Architecture and Design

However, this does not prevent a developer from producing their unique class
loader for use within an application that may be used with a DUPE middleware.
If an application using its own class loader is executed within a DUPE middle-
ware, Java’s hierarchical class loading architecture determines that, even though
a system is loaded via DUPE, it will still be able to use its own class loader for
specific class loading requirements. However, the unique class loader used by the
application will always revert to the DCLS if, or when, it fails [65]. Therefore,
the RUCL will still be used as a class loading backbone for the application.

The DCLS is essential to the DUPE framework. For example, within the frame-
work there is a maintained reference within the Dynamic Class Manager (Section
5.7.1) to all classes loaded by the target application. The details provided by
this dynamic information are used to determine adaptation requirements and to
inform community members of resources that the system has to offer. The rela-
tionship between the DCLS and other sectors of the framework will be addressed
in the relevant sections of Chapters 5, 6 and 7.

As we indicated earlier, the target application of the DUPE system must still
execute in the same way as it would outside a DUPE middleware. It is therefore
important that all system commands, JVM commands and special, or unique set-
tings, for example, codebase indications, be handed to the JVM as normal. And,
that all arguments for the target application are also handed on. This should all
be achieved without interfering with DUPE’s communication mechanisms.

An application that would run normally (within Windows XP command prompt),
as shown in Figure 5.5, could be a DUPE system using the DUPE start up shown
in Figure 5.64. It can be seen from the command arguments of both figures
that an IP address (192.168.0.100) is handed through to the target application
coffeeMachine.CoffeeMachine5. It should be noted that this argument is for
the use of the target application and not the DUPE structure, and that all argu-
ments will be used by the target application in the exact manner that it would
normally use them.

4This example is a specific implementation of DUPE (DUPE 5.0, discussed in Section 9)
and, therefore, the information labeled as DUPE start up commands may be ignored at this
stage.

5The full details of the argument use are also not necessary at this point in the discussion.
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Figure 5.5: Standard Execution of Target Application

Figure 5.6: DUPE Execution of Target Application

5.5.1 Standard Class Access

DUPE aids systems by providing them with the ability to discover and use classes
from other systems. However, it must sustain the ability of systems to discover
local classes. And, although it is unlikely that any system adaptation would be
based on local classes, the framework provides the flexibility to allow internal
discovery to occur. Therefore, there are two aspects to the classes of a DUPE
system: advertising and discovery.

All DUPE systems advertise their local classes within the community. The re-
mote classes are known as resources. The advertised resource represents a class
that the DUPE system has loaded during standard execution. These resources
only include those accessed via the JVM class structure, classpath components6,

6Class components should be held in a ‘trusted’ directory for security purposes. This will
be further discussed in Chapter 7.
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and other areas that are specifically assigned with the system, for example, code-
base servers. It also includes classes loaded via remote discovery.

The discovery of resources may allow an application to use remote classes as well
as local classes. This provides the DUPE systems with access to classes beyond
their own local device. In fact, it may be possible to execute an application using
only remote class details.

5.6 Distributed Systems and Code Sharing

DUPE uses concepts derived from both remote objects and web based class load-
ing to load classes via a remotely accessible class loader proxy DSO.This enables
systems to share resources, and allows them to find and use all shared resources
from within the DUPE community without prior knowledge of their whereabouts.

Figure 5.7: DUPE Community Interaction Design

The remote components also provide DUPE systems with the required informa-
tion to adapt to the community according to their needs and the needs of the
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entire community. The distributed aspects of the framework incorporate several
sections of the architecture. This is illustrated in Figure 5.7.

In the figure, the insignificant sections are greyed out and the most significant
sections circled. Within the framework, there are several interface definitions that
determine how the core aspects of class and community control are developed.
During the analysis of each section of the framework the relevant interfaces will
be defined and their place within the structure of the framework will be identified.

5.6.1 Accessing System Resources

As explained at the beginning of this chapter, a proxy and gateway set up is used
by the DUPE framework for discovery and communication purposes. This set
up facilitates the connection among DUPE systems, via a DSO, for community
searching. The searching mechanisms are controlled using the accessible methods
of the DSO linking it to the host system.

DUPE systems are able to discover others within the community and advertise
their own DSO representation. Each community member will advertise itself as an
available service and continually discover other services (community members).
This scenario is shown in Figure 5.8.

Figure 5.8: Discovery of DUPE Community Member DSOs
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The two-way sharing of all members of a community provides, within the com-
munity, a web of accessible DSOs that are available to all members.

However, the framework discovery and searching specifications remain mildly
flexible (this is discussed in detail in the next chapter). They do not disallow
the use of a discover only or advertise only implementation. The specification
remains this way to allow an implementation designed for extremely resource
constrained devices, such as embedded systems, to cooperate within the DUPE
community. However, as systems of this nature may be noticeably interrupted by
uploading resource details, they may wish to restrict their community interaction.

Within a DUPE community the advertisement of a DSO is achieved using Jini
proxy services. Any Jini registrar can act as the community resource centre
where DUPE members share their DSOs. The community resource centre may be
located anywhere within the community, however, if available, it is likely that the
it will be located within a stationary device of significant capabilities; for example,
a web server. Moreover, for the community to remain active the registrar host
system’s power should remain on, consistently. A DUPE system advertises its
remote service representation within all located registries. Furthermore, within
a single location, should several DUPE communities exist, a DUPE system will
register itself using a single identifier, ServiceID [79]. The implications of this
concepts are beyond this thesis and are part of our future work suggestions in
Section 13.1. However, we have noted that internal searching within a system
has the potential to create a continuous searching loop. The framework accounts
for this using the proxy and the individual ServiceID. Figure 5.8 depicts the
advertising of services and illustrates how they use their proxy gateways to gain
access to the internal classes of the host system.

5.6.2 DUPE Class Loading Structure

To understand the fundamentals of DUPE based system cooperation a clear defi-
nition of the DCLS will now be provided. As already mentioned, the DUPE Class
Loading Structure (DCLS) is the personalised class loader structure used within
the DUPE framework. It achieves several of the key class and resource manip-
ulation aspects of the structure, many of which are achieved using its Remote
Upload Class Loader. (RUCL). Furthermore, there is a close relationship among
discovered resource use, dynamic instrumentation of the target system and tar-
get JVM, and the attributes of DCLS as the key class loading structure for the
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framework. Consequently, the DCLS must supply other framework sections with
detailed information concerning class manipulation. The full list of the DCLS
tasks are as follows:

• downloading resources from within the community. This does not include
determining is they should be used

• controlling the loading of the target application classes

• providing the information for the storage of all class details to the Dynamic
Class Manager (DCM)

• providing the initial class loading link into the JVM for dynamic manipu-
lation and

• providing the new resource and class information for the final stage of dy-
namic instrumentation7.

The DCLS contains a subclass of java.lang.ClassLoader that overrides the
core class loading methods.

Within the DCLS the interface dupe.discovery.RemoteClassLoader (shown in
Figure 5.9) determines the procedures that are used to link the DCLS with other
sections of the framework, and, within its own class structure.

The main class loader within the DCLS should implement the methods from this
interface. This class loader, the dupe.discovery.RemoteUploadClassLoader, is
the RUCL we have previously discussed. The specific methods of the interface
are used to maintain the separation between the normal operation of a class
loader and that which can be invoked remotely. However, the entire structure of
this section is not imperative to the DUPE framework and parts may be altered
according to the requirements of an individual implementation. The flexible
sections of the interface will become obvious as other sections of the framework
are discussed.

7Although the dynamic instrumentation is specific for each implementation, generally the
final state(s) of class instrumentation are, or can be achieved via the DCLS.
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public interface RemoteClassLoader extends DynamicRemoteAccess {

public Class loadClassBytes(byte[] classData, String className) throws RemoteException;

//override core method

public Class findClass(String className) throws ClassNotFoundException;

//override core method

public ServiceID getServiceID(); //access current ServiceID

public void setServiceID(ServiceID sid); //setting the ServiceID

public void startClassSearch(int delay); //optional timer for community resource search

public void addRemoteLoader(ServiceID serviceID, RemoteClassLocator service);

//store reference to a service

public void removeRemoteLoader(ServiceID serviceID); //remove a reference to a service

public LoaderType getLoaderType() throws UnknownHostException;

//access service information

public DynamicClass getLoadedClass(String name); //get a loaded class from within system

public void setDiscoveryManager(DiscoveryManager discoveryManager);

//set the discovery manager of the system

}

Figure 5.9: RemoteClassLoader.java

5.6.3 DUPE Service Object

Earlier, we introduced the DUPE Service Object (DSO) as the remote represen-
tation of a DUPE system. The DSO provides sufficient information to discovering
systems to enable them to decide if there are resources on the advertising system
that are useful.

The accessible specifications of the DSO are contained within two interfaces and
two class files. The DSO is the most specific element of the framework. All
DSO implementations must implement the interface dupe.discovery.Remote-

ClassLocator (Figure 5.10), which is itself a sub-interface of the interface
dupe.discovery.DynamicRemoteAccess (Figure 5.11).

public interface RemoteClassLocator extends DynamicRemoteAccess {

public Class loadClassBytes(byte[] classData, String name) throws java.rmi.RemoteException;

}

Figure 5.10: RemoteClassLocator.java

The DSO, as a Jini service, can also contain a collection of net.jini.core-

.entry.Entry entries [79, 36]. The framework uses this to maintain the current
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public interface DynamicRemoteAccess extends java.io.Serializable, RemoteEventListener{

public DynamicClass generateDynamicClass(String className)

throws ClassNotFoundException, RemoteException;

public void notify(RemoteEvent evt) throws RemoteExceotion, UnknownException;

}

Figure 5.11: DynamicRemoteAccess.java

details of all available classes on a system. The DSO has an associated instance
of dupe.discovery.LoaderType.java (Figure 5.12) which is an implementation
of the Jini service interface.

public class LoaderType implements net.jini.core.entry.Entry{

public String hostName; //host name (optional)

public Boolean allowInternalSearch; //internal search switch

public DynamicClassEntry[] classes; //array or DynamicClassEntrys

/*Constructors */

public String toString(){ ... }

}

Figure 5.12: LoaderType.java

Each LoaderType entry contains an array of dupe.discovery.DynamicClass-

Entry objects. A DynamicClassEntry is a remote representation of a class re-
source that is available on the system associated with the DSO. The information
of the DynamicClassEntry objects is the core information provided by the DSO.
Together, they provide enough details for a discovering DUPE member to de-
termine the systems usefulness. Each DynamicClassEntry within the DSO is
analysed by the discovering system to check that the service is useful for adap-
tation needs. If a system decides to load a complete resource that is represented
by the DynamicClassEntry it is able to call it via a call to the service using the
method loadClassBytes(...), specified by the RemoteClassLocator interface.
The complete class structure of the DSO and its related classes is provided in
Figure 5.13, the structure of a DSO as a Jini service is shown in Figure 5.14 and
the contents of a DynamicClassEntry are given in Table 5.2.
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Figure 5.13: Class Diagram for DSO Structure

Figure 5.14: DSO Jini Structure
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Name Type Description

className String The reference name for the class
file resource.

attributes String[ ][ ] The details of all attributes that
have been assigned to the class
resource. (For further details
see Chapter 7).

certificates Certificate[ ] An array of certificates that
have been assigned to this class
resource. (For further detail see
Chapter 7).

Table 5.2: DynamicClassEntry Contents

5.6.4 Remote Manipulation

By defining several interfaces for remote access to DUPE systems, the framework
provides community members restricted access to its class loading capabilities.
These methods provide the link between the DCLS’s gateway and its DSO which
enables access to the DUPE systems resources. The link then allows a community
member to check for classes from within the DUPE service, loaded or unloaded,
through the DSO to the DCLS. The methods also allow any accessible resources
(essentially anything within reach of the DCLS) to be downloaded as required.
The discovered DSO will only send the resource class bytes.

The DCLS is able to look within its designated classpath for files (or further if in-
ternally specified) and within its JVM to find any Java classes that are requested
via resource acquisition. The class bytes are then transferred to the system that
has requested them. A DUPE system will never pass any byte code through its
own JVM until required by the target applications normal operation, and this
should not be achieved until the defineClass() method (a bootstrap class loader
method) is instantiated within its own structure [65].

A key to the remote resource loading within the DUPE structure is the dynamic
discovery of DSOs. As previously discussed, this gives applications restricted
access to the actual inner sections of a remote JVM providing the structure with
two of its crucial aspects:
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1. the ad-hoc discovery of DUPE systems. There is no need for a system
to know an actual address of the system that are going to use to gather
resource details.

2. the transfer of byte code through any DUPE compatible system. Every
class that is searched for by a DUPE member does not necessarily have to
come from the same member.

By specifying the methods of the DSO, the restrictions placed on the processing
performed by a searching member can be established. The discovery techniques
that the DCLS uses, eliminate the need for classes to exist on the same machine
as the host program. A discovery based class loading structure provides access
to a remote DSO which can be discovered and used as proxy objects to download
Java class files. This then gives access to Java class files that may be downloaded
via an unknown system, files that have, or have not been instantiated by the
discovered service object (depending on user preferences).

The manner in which the DSO and the DCLS are structured eliminates the com-
mon limiting aspects of other remote class loading techniques: such as web based
class loading or distributed objects. The reason for this is that the information
gained from the resource is not specifically contained within the service object;
the object is simply a means for discovery. This, therefore, eliminates the prob-
lems, as discussed in Chapter 3, associated with:

• the use of a common interface, and

• the requirement of direct knowledge of the hosts URL reference.

Consequently, DUPE systems can run entire programs on their host device even
though no files are stored directly within its memory. This particular attribute
may prove extremely useful for limited memory devices and embedded systems.

5.7 Dynamic System Alteration

The dynamic adaptation attributes of an implementation of the framework are
determined by the updating technique that has been applied. The technique ap-
plied will evidently determine the level of adaptability available within to target
application, and provide its individualisation.
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We discussed the reasons for using Java as the base language and detailed many
of the techniques applicable to Java systems in Chapter 2. In that discussion it
was noted that each technique has its own specific method for applying updates
to the JVM. For example, J2SE 5.0 provides a package (along with some specific
commands) [108] whilst the J2SE 1.4 HotSpot JVM requires the use of an inter-
nal JVM reference: a JVM within a JVM [103].

The following sub-sections provide the guidelines and specification that are re-
quired for the implementation of the dynamic aspects of the DUPE framework.
However, due to the individual nature of each dynamic alteration technique the
specification may be altered as required during the actual framework implemen-
tation. Yet, as long as the DUPE community cooperation specifications, the DSO
contents, are maintained, and the information provided by the system holds true
according to Java class bytes verification and DUPE security measures (Chapter
7), the individual method in which an implementation maintains its dynamics is
not detrimental to the cooperation of the DUPE system within the DUPE com-
munity. In fact, the individual nature of each implementation provides a means
of interoperability between a larger variety of systems, and is a key contribution
of this work. This section of the framework is shown in Figure 5.15.

Figure 5.15: Dynamic Instrumentation Aspects of the Framework

5.7.1 Dynamic Class Manager

The Dynamic Class Manager (DCM) is the hub of the dynamic adaptation of the
framework. The DCM contains a direct link to the DCLS, as can be seen in the
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illustration in Figure 5.15. This ensures that the dynamic interchange of classes is
synchronised with the general loading of classes. Moreover, at times, depending
on the DUPE implementation, the separation of the DCM and the DCLS may
be difficult to obtain. For example, if using J2SE 5.0 it is best, and easiest, to
incorporate the instrumentation algorithms within a class loader implementation
[6]. Therefore, any dynamic altering method, such as reloadClass(...), may
be included within the implementation of, or an extension to, the RemoteClass-
Loader interface or subsequent RCLS.

The DCM, along with the implementation of the dynamic updating, and as a re-
sult of its relationship with the DCLS, should be passed a reference of all classes
as they are loaded by the JVM (this is achieved using a Class List Manager
(CLM) (see Section 5.7.2)). By maintaining a reference to all the loaded classes,
the DCM is able to easily check the class details for the adaptation reasoning
process prior to adaptation.

The DCM is also closely linked to the community event gathering mechanism
of the framework. The DCM must provide a means to react to events that are
discovered from within the community. These events include those generated as
a result of the discovery of a new DSO, or a change in a current community DSO.
These reactions, controlled by the Community Observer (see Section 5.8.2), al-
low the system to gather all the necessary information for adaptation reasoning
and for the internal structure to gather required information for any subsequent
transformation.

There are, therefore, four main components within the DCM. These components
are presented in Table 5.3.

5.7.2 Class List Manager

The purpose of the Class List Manager (CLM) is to control the restricted access
to all the class reference objects. The class references are stored in the form
of dupe.discovery.DynamicClass instances created during the target applica-
tion’s execution. This class is designed as a wrapper class for byte code. The
CLM contains a Map of DynamicClasses, using the full class names as keys.

The CLM must provide two main public methods: a method to find the de-
tails of a class, for example, public DynamicClass findHandledClass(String
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Component Purpose

Instrumentation Imple-
mentation

The main task of the DCM: the imple-
mentation of the instrumentation tech-
nique chosen for a specific DUPE mid-
dleware.

DynamicClass An internal representation of a Class
which has been instantiated by the JVM.

Class List Manager A controlling section for the list, or ar-
ray, of all Classes instantiated by the
JVM. Each Class is stored as an instance
of DynamicClass.

Restricted Dynamic
Class Access

The provision of methods that give other
sectors within the DUPE framework ac-
cess to Class information and instrumen-
tation. This includes the community ob-
servation, security and adaptation sec-
tors

Table 5.3: Components of the Dynamic Class Manager

className), and a method that allows it to alter the contents of the list by adding
and replacing the contents of the Map, such as, overriding the public Object

put(Object key, Object value) within the java.util.HashMap class. These
constructs allow the CLM to act as a centralised database for management of the
class details. It can then be used by the other sectors of the framework for class
detail evaluation.

5.7.3 DynamicClass

The dupe.discovery.DynamicClass is the DUPE framework’s representation of
a Java class that has been instantiated by a DUPE system’s target application.
The DynamicClass objects are used within several different sectors of the DUPE
framework principally as a means of storage, and for determining the progress
of resource updating. The DynamicClass objects are also used for creating the
DynamicClassEntry instances for the DSO and achieving security checks. There-
fore, there are several attributes within the DynamicClass class which contains
key elements of DUPE information. This is shown in Table 5.4.
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Name Type Description

classBytes private byte[] The class bytes of the Java class
which the objects represents.

name private String The name of the class Java class
which the objects represents.

attributes private String[][]

(see Section 7.3)
Attributes, as assigned at com-
pilation, of the class.

certificates private java.-

security.cert.-

Certificate[]

Certificates that have been as-
signed to the class.

Table 5.4: DynamicClass Contents

The use of the DynamicClass within the different sections of the framework is
detailed within respective discussions throughout the rest of this chapter, and in
Chapters 6 and 7.

5.8 Community Interaction and Cooperation

The ability for DUPE systems to generate and cooperate within a DUPE commu-
nity is derived from the use of Jini services. As a Jini service, the DSO exhibits
several specific capabilities which play a significant role in the cooperation of sys-
tems and the gathering of resources. Within the DUPE framework, there exists
a Discovery Manager which is designed to maintain the discovery of other DUPE
members by discovering DSO resources and controlling the registration of its own
DSO representation.

The framework reacts to the state of the DUPE community by using the DSOs
found within the community registry. A DUPE system will use its own DSO to
inform the community of changes in its own structure, which in turn will cause
community events to be generated. Moreover, DSOs within the community can
be used to analyse the contents of their representing systems. The analysis of the
DSO contents should be based on the event generation mechanisms that exist as
a result of member movements. The community events are listened for by the
Community Observer (which may also be known as a Registrar Observer) and
generated via the Event Handler sectors of the framework.
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All sections of community interaction and observation are grouped together via
the Discovery Manager. A trace of community events is shown in Figure 5.16.

Figure 5.16: Community Event Trace through DUPE Architecture

5.8.1 Discovery Manager

The Discovery Manager is the controlling center of the community cooperation
sector of the framework. It has several main tasks. These are as follows:

• discovering the community registrar and other DUPE members

• advertising the DSO within the community registrar
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• registering a Community Observer in the community as an event listener

• sending the events created by the Event Generator to the community, and

• controlling the access to both the Community Observer and the Event Gen-
erator.

As the center for community interaction, the Discovery Manager is linked to the
DCLS and has the ability to initiate the adaptation capabilities of the DCM.
This link is important as the Discovery Manager contains both the Community
Observer and the Event Generator. Specifically, the Community Observer will
inform the Discovery Manager of community events, or those it is set to listen
for. The information that caused the event is passed through to the DCM for
analysis. We will now outline both the Community Observer and the Event Gen-
erator. Further details of their contributions to DUPE Communities are provided
in Section 6.4.1.

5.8.2 Community Observer

The Community Observer watches all the aspects of a DUPE systems community
interaction by listening for community events. There are several community
events that will be heard during community activity8. These events are:

• new members joining the community

• members leaving the community

• a change of state in a current member of the community.

There are potentially a large number of events that a DUPE community may
generate. This being the case, the Community Observer must run initial tests on
each event to check its validity according to security constraints and individual
adaptation settings (see Chapter 7).

8DUPE community activity and how community events are generated are discussed in Chap-
ter 6.
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Insignificant Events

Community events are generated regularly as a direct result of the continual
movements of community members and the normal progression of system exe-
cution. Therefore, there are many instances when an event should, or can be
ignored by a community member. For example, an event may be generated when
any community member alters its structure, including, loading or reloading class
details. This event generation allows systems running inappropriate versions of
the classes to be immediately informed of new versions that appear within the
community. However, there will be cases when an event contains no useful infor-
mation for a listening system. In such cases, the event is heard by the Community
Observer and analysed by looking at the reason for the event, and resource con-
tents. If the event is determined to be insignificant, all processing of the resource
is discontinued and the event is discarded. The usefulness of an event is deter-
mined by using, first, the security measures as defined within DUPE middleware
and, secondly, the DUPE system’s adaptation settings.

5.8.3 Event Generator

The event generator has a single task: the creation of community events. These
events derive from a change in the state of the target system, such as the instan-
tiation of a new class. Therefore, all events are a response to procedures that
have been run within the DLCS, and as a result, the Event Generator is informed
of this aspect of the DLCS via the Discovery Control, which has a connection
either to the DCM or directly to the DLCS.

The contents of the event change are in the form of a DynamicClassEntry. The
new DynamicClassEntry needs to be added to the advertised DSO representing
the DUPE system. This is achieved by calling the updating method from the
Discovery Manager on the DSO using the method modifyAttributes(Entry[]

attrSetTemplates, Entry[] attrSets) on all the Service(s)9 that are known
by the DiscoveryManager.

9Each service implements net.jini.core.lookup.ServiceRegistration which provides
the modifyAttributes() method.
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5.9 Implementation Design

We will now provide some general notes for consideration when implementing the
framework.

5.9.1 Middleware Architecture

Dupe communities are based on the principle that each member can be any sys-
tem running within a middleware, and that the middleware is DUPE compliant.
The combination of context awareness and a middleware system has been im-
plemented to create an association between system behaviour and encountered
environments. For a middleware to gain access to the internal workings of a
system there must be a link that provides a gateway into its core. This link is
provided through the use of the RUCL. The middleware can then act as a link
into the core of a system, particularly from a distributed point of view, as the
DSO is then able to gain access to the DCLS via the DCM.

5.9.2 Incorporating a Dynamic Update

In Chapter 2, we discussed the different techniques which expand a system’s di-
versity through the addition of dynamic updating. Some implementations, such
as DVM [69] and JDrums [29], rely on the specific use of altered versions of the
JVM. These techniques, if applied solely, result in a lack of platform indepen-
dence. This inflexibility is highly detrimental to small unique devices and their
associated operating systems. However, we also decided that although a spe-
cialised JVM may be limited in the devices or operating systems that it is able to
execute with, it should always remain compliant to Java standards. Therefore,
all JVMs used for a DUPE implementation must be able to understand standard
Java class bytes (up to the J2SE 1.4 standard), and consequently would be able to
correctly execute a standard Java application. As a result of this, any device has
the possibility of containing a dynamic JVM of some kind, which in turn, means
that a DUPE implementation for that device can be created. And, as long as
the JVM is able to understand standard Java code as it should, then any DUPE
system using that specific middleware implementation is able to share and gather
resources from a DUPE community. However, this does not include limited or
specialised JVMs, such as KVM [98] or J2ME [98], as they are unable to execute
standard Java byte code.
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Limited memory devices, such as PDA’s, mobile phones, embedded systems,
wearable devices and so on, represent technology inhibited by their inherent plat-
form specific software and environment based interoperability. Obviously, once a
device contains a Java Virtual Machine (JVM) there is a high probability that
a particular JVM version has been specifically developed for a particular device.
Due to compatibility constraints and other complications, it is unlikely, but still
possible, that a specialised dynamic JVM such as DVM or JDrums will be incor-
porated within these devices

The Java standard dynamic techniques, the JPDA HotSpot [103] and Java 5.0
instrumentation [108], are more likely to be incorporated within progressive de-
vices such as PDAs. However, again, the dynamic technique applied to a DUPE
implementation is an individual choice. The only requirements for the choice in
JVM, or dynamic altering technique, are:

• it must have the ability to dynamically alter, to a usable degree, the runtime
code of a system, and

• it must be able to execute a standard Java class file (standard being J2SE
1.4 at the time of this work)10

If both of these criteria have been met, then a JVM, or updating technique is
appropriate for use as the dynamic alteration method of the DUPE framework.
Of course, a limited DUPE implementation can be established if necessary.

5.10 Summary

In this chapter we have discussed the internal structure of the DUPE frame-
work. While many different aspects were discussed, three concepts emerged as
the important principles underlying its design: distributed resources, dynamic
instrumentation and community awareness.

Distributed resources: provide DUPE systems with the ability to gather code
from other systems within the same community. The attributes of the
distributed resources determine the cooperation amongst systems, and are

10Although Java 5.0 is released at this point it is reasonable to assume backwards compati-
bility to at least the 1.4 level.
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therefore the most specific element of the framework’s design. Other sec-
tions of the framework can be altered according to implementation and
individual requirements; however, the specification of the DSO and its con-
tents must be adhered to, completely. Diversion from the specific structure
of the DSO will result in a DUPE middleware becoming unable to cooperate
within a DUPE community.

Dynamic instrumentation: is the heart of the individual nature of each im-
plementation of the framework. By controlling the target applications class
loading, using the DCLS, and relating it to the DCM, the framework es-
tablishes a means of dynamic instrumentation. The flexibility gained by
allowing this section of the framework to be individualised provides the
unique heterogeneous attributes of DUPE community interoperability. Al-
though the dynamics of implementations are different, they remain able to
interconnect as a result of the standardised distributed awareness. There-
fore, a system running a specific dynamic JVM, such as JDrums, is able
to alter state based on shared resources from a system using, for example,
J2SE 5.0 for its instrumentation.

Community awareness: watches the other systems within the community via
the community registrar and community events. These observations allow
the other aspects of the framework to act according to the state of their cur-
rent community. The community awareness, contained within the Discovery
Manager, allows the framework to act as a community aware framework,
and as such, binds the other sections of the framework, and the DUPE
system as a whole, to the DUPE community and its DUPE members.

In the next chapter we will further the discussion of the community details of the
framework.
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Chapter 6

DUPE Cooperation Design

6.1 Introduction

Continuing the theme of the previous chapter, this chapter discusses how the
design of the framework facilitates the cooperation of ubiquitous heterogeneous
systems and establishes DUPE community communication as a specialised com-
munication technique. During the chapter, we introduce several new concepts
that evolved during the development of the DUPE framework. These concepts
are:

• System alteration deposits: by depositing an updated version of a soft-
ware resource(s) on any system within a community all other members can
adapt.

• Context (location) specific functioning: by placing a software re-
source(s) on a DUPE system in a specific location, for example, a tourist
destination, all DUPE members that enter the proximity can adapt to lo-
cation specific software.

• Evolution transfer: the movement of mobile DUPE systems throughout
different DUPE communities can establish a new means of transferring
system components, and result in system evolution. The term Gypsy Agent
is used to describe such a mobile DUPE system.

The actions of DUPE systems which result in dynamic community cooperation
are common within all of the above situations. The chapter will therefore begin
with an in-depth analysis of DUPE communities. Following this, each of the
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key elements of the framework communication will be discussed. The details will
demonstrate many of the major contributions of this work, and indicate where
the DUPE framework fits in terms of our initial discussions on dynamic systems,
distributed cooperation, and dynamic communities.

6.2 DUPE Communities

DUPE communities systematically allow the sharing of code structure, specifi-
cally they share Java byte code. And, the framework’s design stipulates that a
system should, where possible, be able to dynamically update. The result of this,
is that the state of DUPE communities change in accordance with the current
status of their members.

We have discussed how DUPE middleware can be used to execute individual sys-
tems and so bring them into DUPE communities. Therefore, as a result of the
compatible DUPE middleware, all intercommunication details of the community
are understood by all members. This communication level is based on a single
common question: What can you teach me? In terms of a DUPE community the
language of interaction is essentially: What new, or more advanced, code do you
use that, if I use it, would help me improve my community experience? or, What
code do you have that I can use too?

In Section 4.2, we described the language of dynamic community communication.
If we look at technique applied for communication within a DUPE community, as
shown in the previous chapter, it is easy to note that it applies to the constructs
of dynamic community communication. Imperative to this is the use of DSOs for
discovery of services and transfer of code. A DUPE system can discover a DSO,
analyse it for required information and if applicable, call for a resource’s Java
byte code. The implications, and in fact, the structure of the byte code (other
than that it has been verified and that it corresponds to a specified class iden-
tification: the class name) are completely unknown to the DUPE system until
execution has begun.

DUPE provides systems with greater flexibility and adaptability through the use
of the following attributes:

• J2SE 1.4 code sharing
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• dynamic code changes within system classes during runtime

• continuous type safety1

• extension of the JVM’s access, via resource discovery, to class resources,
and

• dynamic resource access within any DUPE community.

There are several aspects of a DUPE community that differentiate it from a stan-
dard set of client/server applications. For example, in Chapter 4 we established
several aspects of dynamic community system adaptation. These aspects directly
affected the design of the framework. We also established the requirements for
a dynamic community. We will re-introduce these requirements, briefly, as they
contribute to DUPE community interaction.

• Mobile Interaction:
Mobile members of the community are the devices within a network which
pass through on a regular basis. This gives the community an extremely
ad-hoc and dynamic nature.

• Interchangeable Components.
Numerous devices interact within a dynamic community. Each device uses
a particular operating system and, in many cases, a specialised JVM. The
use of a framework that can be adapted to a system is preferred to a one
where the system must adapt.

• Interaction and Communication.
A mobile, wireless, ad-hoc environment may contain multiple methods of
communication and different levels of system interaction. As discussed in
Chapter 3, the best suited means of communication for a dynamic structure
based on location proximity, is wireless.

6.2.1 DUPE Compatibility

A DUPE compatible system runs within any version of a DUPE middleware,
the version best suited to their dynamic capabilities. Therefore, the middleware
implementation used determines the systems use of the community. For example,

1This feature is dependent on the technique applied for dynamic system instrumentation;
however, we assume that the chosen technique has proven type safety capabilities.
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one may provide all DUPE capabilities, while others may be designed within
limitations, such as limited adaptation. However, irrespective of the middleware,
once a system becomes fully DUPE compatible it will demonstrate two main
characteristics:

1. Community Interoperability.
All systems with a DUPE compatibility are, at the least, able to discover
other systems within a DUPE community. Generally, most systems will
also advertise themselves within the community. DUPE makes use of Jini
for discovery purposes.

2. Dynamic Alteration.
All complete compatible systems are dynamically adaptable. This is essen-
tial to a DUPE community as the community is the result of the sharing of
resources and the cooperation of all interacting members.

The design sections of DUPE that allow it to interact within communities are
depicted in Figure 6.1. How the design of the framework provides systems with

Figure 6.1: DUPE Framework Community Interaction Constructs

access to community resources can be seen in this figure.
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6.2.2 Community State

Any updating technique used for an implementation of DUPE will change the
system based on events that are generated from the community. And, as a com-
munity is governed by its interacting members, all adaptation is generated to
some degree from within a system, or multiple systems. This in turn, means that
a system will dynamically alter its state according to the other current members
of the community.

The combination of its dynamic nature, and the ad-hoc movements of interacting
systems, generates an always current community, where new systems seamlessly
give or take resources as required for specific operations. We recognise this partic-
ular attribute as the community state. In addition, the creation of a (seemingly)
stable version of the components within a community; a situation where a ma-
jority of members of the community are executing the same component versions,
is termed the community state. The alteration of one component within most
members of the community initiates a change in the state of the community.

6.2.3 Adaptation

Within a DUPE Community a member will not only alter its behaviour based
solely on its need/want for adaptation, but it should also take into consideration
the needs and wants of the community as a whole. The level of change is com-
pletely determined by a system’s adaptation controls.

DUPE’s adaptation techniques are based on three main reasons for behavioural
adaptation; furthermore, these reasons are all directly determined by the com-
munity’s event mechanism as follows (Figure 6.2 provides pictorial reference for
each situation):

• An entering system can alter its behaviour according to the current com-
munity status (Figure 6.2: (a)).

• A current member of the community is alerted by community events that
a new resource version is available from the community. This action may
result from the entry of a new system as in the previous situation (Figure
6.2: (b)).
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• An entering, or current, system can cause the community to generate an
event to notify that it contains a new resource version2 (Figure 6.2: (c)).

Figure 6.2: DUPE Community Events and Subsequent Member Adaptation

Figure 6.2 shows DUPE members during the different means of adaptation that
occur within a DUPE community (these events are a DUPE interpretation of the
general community member movements previously shown in Figure 4.2). Again,
it is noted from all these situations that, in effect, a DUPE community is governed
by its members, and therefore, all adaptation is generated by a member, or
multiple members. This in turn allows the community to dynamically alter its
state in accordance with the members that are currently stabilising its structure.
The event based adaptation allows adaptation to be achieved as a response to
the needs of a member.

6.3 Using the DUPE Service object

The DSO contains the necessary information for a searching system to be able
to deduce the usefulness of the resources available from the advertising system.
Therefore, the usability of a DSO service is defined by the resources (classes) it
makes available, and their associated attributes. Consequently, identifying the
usability of any resources is an individual choice. A DSO also indicates if its
advertising system provides access to local resources that it has not executed
itself. However, as the location and uploading of class details in this manner may

2If the resource is brand new to the community an event can still be generated.
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become time consuming for the advertising system, this feature can be disabled
by the user of the advertising system.

The DSO contains compact descriptions of available resources. This aids in main-
taining low network traffic within the community. A DUPE member advertises
all the resources it has at any period of time within the DSO. Therefore, a search-
ing system needs only to ask the service advertised to check the availability of a
class. This means that a DUPE member will not communicate directly with a
system until it has located a DSO which contains a class it is looking for.

As indicated in Section 5.6.3, all details within a DSO are contained within
a collection of DynamicClassEntry objects. As already detailed, the Dynam-
icClassEntry is a representation of a class resource presented by the DSO. As
a service representation, the DynamicClassEntry contains no class bytes or in-
stantiation information, it only gives the class name and the information used
for adaptation reasoning and security purposes. (The details of each Dynamic-
ClassEntry were listed in Table 5.2).

Moreover, as each DSO is a Jini service advertised by a DUPE member, it is able
to negotiate the transfer of component details. Most importantly, this includes
the transfer of class bytes. The exact use of the information provided by the DSO
is specific to each framework implementation and the adaptation settings applied
by the user. The following is a guide to how the information provided by the
DSO can be used3 (although alterations on these may be appropriate depending
on implementation requirements).

• The classname can be used as an initial search to check to see if a resource
is appropriate for use within a system. This use of the resource remains
consistent throughout all implementations of the framework.

• The attributes are used to determine if a resource, once found to be useful
with a system (see above), should be loaded into the system in accordance
with the adaptation control setting for the executing system. The use of all
attributes should remain consistent. Its use in determining adaptation is
based on an individual execution.

3Attributes and certificates are dealt with in detail in Chapter 7 as they are related to the
frameworks security and trust management.
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• Certificates are used within DUPE to maintain a trusted level of se-
curity. Again several settings are automated and several may be refined
according to user requirements.

• The allowInternalSearch boolean should be used minimally. Searching
for undisclosed resources by a remote system will cause noticeable delays
for the host system. Particularly, to those executing in mobile devices.

Once a resource is found to be applicable to a system for use during adaptation,
the complete class details can be gathered and loaded.

6.3.1 Discovering and Advertising DSO Services

Correct advertisement of a DUPE system’s DSO and the knowledge of how to
discover another DUPE services DSO is an integral part of DUPE community
interaction. Conveniently, it is also relatively simple. This simplicity is a result
of the flexibility of the single question protocol used within a DUPE Community.

Advertising a DSO: The DSO is an advertised instance of a Jini service item
(net.jini.core.lookup.ServiceItem) that contains the required aspects
of a DSO as described in Section 5.6.3, which are:

• the DUPE System’s ServiceID

• the DUPE Service’s RemoteClassLocator instance

• the current DUPE Service’s LoaderType object.

Each DSO must contain these required items. Moreover, the LoaderType

object within the DSO must be kept up-to-date with the current state of
its home DUPE Service. The class structure of the DSO was provided is
Section 5.6.3.

Discovering a DSO: Each DUPE system understands the RemoteClassLoca-
tor interface, as it is necessary for the DSO object. Therefore, using this
interface, all DUPE systems are able to identify a Jini service as a DSO.
This process is the only way to discover a DSO, it should be used in combi-
nation with a net.jini.core.lookup.ServiceTemplate object [79]. The
process for a client to discover and obtain all the required information from
a DSO is as follows, and an example implementation is provided in Figure
6.3:

119



Chapter 6: DUPE Cooperation Design

• upon discovery of a DUPE community registrar, the client system
will obtain a reference to all Jini Services which are an instance of
RemoteClassLocator interface.

• the client system will check the ServiceID of the DSO for repeated
searches

• the client service can then gather the LoaderType object from the DSO
and analyse the available DynamicClassEntry objects for adaptation
relevance.

//create a ServiceTemplate based on the DSO Specifications

Class[] classes = new Class[]{RemoteClassLocator.class};

RemoteClassLocator remoteLocator = null;

Entry[] loaderEntry = new Entry[]{new LoaderType()};

//Service Template Creation

ServiceTemplate template = new ServiceTemplate(null, classes, loaderEntry);

... //discover DUPE Community(s)

//look for DSO Sevices using the Service Template

ServiceMatches serviceMatches = registrar.lookup(template, MAX_DSO_MATCHES);

final ServiceItem[] serviceItems = serviceMatches.items; // all DUPE Members

for (int k = 0; k < serviceMatches.totalMatches; k++) {

//check to make sure it is not this Service

if (!serviceItems[k].serviceID.equals(remoteCL.getServiceID())) {

final RemoteClassLocator foundService = (RemoteClassLocator) serviceItems[k].service;

addRemoteLoader(serviceItems[k].serviceID, foundService); //add to known members list

//analyse service attributes using observer object (possible new Thread)

}

}

Figure 6.3: Example Code: Discovering DSO

Although, this is an extremely simple discovery and advertising protocol, it pro-
vides the flexibility for the unknown protocol responses required for dynamic com-
munity communication (see Chapter 4 for details). The only known parts of the
DSO are the interface RemoteClassLocator, which provides the generateDynamic-
Class(...) method that allows direct class byte gathering, and the LoaderType
in which there exists an unknown quantity of unknown instances of Dynamic-
ClassEntry objects.

We now describe the methodologies that should be applied for gathering all re-
source information from the DSO. This specification includes the aforementioned
generateDynamicClass(...) method.
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6.3.2 Gathering the Complete Resource

The process of gathering a complete class resource is again relatively simple.
There is only one question that a DSO can be asked of that will result in it con-
tacting its host system:

Can you send me a DynamicClass object containing the byte code for (insert
class name here)?

As indicated by this question, the return result of the remote method call is an
instance of a DynamicClass, and, as we have already discussed, a DynamicClass
contains the byte code of the class it is representing.

The method used to gather the class details is part of the dupe.discovery.-

DynamicRemoteAccess interface, which is implemented by the DSO via the Re-
moteClassLocator interface. Specifically, the method generateDynamicClass(...)

(shown in Figure 6.4) should be executed.

public DynamicClass generateDynamicClass(String className) throws

ClassNotFoundException, RemoteException;

Figure 6.4: Remote Method Call for Final Resource Gathering

This method should be called by the gathering system using the class name that
was found during initial DSO analysis. The returned DynamicClass should be re-
analysed to ensure its contents are valid according to the initial DSO information.
Once the DynamicClass is found to be trusted, according to security (see Chapter
7), it can then be passed to the Dynamic Manager for initialisation or redefinition.

6.3.3 Sending a Resource

After a DUPE member acting as a client invokes the generateDynamicClass(...)
on another DUPE member it will wait for the requested resource to be returned.
The return of the class is a responsibility of the DUPE member acting as a server.
When the method is called with an appropriate class name4 the server system

4The use of a class name gathered from the respective DSO is appropriate. Invoking the gen-
erateDynamicClass method using a class name that does not exist on the host DUPE member’s
DSO is inappropriate and dismissed.
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will return a corresponding DynamicClass using information from its Class List
Manager.

6.4 DUPE Community Interaction

6.4.1 Community Events

The DUPE community makes use of the Jini architecture as a discovery mecha-
nism, and subsequently, it is able to make use of several Jini events. These Jini
events are generated as a result of several different community situations [79, 36].
In terms of DUPE communities these situations are:

1. a change in structure of a community member

2. the entrance of a new member into the community and

3. the exit of a current member of the community.

All events are a result of a change in any community member. However, as a
DSO maintains a current representation of a community member it is here where
the community events are actually created. Therefore, when a system alters its
state, for example, loads a new class or redefines a current class, it generates
the community event by altering a DSO. Accordingly, as a Jini service [79] the
DSO will then create the community event. This event will be heard by all other
community members, and as a result they will react accordingly. All events gen-
erated within the community contain enough information regarding the changed
conditions to allow all listening members to initially react without contacting the
community registrar, the DSO or the initiating system. Moreover, events that
are a result of a change in a current DUPE member are a result of an update of
the LoaderType object within a DUPE members associated DSO, as shown in
Figure 6.5.

The trigger for this type of updating process is a direct result of a change in a
DUPE system, and is seen as a subsequent change in its Class List Manager’s Dy-
namicClass list. The DUPE Community events form the basis for the adaptation
of all DUPE systems.
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Figure 6.5: DUPE Community Event from DSO Update

6.4.2 Member Cooperation Design Considerations

To join a DUPE community a system must become DUPE compatible. To be-
come DUPE compatible a system is run within a DUPE compatible middleware.
The middleware then controls all interaction within the community.

All searching and verifying is achieved within the DUPE middleware section of
the DUPE system. And, as each middleware implementation is either developed
differently or used differently by the user, all DUPE systems determine their own
level of cooperation within the community. However, all DUPE system commu-
nication must be achieved via DSO interaction.

For this degree of cooperation, the discovery based nature of the framework al-
lows resource discovery to be dynamic. This is true to the extent that resources
may be unknown during initial execution stages, and as required, must be indi-
vidually discovered from within a current community. This is different to other
discovery techniques, such as RMI, where subsequent classes must be locatable
via a specified codebase. Using DUPE all Java systems can adapt even though
they were not originally designed to. The following is a list of the key attributes
of the DUPE framework which allow community cooperation:

• Remote System Description and Proxy: there is no need for a DUPE
system to create objects for each resource it has to offer. All information
regarding all its resources is located within its advertised DSO.

• Anonymous Distribution: all discovery, advertising and use of resources
within a community are achieved anonymously.

• Multiple Class Locations: DUPE members are able to locate their class
components from multiple locations. These locations include: local class
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files, classes within the community and classes located according to system
specific needs.

• Dynamic Discovery of Members: all DUPE members can discover all
other members of a community. There is no need for a member to know
how to directly contact other members. A system need only understand
what resources the other members have and how they may obtain them.
This is described by the DSO and the DCLS.

• Community Event Generation: this is the ability to register a member
within a community to listen for the details of all community events. As
defined in the previous chapter, these events include:

1. entry of a new member

2. change in resource of a current member and

3. exit of a member.

Along with these attributes, there are also several design considerations that have
been applied to ensure safe use of the framework. These are a direct result of the
extended system interaction available to DUPE systems. These are:

• Controlling Dynamic Alteration: the dynamic alteration is designed to
maintain system code. However, without security and adaptation controls
any dynamic adaptation would be unlimited and extremely unsafe. The
dynamic adaptation is, therefore, controlled by both of these sections. This
is discussed further in Chapter 7.

• Maintaining Security and Adaptation Controls: DUPE security con-
trols make sure that all gathered remote components are safe. And, its
adaptation controls enable the framework to reason any adaptation to a
community. These controls should be set as default settings but left as
alterable by the user. Examples of adaptation reasoning include number
identification based version update and vendor specific alteration. This is
discussed further in Chapter 7.

• Controlling the Target System: as a middleware, DUPE controls the
execution of a target system. In fact, the DUPE framework maintains
slightly more control over the target system than is normally applied by a
middleware application; for example, DUPE middleware controls the en-
tire execution of an application, whereas other middleware only provide
extended capabilities. The framework stipulates that all class loading after
verification is managed
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6.5 Requirements of DUPE Compatible Mid-

dleware

Based on the framework design presented in this chapter and in Chapter 5, we
now provide the requirements that must be met for a DUPE implementation to
be recognised as DUPE compatible. There are two levels of compatibility for
each of these requirements.

Mandatory: a section of the framework which must be included for a DUPE
compatible middleware.

Standard: a section of the framework which is generally included for a DUPE
compatible middleware. If this section is excluded, the DUPE implementa-
tion will cooperate within a DUPE community at a limited level. All such
DUPE implementation are limited DUPE middleware.

The requirements are provided in Table 6.1.

6.6 New Concepts due to DUPE

Thus far, we have established both the design of the framework (Chapter 5) and,
in the early stages of this chapter, its use as a distributed cooperation tool. The
remainder of this chapter provides a detailed look at the beneficial contributions
that the framework may provide to systems. We determine a beneficial contri-
bution to be a technique that has either been made easier to apply as a result
of the framework, or something which only the framework can offer that benefits
the use of a system, or the cooperation of systems.

Principally, there are three new concepts that have arisen as a result of the DUPE
framework. Although, each of these concepts differs in what it achieves, as men-
tioned earlier in this chapter, all rely on the unique system cooperation that is
enabled within DUPE communities. Two of these concepts: System Alteration
Deposits and Context Specific Functioning, are a result of the use of DUPE com-
munities, whilst the other, Evolution Transfer, is linked directly to our concept
of gypsy agents.

We will now present these new concepts as contributions to the field.
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Section Description Inclusion

DUPE community dis-
covery

The ability to locate and recog-
nise a Jini Registrar as a DUPE
community

Mandatory

DSO Understanding The ability to understand the
contents of a DSO.

Mandatory

DSO Creation The ability to create and adver-
tise a DSO object.

Standard

DSO Discovery The ability to discover DSO ob-
jects within a DUPE commu-
nity.

Standard

Load time dynamic code
redefinition

The ability to alter the state of
Java byte code during start up.

Standard

Runtime dynamic code
redefinition

The ability to alter the state of
Java byte code during runtime.

Standard

DUPE Event Recogni-
tion

The understanding of a DUPE
community event and its con-
tents.

Mandatory

DUPE Specification Un-
derstanding

The understanding of the con-
tents of DUPE specification de-
tails associated with Dynamic-
Class and DynamicClassEntry
objects.

Mandatory

Certificate Recognition Differentiating between an illicit
or unwanted certificate.

Mandatory

Table 6.1: Requirements for DUPE Compatibility
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6.7 System Alteration Deposits

There are several situations where the placement of a system component within
a community results in a beneficial change in the state of resources. Much of the
discussion that we have had thus far considers ad hoc changes within communi-
ties and systems. The situation presented during this section demonstrates the
use of DUPE in a planned scenario. We will describe how the introduction of a
resource into a community can be for the purpose of generating an advantageous
adaptation of interacting members.

Figure 6.6: System Alteration using DUPE Community Resource Deposit

When introducing a new version of a resource to a community it can be placed
within any DUPE member. There are scenarios that may be established using
this technique:

• a mobile system could purposely enter the community and introduce the
resource;

127



Chapter 6: DUPE Cooperation Design

• the component could be located in a new system that is added as a perma-
nent part of the community, for example a new HiFi appliance, and

• the new resource could be introduced to a current system within the com-
munity, for example a home gateway, as is shown in Figure 6.6.

The community alteration achieved by the introduction of the new component
will proceed irrespective of how it was introduced into the community. Therefore,
the most appropriate means of introduction is that which best suits the situation.
The following situations demonstrate how this can be achieved. (The situations
also provide the scenario for part of the analytical evaluation in Section 11.). We
will now detail all the possible introductory scenarios.

6.7.1 Network Component Change

The alteration or upgrading of a system that is continuously interacting within
a standard local network, such as a home network, could possibly cause some
incompatibility with other systems. Specifically, it is likely in that, after an up-
grade, one or two systems may no longer cooperate with each other. However, in
a DUPE community the introduction of an upgrade component would initialise
DUPE event mechanisms. Consequently all systems would signal that there is
a new component available. If appropriate, the systems would obtain the com-
ponent and adapt according to any adaptation rules. For example, in Figure
6.6 the deposited resource could be a new version of the communication compo-
nent: communication.CommTCP. Therefore, as all of the current members of the
community update their components, no member would become incompatible.

6.7.2 Defect Upgrade

There are constantly recalls and calls for system upgrades to be downloaded for
systems. For example, it is very common to upgrade a system on a mobile phone
to a new version. This upgrade may be to repair a defect, fix a security flaw,
or, simply to improve performance. Upgrading a system in this manner is com-
pletely at the discretion of the user, and therefore, it is difficult for a distribution
company to ensure the changes are completed.

A vendor is able to place a system upgrade on an access gateway to a home
network that is running within a DUPE community; for example, this would be
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achievable using an OSGI type arrangement. This allows the distributor to alter
the components of any specific systems interacting in the community without ever
having to directly access the system. For example, in Figure 6.6, the deposited re-
source could be an altered version of the reception package appliance.reception
designed for appliances such as televisions as a fix to a defective component.

6.8 Context Specific Functioning

During the discussion on context awareness in Chapter 4, we illustrated how a
system can react to its surroundings by changing its execution flow according to
what context it has encountered. The scenario in this section, details how the
DUPE framework can work in a similar fashion. However, DUPE creates a more
flexible means of system awareness. Moreover, it has the ability to allow members
to adapt to their community, based on these components.

The DUPE framework creates flexible, adaptive, community cooperation among
systems. This level of cooperation differs from that achieved by context aware-
ness in that, unlike a context aware system, a DUPE system does not alter its
behaviour based on its current capabilities, or the encountered context (context
in this case being community resources), it alters its progression based on other
systems and their capabilities. Therefore, within a DUPE community, resources
may be used by a system as a means of contextual adaptation.

6.8.1 Resources as Context

The resources that are offered by a DUPE member do not have to be executed
by the system itself. For example, a server could act as a depository for newly
updated, or location specific, versions of code. Therefore, it is possible to main-
tain a system that contains a set of resources that are specific to a location. This
makes it also possible to have a set of resources that are available within several
different communities which achieve different tasks in accordance to each specific
community. Using DUPE in this way enables systems to implement in a specific
manner according to the community it is currently interacting within.

An example of this level of use is a tourist application. A tourist application may
be created that requires a particular resource, for example a tourist.resources

package. This package may be designed differently according to each specific
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tourist destination. If the adaptation rules of a DUPE system are then set to
location based settings, when a tourist system using any DUPE middleware enters
a tourist destination, it will adapt to its specific resource(s). This scenario is
depicted in Figure 6.7.

Figure 6.7: DUPE System Location Context Adaptation

This type of system adaptation is more than simply transferring data, such as
showing the menu of the closest restaurant, or providing tourist specific textual
information. Using DUPE in this way enables systems to act in a completely
different manner according to their proximity. At one destination, the system
may in fact be a menu for a restaurant, however, at another it might become
a self guided tour complete with guiding voice and pictures (possibly triggered
via other context systems, for example, a historic application providing details
as the system moves throughout the area.). The possibilities are only limited by
the resources available from within the current community.

Further to this scenario, the resources that act as context do not have to exist
within the DUPE system. A deposit only version of DUPE that contains one or
more resources may be created to act as a DUPE context point. For example, a
light post in the middle of a town may contain a small embedded sensor device
that is advertised with a registry somewhere in the vicinity. The light post may
carry tourist information such as, a specific section of a mobile guided tour, or,
the details for emergency contacts for that particular area. These resources could
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then be used by any DUPE system entering the local community.

Furthermore, a DUPE system that was designed to deposit only, would never
adapt to the other DUPE members. It should only be updated via, for example,
direct access or secure access adaptation. This is because, as its sole purpose is
to allow other DUPE systems to adapt on the basis of locality, not for it to adapt
to them.

6.9 Evolution Transfer

In a DUPE community each system shares its components with other systems,
mobile or fixed, within a particular (location based) proximity. We will also
further explore, in Chapter 7, how the adaptation rules of DUPE systems are
determined by the restrictions placed on each individual system, and how, con-
sequently, the nature of each DUPE community structure will continually alter.

We specify that each mobile member within a DUPE community is essentially
a mobile device running a DUPE compatible system. And, because of the na-
ture of the movements of a mobile device, it is possible that these systems can
become a mobile means of software transfer. By transferring software, a mobile
system demonstrates similar attributes to that of mobile software agents, but,
as a physical rather than a logical entity. We determine this characteristic to
be the action of a physical mobile agent and propose that the likely increase in
the number and movements of these physically mobile agents can be beneficial.
For example, when a mobile agent discovers a community, it is able to gain and
give system information. We have named these agents: ‘gypsy agents’. Gypsy
agents cooperate on non-biased, no return required, barter terms. This concept
was initially explored in Section 4.4.3 and we will now discuss it further in terms
of the DUPE systems.

6.9.1 DUPE Gypsy Agents

Any system that is running within a DUPE compatible middleware, or is DUPE
compatible itself, is termed a DUPE system. We have reiterated throughout
our discussions that an implementation of the DUPE framework can be created
for many different reasons; for example, an implementation may be specific to a
particular JVM, or it may be created as a large system so it can handle server
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type operations. Another implementation of the framework, one which we have
detailed as a key implementation, is designed specifically for mobile systems.

We believe that mobile devices have the most to gain from the use of DUPE. They
move between communities on a regular basis and consequently come into contact
with many different component versions. Moreover, as they move between com-
munities they will take components to each new community; the mobile system
transfers the state of one community to the next community that it encounters.

6.9.2 Sustaining Community System State

Gypsy agents have the ability to move between many different communities and
as they do they present new resources for the DUPE members of each commu-
nity. And, they are also able to gain resources from each of the communities they
encounter. This is a result of the gypsy agents retaining the resources they them-
selves have used to adapt5. As they move, they will introduce these resources to
all new communities. The ability to do this is a direct result of system adaptation
in the gypsy agent. The events provided by a DUPE community give all mem-
bers the possibility to gather information from other members and do with it as
they please, including keeping a copy of it. The use of this attribute is exclusive
to gypsy agents and can be used as a means of system evolution and state transfer.

6.9.3 Spread of System Resources

We have now established that, as gypsy agents move among communities they
can take with them the resource(s) they have gathered from previous communi-
ties. If the resource is new, or a more appropriate version of the one currently
running within the new community, all its members will adapt accordingly. This
includes other gypsy agents present in that community.

All gypsy agents will continue to move among communities, and as a result, so
will the new version of the resource. We see this as a positive spread of a system
resource, and we believe that it can be used as a means of achieving tasks, such

5The retention of community resource details is determined by the framework implementa-
tion or the specific user settings. Some systems may keep resources they gain, and are hence
able to pass them on, while others may drop resources as they move.
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as system upgrades and debugging. An example of the effects of the movements
of gypsy agents is shown in Figure 6.8.

Figure 6.8: System Resource Transfer via Gypsy Agents

However, we also note that such attributes may be used for the spread of illicit
community resources. To counter this, the security and adaptation controls (see
Chapter 7) are designed to keep the impact of such problems to a minimum. The
rate of spread achieved determines the usefulness of gypsy agents. However, as
the movement of gypsy agents is linked to the movements of the humans carrying
and using their devices, their use may only be predicted and analysed using
modeling and probability. We will discuss the development of these models in
Chapter 12.

6.10 Summary

We have now identified the attributes of the DUPE framework which enable it
to establish DUPE communities. We have also indicated the three main contri-
butions of DUPE communities and their interacting members. The three possi-
bilities presented by the framework that are seen as major contributions are:

• Systems Alteration Deposits: the introduction of an updated version
of a software resource(s) to a system within a DUPE community enabling
all members to adapt.

• Context (Location) Specific Functioning: using DUPE enabled sys-
tems and their associated resources as a way of detailing the context of a
location.
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• Evolution Transfer: the movement of gypsy agents establishing a new
means of transferring system components and enabling system evolution.

We have analysed these contributions and discussed how, by using the DSO and
DynamicClassEntry, the framework remains flexible in its design, yet stipulates,
precisely, its core cooperation specifics. The precise description of the communi-
cation within the DUPE community is necessary to ensure that DUPE systems
are able to cooperate (for more details on the DUPE communication see the
DUPE Specification in Appendix A). This in turn allows different framework
implementations to form DUPE communities for heterogeneous systems.

All of these contributions will be assessed further within the rest of this thesis.
Systems alteration deposits and context (location) specific functioning are used
during the evaluation of the framework in Chapter 11, and we return to evolution
transfer during our analysis of the effects of gypsy agents, through the use of
epidemiology modeling, in Chapter 12.
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Chapter 7

Security and Adaptation

7.1 Introduction

DUPE communities can potentially create a new means of interfering with sys-
tems. We acknowledge that system adaptation to remote code components entails
a threat, in that any resource may be a virus or other detrimental code. We also
acknowledge that the movements of gypsy agents are potentially a perfect means
of virus transfer.

This chapter assesses these precarious aspects of the DUPE framework. How we
deal with this aspect of the framework is separated into two categories:

• Security: the use of techniques such as digital signatures and certificates
to provide a means of security and trust to DUPE members. We establish
that signatures can be applied as a means of masking data from intrusive al-
terations during the transfer of resource information, and that this provides
benefits to security and trust levels.

• Adaptation Controls: the use of user specific settings to govern system
adaptation and evolution. The setting rules are based on the information
that is obtainable from a DSO and DynamicClassEntry objects. It de-
scribes the attributes such as version numbering, and vendor and location
identification.

Firstly, we assess the security risks. This assessment takes into account the dif-
ferent types of unwanted attacks and the associated problems that are likely to
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be a hindrance to DUPE communities. The chapter will then discuss adaptation
controls and explain how the use of class attributes, within the user preferences
of the framework, are used for controlling how a system adapts to a commu-
nity. Importantly, the framework’s security technique must provide verification
that remotely obtained class bytes remain unchanged from their initial state, and
that they can be deemed to have originally come from a trusted source. This will
help ensure that malicious code is not imported and executed by a DUPE system.

Throughout the discussion in the chapter, it is important to remember that, as
noted in Chapter 5, not all Java files are, nor ever should be, loaded via the
DUPE structure. Examples of such files include: standard J2SE packages and
the group of sun.* packages.

7.2 Security

As DUPE systems use unknown class files from anonymous systems, there is con-
tinuously the possibility of the intrusion of malicious code. For example, during
system adaptation, discovered resources are included and executed by a system as
a result of its community interaction. It is possible that an unchecked malicious
component may make its way into the system. Such a component could achieve
endless alterations to the system, or the device on which the system is being
executed. This potentially includes the possibility of complete system deletion.
Consequently, DUPE systems must protect themselves from gathering unwanted
code in place of a legitimate resource.

To avoid such situations, it would be possible to use a sandbox method similar
to that applied to Java Applets [42]. However, a sandbox restricts the flexibil-
ity of the DUPE framework in terms of community cooperation, and limits the
functionality of the target application. For this reason it is not applied for the
DUPE framework.

Unfortunately, as we will demonstrate, a sandbox level of security may be the
only way to completely secure the DUPE framework. To support this view, we
will clearly identify the security levels of DUPE as a limitation within the frame-
work. Either the sandbox method is applied and DUPE members are limited in
their interaction capabilities, or, DUPE members remain flexible yet maintain a
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slight possibility of potentially harmful, intrusive code.

Trust can be used by a system to determine the appropriateness of a resource.
In this situation, trust acts as a level of security.

To account for security we have applied levels of community trust and system
security to certify the safety of community interaction while maintaining the flex-
ibility of the DUPE framework. The placement of the security in the framework
is illustrated in Figure 7.1.

Figure 7.1: Security Section of the DUPE Architecture.

7.2.1 Vulnerabilities

There are many different types of attacks carried out on systems connected to
any network. These attacks, or problems, are generally described as viruses or
malicious code. The code sharing nature of DUPE opens a system up to a new
means of acquiring malicious code. However, the problems associated with DUPE
systems are similar to those experienced in internet interaction. We identify the
main problem areas that are exposed by the use of DUPE as:

• Spoofed DUPE members: in this instant, illicit members of a commu-
nity pretend to be valuable member of the community in order gain access
to other members. This might be achieved by using, fake class substitution,
or Class Trojan Horse techniques.

• Class Trojan Horse: a trojan horse is designed to represent a specific
class (resource). A DUPE member may decide to include what seems to be
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a useful and innocent class, however, the class contains additional hidden
code which allows the unauthorized collection, exploitation, falsification, or
destruction of data.

• Direct Attack: in this case, an attack on a DUPE system may be achieved
by trying to gain direct access via the DUPE middleware. This is a standard
networking problem and not specifically associated with the DUPE systems.

• Virus Transfer: the use of the movements of gypsy agents to transfer
viruses throughout different systems. This scenario is potentially the most
damaging to systems, as it allows illicit code to be transferred throughout
communities.

These security problems are extremely dangerous. Each one potentially gives
an intruder the same access to a system’s device as that of the executing JVM.
Depending on the JVM, this level of access could include complete system control.
There are several security measures that we have included within the DUPE
framework which are used to counteract these vulnerabilities. These will now be
discussed.

7.2.2 Security Measures

The security of DUPE is split into two sections: direct security and trust secu-
rity. We acknowledge that trust is generally only seen as precautionary security,
however, common everyday use of the internet indicates that it is seen by the
user to be more than that. For example, it is a common occurrence to find a
certificate attached to a secure web page or Java Applet. If the user wishes to
execute such an application they must identify and accept the certificate as a
security check. Therefore, the user understands that by accepting the certificate
they may be giving the application greater access to their system than is normally
allowed. If a certificate is not verified then the application will be denied access
and its execution will be partially or totally restricted. In this sense, trust in the
certificate provides a wall of security controlled at the user’s discretion.

We have taken the precautionary step of adding a security specification to the
DUPE framework. Many of the techniques used for security have proved to be ap-
plicable to its structure and its cooperation with other DUPE systems. However,
the introspection aspects of DUPE has produced circumstances within systems
that are abnormal for standard system configuration, consequently, some secu-
rity techniques will prove impossible (or nearly impossible) for some framework
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implementations.

We will now look at the Security Manager and its use of Policy restrictions that
aid the security of DUPE and explain how they are used. We will also explain
how full security control can limit a DUPE system’s overall functionality.

7.2.3 Policy Restriction and Security

Java’s security policies can be implemented to define a Security Manager in order
to provide security for many distributed techniques. It is used to determine what
can be achieved by an application. For example, java.security.SecurityManager
can check the permissions of sensitive tasks before they are executed. If a permis-
sion is disallowed then a task can not be executed. Using it in this manner the
Java Security Manager can implement a sandbox environment which will limit
some operations [81]. Moreover, this technique provides a more flexible means of
establishing sandbox security control. In a general distributed scenario, all secu-
rity permissions are set as false during an applications execution unless otherwise
specified. This technique is applied to Jini, RMI, Aglet and Applet applications
[42].

The creation of a sandbox security using this technique can also determine the
level of redefinition that a resource is able to achieve within a system. The ca-
pabilities of this technique are best seen through their use in Aglet security [62].
Aglets1 are one implementation of the Mobile Agents that we discussed in Section
3.5. They are a Java specific technique which makes use of web access and the
JVM. Aglets use Policy permissions to determine the level of access an Aglet has
to the host system; for example, file access permissions. They are also used to
determine the level of protection granted to an Aglet; for example, permissions
to dispose or dispatch an Aglet.

7.2.4 DUPE Policy Control

As a result of DUPE’s use of Jini the same security measures are applicable; in
particular, policy specification permissions. The Policy setup within the DUPE

1It is not necessary for us to describe Aglets in detail. For full details see IBM Aglets [54]
or Lange and Oshima [62].
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framework uses Java Security Managers to control the permissions of a DUPE
system during execution. There are several permissions that need to be allowed
for needs of the DUPE middleware during execution. They include:

• read and write access to all configuration files

• access to the Jini multi-casting addresses

• socket access for all Jini ports, and

• class redefinition access (if appropriate).

However, a target application may require different policy details. Therefore, the
DUPE specification (Appendix A) states that there must be two separate sets of
Permissions active during a DUPE system execution:

• a Permission set governing the DUPE middleware, and

• a Permission set governing the target application.

The specification further states that, if possible, the Permission set for the tar-
get application should be split further into two, leaving the DUPE systems’s
execution with three Permission sets:

• a Permission set governing the DUPE middleware,

• a Permission set governing local classes of the target application, and

• a Permission set governing downloaded classes of the target application.

Within all of these Permission sets, the most obvious permissions, as listed by Sun
Microsystems [101], which should be enabled cautiously within DUPE systems
are2:

• java.security.AllPermission

• java.security.SecurityPermission

• java.io.FilePermission

2The noted types of permission are those seen at the time of writing to be the most dangerous
for DUPE systems. However, other permission types may later be found to be of concern.
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• java.lang.reflect.ReflectPermission

• java.util.PropertyPermission

• java.lang.RuntimePermission

Individually, most of these permission types will be controlled simply. Ideally
DUPE would enable its permissions in a similar manner to Aglets. In this aspect,
restricting common permissions, such as java.io.FilePermission, is standard
for all distributed applications. Therefore, we see that restricting their use is
not detrimental to the execution of an application. However, if it occurs, user
preferences may be used to enable these permissions.

This is an important feature of any DUPE implementation, without it a target
application may receive permissions that are not appropriate; for example, the
target application may have access to all DUPE configuration files. The extent
of the security of a framework implementation is a design feature, or a execution
user preference. A simple example of the permission distribution for a DUPE
System is provided in Table 7.1.

DUPE Middleware java.security.AllPermission

Local Classes java.io.FilePermission ...

java.lang.RuntimePermission ...

java.net.SocketPermission ...

...

Downloaded Classes java.net.SocketPermission ...

javax.net.ssl.SSLPermission ...

...

Table 7.1: Example DUPE System Permission Distribution

However, in a trusted environment the Permission sets may be set more freely;
for example, it may be appropriate to set the DUPE middleware permissions as
java.security.AllPermission in a safe work community.
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7.2.5 Class Loader Redefinition Security

Further to the common security precautions set out by the DUPE specification,
there is one unique problem which restricts the execution of a DUPE System.
The problem lies in the definition of class loaders. Class loaders, subclasses of
java.lang.ClassLoader, are the only objects within the JVM which are able
to define new classes and associate new Java Permissions (java.security.-
ProtectionDomain) [42]. This means that, if security allows for class loader
definition, a new, or redefined class loader, is able to go beneath the DUPE secu-
rity structure and add additional permissions. These permission can be used by
any subsequent class that the class loader defines. This enables them to open up
the entire application to unwanted attacks and intrusion. Furthermore, the class
loader can redefine permissions, to enable any permissions that should remain
blocked during a DUPE system’s execution; for example, the class loader may
enable java.security.AllPermission for any downloaded class.

As a result of this problem, other, less obvious, permissions that ideally would
be released for the DUPE framework, must remain restricted. These permissions
are from the java.lang.RuntimePermission. The most detrimental from this
group include:

• RuntimePermission.createClassLoader

• RuntimePermission.setContextClassLoader

• RuntimePermission.setSecurityManager

• RuntimePermission.createSecurityManager

• RuntimePermission.exitVM

• RuntimePermission.getProtectionDomain

• RuntimePermission.accessDeclaredMembers

This problem is not unique to DUPE. The ability to install a class loader in other
distributed Java techniques, such as Jini and Aglets, would still cause problems.
However, these techniques simply restrict class loader installation as it is not
seen as a disadvantage to do so. However, we want DUPE implementations to
manage any application not only applications adapted for mobile distribution.
Consequently, disallowing the creation of a class loader is disadvantageous as it
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would limit the number of applications that could be run. For example, a DUPE
Community may exist in a home network where several larger devices, such as me-
dia centre or PC control, require advanced application capabilities (this scenario
is further explored in Section 11.7). Class loader definition is therefore necessary
for the DUPE middleware. Moreover, without this capability the framework is
unable to define the DCLS and a DUPE execution will terminate. The separa-
tion of security policies with the framework enables this to occur. However, the
problem will still remain for the target application.

There is a way around this problem. However, as far as our research indicates,
it is only manageable within one JVM with dynamic updating capabilities: the
J2SE 1.4 HotSpot JVM using the JPDA structure for dynamic updating [99].

The introspective mechanism of the HotSpot JVM allows an application to watch
the entire proceedings of another application [99]. It is capable of doing so as the
JPDA structure physically watches a separate VM. The effect is that it can trace
the entire execution of a class line by line, this includes the execution of a class
loader. Therefore, a JPDA implementation can specify a watch on all ClassLoader
instances, and look for unwanted code such as setSecurityManager(...) calls
to the SecurityManager. In fact it is possible to watch for all calls to the Securi-
tyManager. This means that it is able to stop a class loader if it is attempting to
enable security permissions that should remain restricted. Therefore, the DUPE
security Permissions that restrict class loader definition can be replaced by the
JPDA monitoring structure. This security configuration is similar to that ap-
plied to Safe-Tcl [16, 86]. Safe-Tcl uses a dual interpreter mechanism to execute
untrusted code within a safe interpreter and execute trusted code using a master
interpreter [86]. In this respect, the JPDA structure can be seen as a master
JVM controlling the execution of a safe JVM, and therefore, the master JVM is
able to determine if code is executed with full or restricted access.

Other dynamic JVMs, such as DVM and J2SE 5.0, generally execute the target
application within the same VM as the DUPE structure. As a result, they are
unable to control the instantiation of a class loader without restricting it alto-
gether. The class loader definition Permission could be granted, but doing so
would leave the DUPE system with a security flaw. Consequently, it should only
be granted in a trusted community. This difference between the structure of a
JPDA DUPE implementation and others is shown in Figure 7.2.
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Figure 7.2: Dynamic JVM Implementation Separation

Other than using the security Permission to overcome this security problem, a
DUPE implementation is able to simply disallow the loading and redefinition of
class loaders within its structure. For example, in the redefinition and loading
code of the DCM, prior to returning the class object, a simple inheritance type
check may suffice. An example is shown in Figure 7.3.

public Class loadClass(String className){

//locate class details as normal

//define the class withih the virtual machine

Class returnClass = this.defineClass( ... );

//check class for ClassLoader instance

Class superClass = returnClass;

//check all superclasses for ClassLoader

While((Type superClassType = superClass.getGenericSuperclass()) != void){

if(superClassType instanceof Class){

Class superClass = (Class) superClassType;

if(superClass.name().equals(java.lang.ClassLoader){

return null; // or throw Exception

}

}

return returnClass; //passed all tests, return as normal

}

}

Figure 7.3: An Algorithm for Controlling Class Loader Redefinition

However, as the exclusion of class loader redefinition from the DUPE mechanism
presents a restriction to the target system, and, as we identified during the intro-
duction in Chapter 1, one main task of this research is to give any application
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access to DUPE communities, this area remains as a limitation of the DUPE
framework.

In contradiction to all this negative point, the policy control of the DUPE frame-
work is the best solution to the majority of security problems. Yet, as a result of
the class loader policy problem, limitations will persist for most implementations
of the framework, for now.

We have clearly identified in this section, that there are problems within the class
loader monitoring and that class loader redefinitions allow the introduction of
new, overwriting, policy rules. Moreover, as the newly loaded class loader can be
used as the core loading of the new class (as long as the classes are easy to locate),
it is impossible to determine if that class (within its code structure) will introduce
new policy files. However, we maintain that it is possible to control class loaders
and recommend that user selected options should be designed to allow them to
indicate if they wish to exclude all class loaders from redefinition and loading,
or if certificate checks (discussed in Section 7.2.7) must be performed on class
loaders. This would allow the user to choose whom they trust to define a new class
loader or redefine an old one. However, neither of these recommended features is
included in the DUPE specification as it is not perceived that all implementations
will be capable of such tasks. The framework design only includes the details of
standard DUPE policy restrictions.

7.2.6 Recommended Changes to JVM Structure

We will now provide two solutions to the identified short comings of the JVM’s
class loader policy mechanism. Both of our recommendations relate to JVMs with
dynamic updating capabilities in which class loader subclasses have the ability
to introduce new Policy details.

1. Disallow Class Loader Policy Redefinition: remove the ability for
subclasses of the java.lang.ClassLoader class to define new Policy de-
tails and allow the introduction of a new Policy only via the bootstrap
class loader. This is extreme, and although it would solve the problem
it is likely to restrict many applications; for example it will restrict the
RMIClassLoader in RMI applications [105].
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2. New Class Loader Policy Redefinition Policy: define a new Java
Policy that determines if a class loader is allowed to define new policy
details. We believe that this solution is the most appropriate as it allows
applications to define new policy details if required, but also to disallow
them. However, the concern with this solution is the class loader hierarchy;
for example, decisions such as, whether or not a new policy level is based
on that of the instantiating class loader. It may be that these settings are
specific to the application, or in fact the JVM. However, we do suggest that,
across the board, the base class loader should determine all initial settings
of policy redefinition. Therefore, any subsequent restrictions may be a case
by case scenario.

These solutions are only what we see as possible ways to end the problem; other
solutions may exist. However, no matter what the final solutions are, we main-
tain that with simple alterations to the class loading capabilities of a JVM, the
safety of DUPE community interaction would be significantly improved. This is
identified as future work in Section 13.1.

7.2.7 Digital Certificates

Certificates provide a simple means of trust to many internet applications. It is
common to verify a certificate prior to using secure sites on the internet, using
Java Applets, or when installing new applications on a systems. The last of these
activities is, to the larger extent, what is achieved by DUPE, and therefore, we
reason that certificates can, and should, be used as a means of identification and
trust for all DUPE resources.

A common practice for distributed applications is that each jar file is signed by
one or more certificates [109]. This allows for the verification of class details by
using the Public Key Infrastructure (PKI). In this technique, a digital certificate
is a binding of a public cryptographic key to an identity. The public key is found
within the certificate and is used to verify that the signature associated with a
class was created using the private key of the sending party (the identity). The
key is also then used to verify that the class details remain unchanged from the
time of the signature’s creation and association. This process can be repeated us-
ing multiple certificates in a certificate chain. When using a certificate chain, not
all certificates are used to verify class bytes. Instead, other than the initial cer-
tificate which is associated with the class, they validate another certificate from
the chain. Therefore, as each certificate in the chain is verifiable, it is possible to
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verify back through the chain, from the initial certificate, until a trusted author-
ity is reached. This trusted certificate can be seen to verify all the certificates
in the chain as trusted, including the one used to sign the class. For simplicity,
we will refer to this PKI technique as PKI verification for the remainder of the
section.

The PKI verification should be applied to any implementation of the DUPE
framework. The certificates are gathered within the DUPE structure as java.security.cert.-
Certificate objects. These objects, as previously defined in Section 5.6.3, then
become part of the DynamicClassEntry instances within the DSO and eventually
part the DynamicClass object representation of a system resource. Furthermore,
as the main purpose of a DSO is as a remote class representation within a DUPE
community, each class should be individually signed.

The verification of DSOs and their contents is a two stage multiple-step process.
The initial stage occurs the first time any DUPE system gathers the class details,
that is, the first time a class is obtained from the Jar file and not via a DUPE
resource. The steps involved in this process are:

1. Locate appropriate Jar file.

2. Analyse certificates associated with all classes within the Jar file and, if
appropriate, those associated with the entire Jar file. If there are no cer-
tificates for a class user preferences will determine the action taken by the
system. The default action of all DUPE systems should be to treat the
class as hostile and not to use it.

3. Determine if the certificates, more specifically the signing certificate from
the chain, are appropriate for this DUPE execution. The certificates appro-
priateness may be determined by either questioning the user or, preferably,
preset settings. (Steps 2 and 3 are used to speed up the adaptation pro-
cess by immediately eliminating classes signed, or not signed, by specified
identities).

4. Verify the class bytes using PKI verification.

5. Load the associated class bytes.

6. Create the DynamicClass within DUPE associating the certificates, at-
tributes and class bytes with each other.
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7. Advertise a newly cerated DynamicClassEntry within the systems associ-
ated DSO, including the certificate information for quick community pro-
cessing.

As a result of DUPE community interaction, once the first stage has been com-
pleted, other systems are able to gather the resource and its associated certifi-
cate(s). The second stage steps are:

1. Discover the appropriate DSO object as a result of community events or
internal requirements.

2. Search the DSO for appropriate DynamicClassEntry (appropriateness is
initially determined via class name and adaptation requirements).

3. Analyse associated certificates in the same manner as in stage 1 steps 2 and
3. (As with stage 1 steps 2 and 3, here step 3 is provided to speed up the
system adaptation process).

4. Once a DynamicClassEntry is found to be both appropriate and trusted
according to certificate checks, the full resource is downloaded.

5. Verify the DyanmicClass details received from the resource, including PKI
verification of the class bytes.

6. Use the class bytes to either define a new class or redefine a current class.

These two stages give a DUPE community a a level of trust; including a pre-
liminary check and a discovery check. Moreover, when gathered remotely, all
resources are checked twice, both for initial trust prior to class gathering, and for
final verification before any resource is included within the systems structure.

However the use of certificates remains an issue and research area in itself. Specifi-
cally within the DUPE framework, there is a requirement to trust the initial signer
of the remote class. That is, there is a requirement for the identities within the
certificate chain to be already known to the system, or trusted by the system.
In DUPE this requirement can be bypassed by setting the security setting to
localised settings, such as those required for local adaptation (an example of such
adaptation is provided using a tourist scenario in Section 11.8). Unfortunately,
there remains a possibility of unsolicited code entering the system in such an
environment. The extent to which a user is deterred by this possibility will de-
termine the level of security applied during a single execution of a DUPE system.
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Nevertheless, some issues concerning DUPE’s trust and security, in particular
those related to the use of certificates, are seen as future work related to this
research (Section 13.1).

7.3 Adaptation Controls

Adaptation controls enable DUPE systems to adapt according to the version of
a resource that is most appropriate and available within reach of a system. This
feature is helpful when DUPE is used for the removal of errors, the addition of
extra features to a system, or the running of community specific algorithms. Fur-
thermore, as the evolution of systems is an internal linking process, a change in
the version of one resource can lead to the need for a new resource, or the up-
date of another. A single adaptation process may initialise a system to adapt, or
evolve, based on how many more resources are found within the community. The
location of the adaptation control within the DUPE model is shown in Figure 7.4.

Figure 7.4: Adaptation Control within the DUPE Architecture.

Version manipulation within Java systems is generally achieved through use of
a jar file version attribute, as used, for example, in Web Start [109]. DUPE
is based on the discovery and use of other systems’ resources and consequently
class discovery is not necessarily confined to jar files. However, for simplicity
and adaptation control, DUPE requires all files to be in jars. This allows the
version attribute of a class to be assigned during any type of component gathering,
including:

• Loading via classpath: as the application is initially contained in a jar
file as each class is obtained, so too are its associated attributes. DUPE is,
therefore, able to easily gather all required information and store it as part
of the DynamicClass and DynamicClassEntry.
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• Loading via JVM: at times it may be best to load a component directly
from the source system’s JVM. This system has obviously loaded the com-
ponent at some stage itself, storing and linking the attribute details.

• Personalised loading: as a target system has the ability to load classes in
its own unique manner, the framework specifies that all systems provide at-
tribute details for each class. Conceivably, personalised loading techniques,
for example URL based class loading or internal search class loading, make
use of jar files. It is, therefore, reasonable to assume that they also have
access to the manifest details.

• DUPE class loading: the information obtained when gathering a class
within a DUPE community contains a copy of its original attributes. There-
fore, the attributes can still be analysed and stored within the structure of
the downloading DUPE system.

During the execution of a target system, the continual upkeep and referencing of
the resource attributes is essential to system adaptation. Moreover, this is also
an essential component in maintaining the security aspects of DUPE systems.

7.3.1 Adaptation Reasoning

In order for a DUPE system to control its adaptation, all DynamicClassEntry
objects contain details that differentiate them from other versions of the same
resource. A system can use this information to carry out an analysis using its
own adaptation rules to determine if it should use a resource.

There are many different reasons for change; for example, a system may wish to
evolve in accordance with the version that is commonly used within a specific
community, location based, adaptation. In this example, a system would proceed
with adaptation irrespective of any version identifier. Therefore, system adap-
tation relies on the particular settings of the resource and its own adaptation
settings. Moreover, each DUPE system should have its own adaptation settings
specifically selected according to the wants of a user.

We will now describe the adaptation process beginning with resource identifica-
tion and moving to the use of the identification.
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7.3.2 Setting Resource Identification

Class identification can be set by using the attributes of a manifest file that is
associated with a jar file [95]. Using multiple class names within the manifest
allows it to detail each specific class that exists in the Jar file. These details can
then describe the entire package.

A manifest file provides a means of identification to all the files associated with
a jar file. The manifest is used to describe the version and other specific details
of each class, such as the vendor of an entire package. DUPE makes use of this
feature to determine the adaptation identification of all community resources. It
uses multiple names within the manifest to describe the version of each specific
class. An example of the manifest file, disney.mf, which can be used within a
DUPE enabled system is presented in Figure 7.53.

Manifest-Version: 1.0

Name: duck Name: duck.Donald

Specification-Title: Ducks Specification-Title: Ducks

Specification-Version: 2.12 Specification-Version: 2.13

Specification-Vendor: A.Ryan Specification-Vendor: A.Ryan

Implementation-Title: Duck1Melb Implementation-Title: Duck1Melb

Implementation-Version: 2.12.78 Implementation-Version: 2.12.23

Implementation-Vendor: Ryan Implementation-Vendor: Ryan

Name: duck.Daisy Name: mouse.Mickey

Specification-Title: Ducks Specification-Title: Mice

Specification-Version: 2.13 Specification-Version: 4.11

Specification-Vendor: A.Ryan Specification-Vendor: A.Ryan

Implementation-Title: Duck1Melb Implementation-Title: Mouse1CA

Implementation-Version: 2.12.1 Implementation-Version: 13.12.18

Implementation-Vendor: Ryan Implementation-Vendor: Ryan

Figure 7.5: disney.mf

Within the manifest details, a general adaptation identification set will apply to
all classes except those signed with specific adaptation details. For example, if
Disney.jar contains, amongst others, duck.Donald and an additional four Java
class files: duck.Huey, duck.Dewey and duck.Louie, and the attributes of each
class is determined by the manifest file disney.mf (Figure 7.5) the adaptation
details of each separate class will be different. For example, all the files will

3A manifest file should be written vertically, however, for the purpose of simplicity, Figure
7.5 does not comply with this requirement.

151



Chapter 7: Security and Adaptation

have the Specification-Version 2.12 as determined by the duck package identifi-
cation, except for duck.Donald, which has its own Specification-Version of 2.13.
The same holds for all other identification values. This allows DUPE systems
to determine the details of each and every class, even if one or more are not
individually identified.

7.3.3 Finding Resource Identification

We have iterated, constantly, that the information for all exportable DUPE re-
sources on a host system is contained within an associated DSO, and, that these
resource details are in the form of a collection of DynamicClassEntry objects. In
Section 5.6.3 we discussed how the DynamicClassEntry object is a direct rep-
resentation of a class available as a resource on the host DUPE member (the
contents of the DynamicClassEntry were given in Table 5.2).

Within the DynamicClassEntry there exists the attributes variable of type
java.lang.String[][] (see Table 5.2 for details). This variable stores the at-
tributes that were assigned to a class by its initial manifest file. Each array
element consists of two values: attributes[i][0] element is the attribute iden-
tifier and attributes[i][1] element is the value assigned to the attribute. Both
variables are stored as a String representation of the actual value. For example,
the attirbute value Specification-Title:Ducks is stored as:

attributes[i][0] = "Specification-Title"

attributes[i][1] = "Ducks"

As already mentioned, DUPE system adaptation is not constrained to simple
version upgrades. We further this to specifically point out that, situations may
occur where an older or more specific version of a class is more applicable. For
this reason, the user of a system is given some control over their adaptation set-
tings. This allows them to specifically dictate how their DUPE system adapts.
To accommodate this requirement, all attributes are represented as a two di-
mensional String array element. This enables DUPE systems to create different
types of adaptation attributes. For example, a company may create their own
attributes and assign them to resources. If a system understands, or is able to
notify a user of these new attributes, it can adapt correctly. Otherwise, a system
that is unable to flexibly add attributes to its attributes list would ignore the
attribute and adapt according to those it knew.
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The adaptation attributes are based on the attributes found within a manifest
file. The standard list of manifest attributes are shown in Table 7.2.

Specification Details Implementation Details

Specification Version Implementation Version
Specification Title Implementation Title
Specification Vendor Implementation Vendor

Table 7.2: Standard Attributes in a Manifest File

All attributes are analysed, separately. This allows each to be analysed at indi-
vidual stages and according to individual rules.

The flexibility of adding attributes to a knowledge list of a DUPE system would
be part of its specification. Therefore, users who desire this ability can use a
particular implementation whilst others may choose a simpler one. For example,
an embedded system is likely to be strict on its attribute understanding and only
adapt according to the attributes it originally knew about; however, an advanced
mobile device such as a PDA could be more flexible and provide the user with the
option to select new attributes to include as part of their structure, and determine
the rules for their adaptation.

7.3.4 Using Resource Identification

The attributes supplied by a manifest file must initially be gathered by a DUPE
system via the original Jar file. This stage is only ever carried out by the system
which will gather the class for the first time either loading the class during stan-
dard execution or accessing it from the file system as a result of a DUPE request4.
The manifest details can be obtained by using the java.util.jar.Attributes

class and its static nested class java.util.jar.Attributes.Name [102].

The DUPE system will store all attributes of each class as part of a representing
DynamicClass. How the attributes are saved within the framework is specific to
each implementation. For example, embedded systems may find it beneficial to
store them as a java.lang.String[][] variable for storage reasons. More com-
plex systems may use the added benefits given by the java.util.jar.Attributes

4As a system can load classes via specialised class loaders, it is assumed that all classes are
gathered from a Jar file and that the manifest details of the Jar are available to the system.
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class. No matter how a system stores the information, it should only be included
in the DynamicClassEntry and the DynamicClass that is passed throughout the
community as a two dimensional String array variable (according to the previous
section).

Once the attributes are obtained as a result of a community search, within a Dy-
namicClassEntry, they should be used according to individual adaptation rules.
Although a system maintains its own rules for adaptation the process of adapta-
tion reasoning should make sure that all rules are adhered to. The incorporation
of a simple algorithm that flows through all attributes and assesses each is rec-
ommended. An example is provided in Figure 7.6.

begin checkNewClassVersion (String[][] newAttributes, String[][] currentAttributes)

int checkedCount /*how many attributes were set to be chencked*/

int passedCount /*how many attributes checked and passed*/

/*loop through and check all the attributes*/

for each currentAttribute

/*if using attribute for adaptation check*/

if checking currentAttribute

checkedCount++

for each newAttribute

if newAttribute same type as currentAttribute

/*adaptation check*/

if newAttribute better then currentAttribute

passedCount++

end if

break

end if

end for

end if

end for

if checkedCount = passedCount /*passed all adaptation checks*/

adapt to new resource version

else

do not adapt and ignore new resource version

end if

end checkNewClassVersion

Figure 7.6: Example Adaptation Algorithm
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7.4 The Limitations of DUPE Safety

As a result of the detailed description of DUPE’s security and adaptation con-
trols, there are several restrictions on a target applications.

• All target applications must have been loaded from within a Jar file at some
stage. This Jar file must have an associated Manifest file that details the
version status of all class files. Without this detail, the DUPE adaptation
components cannot be set.

• Some DUPE implementations may limiting class loader redefinition; as dis-
cussed in Section 7.2.3.

7.4.1 Constructing Target Application

As highlighted in the earlier chapters of the thesis, there should be no constraints
placed on a target application of the framework. (Although, we do note some
small restrictive observations during our implementation testing (see Chapter
11)). However, for security and adaptation purposes, there are several compi-
lation and distribution elements that must be applied to all target applications
participating as DUPE members.

All DUPE framework implementations require several aspects of a target appli-
cation to be correct. These are:

1. The application must be compiled using javac with the -g option. This
option is necessary for class updating within some JVM’s, for example
J2SE 5.0. It will not, however, affect the execution of the system in any
way within other JVM’s.

2. The application must be contained in a signed Jar file and stored in the
trusted section of the DUPE file structure. This section of the DUPE file
structure is generally the dupe/trusted folder; however, this may vary
according to implementation features.

3. The application’s associated Jar file must have an associated Manifest file
containing all adaptation information.
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4. The Jar file must be signed with a minimum of one certificate.

These requirements are necessary for a target system. We believe that they are
not unreasonable requests. It is standard procedure to have some slight variations
on the compilation and execution of distributed systems. Therefore, all these
requirements should not pose a problem to any system.

7.5 Summary

This chapter has addressed the aspects of the DUPE framework that create con-
cern: security and adaptation reasoning. By clearly specifying security require-
ments, we have attempted to resolve the more precarious aspects of the DUPE
framework.

One interesting point that is discernible from our discussion on DUPE’s security
and reasoning, is that DUPE is susceptible to many of the same problems that
are generally associated with internet and email applications. We argue that it
is possible to control the means by which a system will adapt to a community
and, therefore, it will maintain a secure environment via trust and security bar-
riers. At the same time, we also point out that policy control, a seemingly large
defense against intrusion, can only be applied to particular implementations of
the framework without restricting the use of DUPE. This is not to say that the
security of the DUPE system is highly flawed. We only indicate that without
extensions to the JVM specifications, we can not provide DUPE systems with
unquestionable security and protection from unwarranted attacks. However, this
is no different to most other system cooperation methodologies.

This chapter is the final chapter of the design sections of our work. The remain-
der of the thesis focuses on framework implementations, their evaluation and
modeling the movements of gypsy agents.
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Chapter 8

DUPE Lite Implementation

8.1 Introduction

The next three chapters will provide the technical and reference details for three
implementations of the DUPE framework. These are:

• DUPE Lite: a limited implementation with no redefinition capabilities
designed for standard JVMs.

• DUPE 5.0: a complete implementation using J2SE 5.0 JVM.

• DUPE JPDA: a complete implementation using J2SE 1.4 HotSpot JVM1.

Although, the different versions of DUPE were programmed separately, we have,
mostly, used the same package structure. For example, as specified by the frame-
work design, all versions use Jini (v1.2). Furthermore, as we have designed the
implementations to be as similar as possible, it enables us to more accurately as-
sess the differences in the finer details of the structures. Using the same structure
for all implementations, enables our testing to be more accurate. However, even
though there are several similarities within their code structures, the differences
in the coding techniques for each particular JVM, significantly determine how
each may be used. For example, only DUPE JPDA and DUPE 5.0 are able to
dynamically alter the state of a targeted system during runtime. DUPE Lite is

1The HotSpot JVM is also available within J2SE 5.0, however, J2SE 5.0 provides other
means of dynamic class updating and instrumentation and consequently J2SE 1.4 is used for
this framework implementation.
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limited to load-time adaptation.

As mentioned, there are aspects of all implementations that are the same. These
parts of the implementations will not be repeated from chapter to chapter. We
will identify, in each chapter, the sections of the framework, according to the
framework design in Chapters 5 and 6, and the security and adaptation discussed
in Chapter 7, which are specific for the implementation. All other sections of the
framework carry on from preceding implementation chapters. For each implemen-
tation, initially, where appropriate (Chapters 9 and 10), we provide a detailed
technical analysis of the corresponding JVM2. The details of the DUPE imple-
mentation then follow.

We begin in this chapter with DUPE Lite.

8.2 General Features of DUPE Lite

DUPE Lite is a limited implementation of the DUPE framework. As such, it
is not able to fully achieve all the features described in the framework design
chapters, in particular, runtime dynamic adaptation. The other two core aspects
of the DUPE framework, Distributed Connectivity and Community Cooperation,
are implemented by DUPE Lite; however, DUPE Lite is only able to adapt to a
community using a stop-start technique. This is a direct result of our choice in
JVM. However, DUPE Lite advertises all its resources in a DUPE community and
therefore, from a language cooperation aspect, is DUPE compatible. Therefore,
according to our DUPE compatible requirements from Section 6.5, it remains a
limited DUPE middleware.

Although, these limitations restrict its adaptation, they do not restrict any other
section of the framework. All framework implementations will be most restricted
by their choice of JVM as this is essentially the most individual section of any
implementation. The limitations of the DUPE Lite are present because we chose
to use a standard JVM, moreover, DUPE Lite shows that, even if a DUPE
middleware can not dynamically update classes during runtime, it may still com-
municate within a DUPE community. The exploration of the possibilities that
arise from this concept are identified as future works (Section 13.1).

2General discussions on Virtual Machines are provided in Chapter 2

158



Chapter 8: DUPE Lite Implementation

DUPE Lite maintains all DUPE community discovery specifications, as discussed
in Chapters 5 & 6, by implementing all relevant interfaces, and constructing the
DynamicClassEntry class and all requirements of the DSO. Table 8.1 provides
the package list for DUPE Lite. The table identifies the name of each package
and details its purpose.

Package Details

dupe Base package of DUPE contains startup file.

dupe.common Holds the common classes that are used in other
packages.

dupe.config Configuration setup classes. Acts as a separate
application.

dupe.discovery Community Management (DCLS).

dupe.security Security Control.

dupe.versioning Adaptation Reasoning.

Table 8.1: Package Structure for DUPE Lite

The dupe.common package provides the most common classes that do not belong
in a specific sector. At this stage, this package, within all DUPE implementations,
includes only the dupe.common.DynamicClass class. DynamicClass is the direct
implementation of the DynamicClass of the framework. It contains the basic
information required for safe adaptation of classes and only includes the variables
that were specified in Table 5.4.

8.3 Implementation Construction

We will now discuss the technical aspect of this implementation according to the
DUPE framework design listed in Section 5.1. The structure of this implementa-
tion is shown in Figure 8.1.

DUPE Lite maintains, as closely as possible, the exact DUPE framework design.
However, some sections of the design are affected by limitations of the implemen-
tation. These are shown in red in Figure 8.1. All other requirements of a DUPE
compatible middleware remain, making intercommunication with other DUPE
systems, possible.

During the discussion on the DUPE Lite implementation, and in fact all of the
implementations, we will identify only the key classes. Although, there may be
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Figure 8.1: Structure of DUPE Lite

instances during the discussion where a class also requires the analysis of another
smaller class that has not been identified. The sections are written so as to
provide the necessary information without confusing the reader’s image of the
implementation structure.

8.3.1 Distributed System Communication and Code Shar-
ing

The core elements of the Dupe Class Loading Structure (DCLS) are implemented
within the dupe.discovery package. This section of the framework contains all
classes used for DUPE community interaction. This package is developed in the
same manner within all of our DUPE implementations. Many classes within the
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package are a result of Jini requirements. We will now discuss each of the core
classes of this package. These details remain the same for all implementation
chapters.

DUPE Class Loading Structure (DCLS)

The most important class of this section, and throughout the entire implemen-
tation, is dupe.discovery.RemoteUploadClassLoader. RemoteUploadClass-
Loader (RUCL) implements the essential interfaces for DUPE connectivity, dupe.-
discovery.RemoteClassLoader and dupe.discovery.RemoteClassLocator, as
well as being a subclass of the ClassLoader class. RUCL is DUPE’s main class
loader and provides all other sections with the information relating to the classes
of the target application. The RUCL controls the instantiation of the classes;
it also indicates to the Dynamic Class Manager when a class cannot be located
locally and triggers a community search. This is only achievable if it has a direct
connection with the bootstrap class loader of the target application.

DUPE Service Object (DSO)

The DUPE Service Object (DSO) is designed exactly as specified by the frame-
work. It is established using the LoaderType and DynamicClassEntry classes
located within the dupe.discovery package. The complete details of the DSO
were provided in Section 5.6.3. (These details are also in the DUPE Specification,
see AppendixA.).

Proxy Gateway

The proxy gateway design allows a searching system to access the full resource
details of other DUPE members. When a resource is wanted by a DUPE mem-
ber, it will make use of the known RemoteClassLocator interface available via
the DSO. This interface is also implemented by the RUCL so that a searching
system can call specific methods via the proxy to gather the details of any class.
Specifically, the interface method generateDynamicClass(...), as was detailed
in Section 5.6.3, is executed.
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The proxy gateway is supplied to the DUPE system via a dual level class mech-
anism which joins the DSO to the rest of the structure. Two classes pro-
vide this mechanism, dupe.discovery.RemoteClassLoaderGateway and dupe.-

discovery.RemoteClassLocatorProxy. As the searching system must make
sure that it is not calling any remote methods on itself, this technique is es-
sential.

Target Application

The target application is governed via the DCLS. This allows the target applica-
tion to utilise all the elements of the DUPE middleware, and for the middleware
to access all the required information of the target application. The initialisation
procedure of the target application is as follows:

1. An application is started within DUPE Lite using a command such as:

java dupe.Dupe -Djava.security.policy=d:\dupeLite.policy

-Djava.rmi.server.codebase=http://192.168.0.100:8080/

coffeeMachine.CoffeeMachineGUI 192.168.0.100

where the line follows the procedure:

java dupe.Dupe -security_options -jini_options

target_application arguments_for_target

2. DUPE Lite will initialise the target application within its own structure.
Consequently, all settings applied to the target application will be avail-
able for the target application but contained separately from the settings
applicable to the middleware. This is in accordance with the security spec-
ifications in Section 7.2.3.

3. The target application is then initiated, via reflection, using the RUCL as
its bootstrap class loader.

4. During the progression of the target application, all classes are loaded by
the RUCL. This is then able to provide the rest of the structure with all
necessary class information.
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8.3.2 Dynamic Systems Alteration

This section of the DUPE Lite implementation is restricted. DUPE Lite does
not allow for runtime dynamic class updates, and as a result of this, it can not
achieve runtime system adaptation. This, is a direct result of JVM choice of a
standard J2SE 1.4 JVM.

However, DUPE Lite is able to adapt to a community at load-time. This means,
that if an application is started within the proximity of a DUPE Community,
it is able to search through the community resources for appropriate classes.
Therefore, some constructs of the Class List Manager remain, and it continues
to use DynamicClass objects for resource purposes. This will now be discussed.

DynamicClass

The DynamicClass is structured exactly as defined in Section 5.7.3. For all our
implementations, we use the class dupe.versioning.SerializableAttributes
to hold class attributes3. The complete details of the DynamicClass were dis-
cussed in Section 5.7.3. According to these details, when transferred among
DUPE systems, the SerializableAttributes variable of the DynamicClass details
is altered to a java.lang.String[][] variable.

Class List Manager

The Class List Manager (CLM) implementation uses a java.util.HashMap for
the storage of all DynamicClass objects (this remains for all our DUPE imple-
mentations). The CLM provides very restricted access to this collection and
maintains all references to each class as required. In the DUPE Lite implementa-
tion, the CLM is far less complicated than in our other implementations. There is
no need for it to redefine the details of DynamicClass objects as they are never al-
tered during runtime. Therefore, the CLM’s initial version of each DynamicClass
remains throughout execution of the system.

3The SerializableAttributes class was originally designed to allow DUPE Lite to be imple-
mented as a distributed updating technique. However, this concept proved to be outside the
scope of this thesis and has been identified as future work. Nevertheless, we continue to use
the SerializableAttributes class as it is not detrimental to the DUPE community cooperation
aspects of the implementation and may be used for future extension purposes.
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8.3.3 Community Interaction and Cooperation

The interaction of a DUPE system in the community is established using the
event mechanisms provided by the Jini service object (the DSO). According to the
DUPE compatibility requirements (Section 6.5), this section of the framework is
specific and must be the same for all DUPE implementations. As a result of this,
all implementations include the required aspects of the DSO and its associated
classes; however, here, we will not reiterate all associated constructs in full. For
the complete details see Chapter 6 and Appendix A.

Discovery Manager

The Discovery Manager is the Jini hub of the implementation. It is designed to
constantly discover communities and register the DSO within all communities.
As the framework specifies, the Discovery Manager establishes a Community
Observer for each interacting DUPE community and provides access to all com-
munities.

Community Observer

The Community Observer watches the DUPE community by listening for DUPE
community events. It is able to check all resource information prior to accessing it
for any class redefinition. And, as a result, all class details are synchronized in the
appropriate places so as to maintain the internal safety of the implementation
during execution. In the DUPE Lite implementation the community observer
only analyses community events during startup, as runtime events are useless
to the middleware. However, DUPE JPDA and DUPE 5.0 continue to listen
for community events throughout their entire execution. All the DUPE imple-
mentations are capable of permanently saving discovered class details for future
application executions; user preferences can be set to control this feature.

Event Generator

All community events are created via the Event Generator. The Event Gen-
erator uses the Discovery Manager to aid this task. The loading of a new
class, either from internal class details or externally gathered details, (the calling
of loadClass) will, once completed, trigger the event to update all advertised
DSO’s, which will in turn create community events.
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The details to update the DSO are provided to the Event Generator in the form
of a DynamicClassEntry from the DCM. Consequently, there is minimal compu-
tation achieved within the Event Generator to create the actual event. This is
designed as such to lower the computation timing that is required for this task.

If possible, once an event has been generated, a system should remain connected
to the community to enable other members to gather the new resource details.
However, once one other member gathers the resource, that creates another place
from which the resource can be gathered, and so forth. This chain reaction will
produce many events; however, as detailed by the framework in Chapter 7, they
will all be ignored by systems that have already loaded the resource requirements;
they will also be ignored by all members not wanting the new resource details.

8.3.4 Security Control

Before any reloading of a class, the security settings of the implementation are
verified. All the security aspects of the framework implementation are within the
dupe.security package, and have been implemented according to the security
specifications given in Chapter 7.

The security specifications consists of verifying signatures and the checking of se-
curity certificate chains. The security mechanisms are constantly checked through-
out all operations of community cooperation of the DUPE system, particularly
by the Community Observer (via the DCM) as it is the first point of entry for
all resources. Configuring the appropriate settings for the security of the DUPE
structure is explained in Section 8.4. Most of the security features of DUPE
Lite are not changeable. You cannot turn off certificate checks as these are not
only beneficial to a single system, they are also essential for the maintenance of
trust throughout a DUPE community. The definition of a class loader, using
downloaded code, is the only aspect of security that may be altered by a user.
Allowing this to occur is only a risk to the user’s system, and will not affect the
execution of other community members.

8.3.5 Adaptation Control

The adaptation section of the implementation is the most accessible to a user.
All other sections of DUPE Lite are configured for specific purposes and are not
governed by a user in any way, except for the alteration of some security measures
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(although this should always be done cautiously). As we discussed in Section 7.3,
there are many different reasons for system adaptation, and these reasons should
be based on the specifications of the manifest file class identifications.

The package dupe.versioning contains all the required classes to allow the
framework to govern its adaptation, and the setting used within this package
can be reached through use of the configuration interface (Section 8.4). The
initial adaptation settings can be applied as the main identification attributes
within the manifest file. These are presented in Table 8.2.

Specification Setting Details

Specification Version Can be set to allow only evolutionary change.
For example, a class with the Specification Ver-
sion number 23.01 will only adapt to a resource
with a version number greater than 23.01.

Specification Title Is used to control and specify that a new re-
source must be from exactly the same Specifi-
cation Title. This is set to ‘true’ for situations
where manufacture title identification is neces-
sary, and should be ‘false’ to maintain a more
flexible adaptation such as adapting according
to location resources.

Specification Vendor This should be used in a similar manner to
the Specification Title, however; it creates even
more restrictions by maintaining the vendor of
the original class. A false setting is recom-
mended within a trusted community as it pro-
vides a system with a wider range of resources
to use for adaptation.

Implementation Version This is used in the same manner as the Spec-
ification Version except it is applied to Imple-
mentation details.

Implementation Title This is used in the same manner as the Specifi-
cation Title except it is applied to Implementa-
tion details.

Implementation Vendor This is used in the same manner as the Specifi-
cation Vendor except it is applied to Implemen-
tation details.

Table 8.2: Adaptation Settings for DUPE Lite
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8.4 Configuring DUPE Lite

Two different techniques may be used to alter the configuration of DUPE Lite.
These techniques are:

1. using the supplied GUI interface, or

2. altering the DUPE configuration files within DUPE’s bin directory.

Essentially, both methods will result in altering the DUPE configuration files
within the dupe/bin/ directory.

The configuration files (in the form of name.cfg) detail the information that
DUPE Lite uses to control its adaptation. For example, the adaption control file
dupeVersioning.cfg (shown in Figure 8.2) controls the adaptation settings for
any DUPE execution.

#Wed Sept 10 15:42:01 EST 2005

SPECIFICATION_VERSION_CHECK=true

SPECIFICATION_VENDOR_CHECK=false

SPECIFICATION_TITLE_CHECK=false

IMPLEMENTATION_VERSION_CHECK=true

IMPLEMENTATION_VENDOR_CHECK=false

IMPLEMENTATION_TITLE_CHECK=false

Figure 8.2: dupeVersioning.cfg

The details within the files are stored in the format that is produced by the
java.util.Properties class, as this is used to manipulate Attribute objects in
a Java application. Using this technique results in a simplification of configuration
and also provides a format for the configuration files.

8.4.1 Configuration GUI

The configuration GUI is a simple window implementation that allows a user to
make minimal alterations to the constructs of DUPE Lite. It is expected that
a user may wish to manipulate the adaptation settings for a system, however,
and as previously noted, there is little need for a user to become concerned
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with the security aspects. As a consequence, these settings will generally remain
consistent. Figure 8.3 shows a screen shot of the GUI application running within
a Windows based Desktop.

Figure 8.3: DUPE Lite Configuration Setup GUI

8.5 Limitations

There is one main limitation of the DUPE Lite implementation; it is unable to
dynamically alter classes at runtime, and therefore cannot adapt to communities
during runtime. We have already discussed this limitation and given reasons for
the implementation of DUPE Lite earlier in the chapter. And, as will be shown
in the next two chapters, DUPE Lite’s adaptation features, although load-time
only, are, generally, as flexible as our other implementations.

8.6 Summary

DUPE Lite is the simplest of DUPE implementations. It is designed for standard
J2SE JVMs and consequently is unable to dynamically alter state during run-
time. However, it will allow a system to cooperate in a DUPE community, albeit
at a limited level, and provide other DUPE systems with its available resources.
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The next two chapters describe fully compatible DUPE implementations. Both
implementations are designed using the framework specification; therefore, these
next two chapters have several areas in common with this chapter. These areas
will be identified, however, their details will not be reiterated.
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Chapter 9

DUPE 5.0 Implementation

9.1 Introduction

This chapter details DUPE 5.0, the first of our fully compatible DUPE imple-
mentations. DUPE 5.0 makes use of the newest Java Virtual Machine technology,
J2SE 5.0. We based our choice of J2SE 5.0 on our strengthening belief that this
Virtual Machine implementation is the most likely of the future JVM’s that in-
clude dynamic runtime class updates to be commonly distributed among mobile
devices.

The elements that alter DUPE 5.0’s design structure significantly from that de-
scribed in the previous chapter are all due to the addition of the class redefinition
techniques, and the associated algorithms. Moreover, as a result of this, the exact
DUPE framework design could be applied.

This chapter is structured the same way as the previous chapter. However, the
sections of the implementation which directly relate to sections of DUPE Lite
will not be repeated. This chapter concentrates on the aspects of DUPE 5.0
that make it an individual implementation of the framework. The areas of the
framework covered are shown in green in Figure 9.1.

To begin our discussion of DUPE 5.0 we now provide a detailed analysis of the
J2SE 5.0 JVM.
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Figure 9.1: Structure of DUPE 5.0

9.2 Java 2 Platform Standard Edition 5.0

The Java 2 Platform Standard Edition (J2SE) 5.0 is the most recent, major revi-
sion of the Java platform and language specification. This edition is a significant
upgrade from the previous edition and includes many new features. These in-
clude, for example, type generics, Metadata and Instrumentation [6]. The latter
feature is the most influential for a DUPE middleware implementation.

Currently, this edition of the language has programming packages for most desk-
top operating systems, and as the J2SE 1.4 specification is most prevalent through-
out mobile devices, we see that it is a likely future step that J2SE 5.0 will be
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distributed as a standard. Furthermore, as J2SE 5.0 is, as yet, a common stan-
dard VM, it has complete backwards compatibility to version 1.41.

The class redefinition capabilities of J2SE 5.0 are provided by the Java Pro-
gramming Language Instrumentation Services (JPLIS), which is a standard JVM
package. Therefore, it is not necessary to include any separate Java packages. As
a result, a standard J2SE 5.0 installation will always include dynamic redefining
capabilities. This attribute allows DUPE 5.0 to be implemented within any oper-
ating system that has the J2SE 5.0 installed; the only requirements for classpath
definition are those required by DUPE and the target application.

9.2.1 Java Programming Language Instrumentation Ser-
vices

The Java Programming Language Instrumentation Structure (JPLIS) is new to
the JVM. It is designed specifically for the instrumentation of Java byte code dur-
ing runtime and initial class loading. The core constructs for class redefinition
within the JPLIS are provided in the java.lang.instrument package, in par-
ticular the interface java.lang.instrument.Instrumentation. The design of
the instrumentation setup is somewhat new to the Java architecture. The design
makes use of the newly defined agent methodology. An agent is a class object
which is capable of altering the runtime byte code of classes within the same
application. All agents contain a premain(..) method. This method supplies
the system with several other mechanisms that are associated with the JPLIS of
the JVM. The premain method is called prior to the calling of the main method.
Within any application there can be more than one agent running.

The construction of the agent class is essential to dynamic class redefinition, and
should follow the guidelines of the appropriate api [106]. These guidelines state
that, the Instrumentation class of an application will be provided during the
initial startup of the JVM. To trigger the creation of an Instrumentation agent
for an application, the following command-line command is used:

-javaagent:jarpath[=options]

1The author would like to note that although the official Java 5.0 specifications [6] profess
Java 5.0 to be backwards compatible, we have at times found this to be incorrect.
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In the command the jarpath is the Jar of an agent2. An agent Jar file will be
specified within its associated manifest file through the use of specific attributes
[106]. These are shown in Table 9.1.

Attribute Details

Premain-Class Identifies the agent class using the class name.
This attribute is required; if it is not present the
JVM will abort.

Boot-Class-Path A list of paths, directories or libraries, to
be searched by the bootstrap class loader.
These paths are searched by the bootstrap class
loader, in listed order, if the platform specific
mechanisms of locating a class have failed. This
attribute is optional.

Can-Redefine-Classes Boolean value (true or false). Identifies if the
agent is able to redefine classes. This attribute
is optional, the default is false. It is generally
recommended, however, if the agent is estab-
lished for class Instrumentation.

Table 9.1: Manifest Attributes for an Agent Jar file

An example manifest segment is shown in Figure 9.2. An example of its use
within jarAgent.jar could be:

java -javaagent:jarAgent.jar package.myInstrumentedApplication

Manifest-Version: 1.0

Created-By: Adrian Ryan

Premain-Class: package.MyAgentClass

Can-Redefine-Classes: true

...

Figure 9.2: Agent Attributes in a Manifest File

2More than one agent can use the same Jar file.
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9.2.2 Achieving Redefinition in Java 5.0

Changing the class details during runtime is relatively simple within Java 5.0 as
long as there is a means of gathering the new class details, aligning them with
the old details, and making sure all startup options are set correctly.

The most important decision for the procedure is determining which class con-
tains the instrumentation capabilities. Once that is established, the chosen class
maintains, or is, an instance of the java.lang.instrument.Instrumentation.
It must also include an implementation of the premain method. It may also pro-
vide an accessor method for the Instrumentation object, if it is required. This
will allow other classes to use the Instrumentation object. It supplies the redefini-
tion capabilities of the JVM to other classes that are not specifically designated
as manipulative classes. This is a useful feature for classes such as those that
discover class bytes. A very simple example of is provided in Figure 9.3.

import java.lang.instrument.Instrumentation;

public class MyInstrumentator {

private static Instrumentation instInstance;

public static void premain(String options, Instrumentation inst)

{

instInstance = inst;

}

public Instrumentation getInstrumentation(){

return instInstance;

}

}

Figure 9.3: MyInstrumentor.java

In this figure, the premain method assigns the Instrumentation object provided
by the JVM to a variable. It is this variable which is used for class redefinition.
The example provided in Figure 9.3 also allows the Instrumentation instance
(instInstance) to be used by other classes. This is achieved by calling the
getInstrumentation() method. However, as previously mentioned, this feature
may not always be necessary.

The redefinition method of the Instrumentation object is:
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public void redefineClasses((ClassDefinition[] definitions).

The argument of this method, (ClassDefinition[] definitions) is an array of
classes that are set to be redefined. This becomes evident by looking at the spec-
ification of the ClassDefinition’s sole constructor, ClassDefinition(Class<?>
theClass, byte[] theClassFile). It is simple to see that theClass argument
is the current reference to the Class being redefined and theClassFile argument
is the new byte code to be allocated to the class. The steps to achieve class
instrumentation within an application are as follows3:

1. Start the application with correct command-line command; for example,
java -javaagent:myJarAgent.jar package.myInstrumentedApplication

2. Gather the new byte code for a particular class.

3. Find the current Class object of the class to be redefined.

4. Create an instance of ClassDefinition using the new byte code and the
current Class object.

5. Create an array of all the ClassDefinition objects, even if there is only one
object.

6. Use the Instrumentation object, found within the target Instrumentation
class, and call the redefineClasses method using the ClassDefinition array.

The most difficult stage of the above procedure is obtaining a reference to the
current Class object. This object reference is only obtainable if:

a. any current object holds an instance of the required class and it can
be used to gather a Class reference using reflection.

b. there is access to the instantiating class loader of the required class.
This class loader is able to obtain a reference to the Class object by
using the Class findLoadedClass(String name) method.

Limitations of J2SE Instrumentation

The J2SE 5.0 API [106] clearly details the restrictions of its Class redefinition
capabilities. However, it also states that these restrictions may be lifted in later
releases. The details of the current limitations are summarised in Table 9.2.

3Steps 2 and 3 for instrumentation are interchangeable.
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Enabled Abilities

Any redefinition of any method body is allowed.
Any redefinition of any attribute is allowed.
Any redefinition of the constant pool is allowed.

Disallowed Abilities

Any addition, removal or change of fields is not allowed.
Any addition, removal or change of methods is not allowed.
Any change of method signatures is not allowed.
Any change in the inheritance structure is not allowed.

Table 9.2: The Redefinition Restrictions set by J2SE 5.0

From this table it can be seen that the instrument package allows any class
redefinition to change its class method bodies, the state of the constant pool, and
current class attributes. However, any redefinition of a class must not add, remove
or rename, fields or methods, change the signatures of methods, or, change the
inheritance structure of the class.

9.3 General Features of DUPE 5.0

DUPE 5.0 is able to achieve all the features of the DUPE framework. The three
aspects of the DUPE framework, Distributed Connectivity, Dynamic Adaptation
and Community Cooperation are all available within DUPE 5.0. However, as
can be derived from the previous section, there are restrictions on the byte code
used for class redefinition which directly affect the adaptation capabilities of the
implementation.

Table 9.3 provides a list of the packages used within DUPE 5.0. The table iden-
tifies the package and its purpose.

It is clear from the table that a new dupe.dynamic package has been included
from the DUPE Lite implementation. This package along with the dupe and
dupe.discovery packages determines the progression of the target application
and controls the redefinition of classes. Consequently, many classes within these
packages are specifically designed according to the requirements of the implemen-
tation.
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Package Details Differences

dupe Base package of DUPE contains
startup file.

Different in both.

dupe.common Holds the common classes that
are used in other packages.

Common to both.

dupe.config Configuration setup classes. Acts
as separate application.

Minor differences.

dupe.discovery Community Management
(DCLS)

Some Major Differences.

dupe.dynamic Dynamic Control (DCM) Completely Different.
dupe.security Security Control Vastly Similar.
dupe.versioning Adaptation Reasoning Common to both.

Table 9.3: Package structure for DUPE 5.0.

In Table 9.4 we detail the implications of the restrictions of the J2SE 5.0 JVM for
DUPE 5.0. Unfortunately, there are no settings (for the current release of J2SE
5.0) that may be applied to alter any of these restrictions. The table is, there-
fore, a situation redefinition of the general J2SE 5.0 instrumentation restrictions
presented in Table 9.2.

9.4 Implementation Construction

The structure of DUPE 5.0 maintains exactly the design aspects of the frame-
works specification. All requirements of a DUPE compatible middleware remain
and communication with other DUPE compatible middleware is possible. We
presented the implementation structure of DUPE 5.0 in Figure 9.1. This figure
clearly shows that we did not need to apply any alterations, as it can be seen
that it replicates exactly the framework we described in Chapters 5 and 6. The
figure also shows that many of the implementation design sections are exactly
the same as that applied in DUPE lite.

We will now detail the elements of the implementation that differ from DUPE
Lite (the blue sections in Figure 9.1). Although we will discuss the minor differ-
ences of similar implementation sections, we will not discuss any section in detail
where the complete analysis can be derived from the previous chapter.
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Abilities Implications

Enabled Abilities

Redefine method body. This allows DUPE 5.0 to redefine all methods
within a class that are associated with a re-
source.

Redefine attributes. This allows DUPE 5.0 to redefine all method at-
tributes within a class that are associated with
a resource.

Redefine constant pool. This allows DUPE 5.0 to redefine all details of
all instances of the class, associated with the re-
source, via alterations to the constant-pool de-
tails.

Disallowed Abilities

Can not add, remove or
change fields.

New resources must not add, remove or change
any fields from the class they are associated
with.

Can not add, remove or
change methods.

New resources must not add, remove or change
any methods from the class they are associated
with.

Can not change method
signatures.

The method signatures of the new class details
within the new resource must remain the same
as the originals.

Can not change inheri-
tance.

The inheritance structure of the class must re-
main the same as the original. Particular care
must be taken not to add any new parent, or
interface class.

Table 9.4: The Adaptation Attributes of DUPE 5.0
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9.4.1 Distributed System Communication and Code Shar-
ing

The manipulation of the target system within DUPE 5.0 is achieved slightly dif-
ferently to DUPE Lite. As a result of this alteration, there are several significant
changes in many of the core classes. The classes most affected are a part of the
DUPE Class Loading Structure.

DUPE Class Loading Structure (DCLS)

As in DUPE Lite, the dupe.discovery.RemoteUploadClassLoader (RUCL) is
again a significant class. It provides the necessary connection to Java’s class
loading structure. This connection is more essential within this implementation
as the J2SE 5.0 instrumentation mechanisms rely on the access to Class objects
that are only available using a class loader (see Section 9.2.2).

The RUCL is an initial point of control for the entire implementation, and as a re-
sult, all the required instrumentation attributes, including the premain method
and the Instrumentation object, are within its structure. Furthermore, as the
RUCL maintains a close relationship with the target application, it is the only
class that is able to gather a reference to Class objects. Therefore, it also main-
tains a constant connection with the Dynamic Class Manger (DCM). This is
specifically for use during class redefinition. In fact, the redefinition of a class
will be finalised by the RUCL using the redefineClasses method provided by
its Instrumentation object.

Although the redefinition capabilities of the structure are completed here, that is
the only relationship it has with the DCM. All the other necessary computation
for determining the needs, purpose and requirements for class redefinition remain
in the DCM or the Adaptation Control and Security Control sections; as specified
by the framework design.

Target Application

The target application is governed in the same manner is in DUPE Lite. How-
ever, as a result of the requirements for J2SE 5.0 instrumentation, the start up
command of DUPE 5.0 is different. To begin an application within the DUPE
5.0 middleware the following command line is used:
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java -javaagent:DUPE_JAR -Djava.security.policy=d:\policy.all

-Djava.rmi.server.codebase=http://192.168.0.100:8080/

dupe.Dupe coffeeMachine.CoffeeMachineGUI 192.168.0.100

where the line follows the procedure

java -javaagent:dupe.jar -security_options -jini_options

dupe.Dupe target_application arguments_for_target

9.4.2 Dynamic Systems Alteration

Java Virtual Machine

The entire application, DUPE 5.0 and target application, is initialised and run
within the same J2SE 5.0 JVM.

Dynamic Class Manager

Reloading class details using J2SE 5.0 requires, as previously mentioned, access
to the original Class object. This object is available by using the instantiating
class loader or any instance of the class. The DUPE framework does not have
the ability to keep track of the class objects, it only controls the loading of class
files. However, as all classes originate via the RUCL, it is possible to find a Class
instance by using its findLoadedClass method.

The overall process of redefining a class is achieved within the DCM. However,
as previously mentioned, the initial Class reference is obtained using the RUCL
as is the final Class redefinition. The DCM will be given the details of a class
in the form of a DynamicClass. The class name found within this object is then
used to locate the current version of the class. Once this information is gathered
it is sent to the RUCL and the redefineClass(...) method is invoked. This
process is according to our discussion during Section 9.2.2.

Class List Manager

The Class List Manager (CLM) is exactly the same as in DUPE Lite (Section
8.3.2). However, the information of the classes is obtained in a different man-
ner, and this implementation has more control over the DynamicClass instances.
These added aspects of the CLM are a result of the runtime class redefinition
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capabilities of the implementation. This design of the CLM remains for DUPE
JPDA.

9.4.3 Community Interaction and Cooperation

The only aspect of DUPE community interaction that has altered from DUPE
Lite is the addition of runtime event generation. In DUPE Lite, event genera-
tion derives from the loading of a new class, either from internal class details or
externally downloaded details. In both DUPE 5.0 and DUPE JPDA, an event is
also generated after the redefinition of a class.

For all events the details to update the DSO are to be provided to the Event
Generator in the form of a DynamicClassEntry. All other elements of the events
remain the same as detailed in the previous chapter.

9.4.4 Security Control

The package dupe.security is designed so that it may be adopted by a differ-
ent implementations of the framework. Consequently, we have made use of this
package for the security of all our implementations. However, for DUPE 5.0 and
DUPE JPDA, the security is continuously active during the entire execution.
This is for extended protection during runtime adaptation, which was unneces-
sary for DUPE Lite.

The consistency of this element of the framework implementations has allowed
us to determine whether:

a. the security measures can be applied to different framework imple-
mentations, and,

b. if the security measures are defined well enough so that cooperation
between different middleware remains possible.

We will discuss the analysis of these points in Chapter 11.
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9.4.5 Adaptation Control

As with DUPE LIte, the adaptation section of DUPE 5.0 is the most accessible
section for a user. And, as we have done with the dupe.security package, we
have created a flexible dupe.versioning package to supply all adaptation con-
trols to the two implementations.

Therefore, the initial adaptation settings of DUPE 5.0 can be applied to the main
identification attributes within the manifest file. For DUPE 5.0, the settings that
are applicable achieve the adaptation restrictions presented in Table 9.5.

Specification Setting Details

Specification Version Can be set to allow only evolutionary change.
For example a class with the Specification Ver-
sion number 23.01 will only adapt to a resource
with a version number greater than 23.01.

Specification Title Is used to control and specify that a new re-
source must be from exactly the same Specifi-
cation Title. This is set to ‘true’ for situations
where manufacture title identification is neces-
sary, and should be ‘false’ to maintain a more
flexible adaptation such as adapting according
to location resources.

Specification Vendor This should be used in a similar manner to
the Specification Title, however, it creates even
more restriction by precisely maintaining the
vendor of the original class. A false setting is
recommended within a trusted community as
it enables the systems to achieve more precise
adaptation.

Implementation Version This is used in the same manner as the Spec-
ification Version except it is applied to Imple-
mentation details.

Implementation Title This is used in the same manner as the Specifi-
cation Title except it is applied to Implementa-
tion details.

Implementation Vendor This is used in the same manner as the Specifi-
cation Vendor except it is applied to Implemen-
tation details.

Table 9.5: Adaptation Settings for DUPE 5.0
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9.5 Configuring Dupe 5.0

The configuration of DUPE 5.0 is achieved via a GUI similar to the design in
DUPE Lite. This is possible as the security and adaptation controls are exactly
the same, and as such, can be manipulated in the same manner; that is:

• via the supplied GUI, or

• by altering the DUPE configuration files within DUPE’s bin directory.

9.5.1 Configuration GUI

The configuration GUI for all implementations are so similar that it is unneces-
sary for us to include it here. The general picture of the configuration application
can be seen in Figure 8.3.

This configuration setup remains the same for DUPE JPDA.

9.6 Limitations

It is likely that all implementations of the framework will be limited only by the
technique they use for dynamic instrumentation. This is the case for DUPE 5.0.

This implementation maintains all discovery and community cooperation require-
ments of the DUPE framework, and when tested (see Chapter 11), is capable of
being used as the middleware for productive DUPE members.

9.7 Summary

The J2SE 5.0 implementation of DUPE, DUPE 5.0, is a fully compatible im-
plementation of the framework. The requirements of the J2SE 5.0 redefinition
components are made accessible with the standard framework design, and only
slight modification to the connection of the framework components needed to
be carried out. This implementation is able to execute standard Java programs.
However, it contains the security restriction of ClassLoader redefinition that we
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discussed in Chapter 7.

The next chapter provides another complete framework implementation which
includes advanced security features using the J2SE 1.4 HotSpot, DUPE JPDA.
The DUPE JPDA implementation has many similar sections to DUPE Lite and
DUPE 5.0, therefore, as with this chapter, only the aspects unique to DUPE
JPDA will be detailed.
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Chapter 10

DUPE JPDA Implementation

10.1 Introduction

This chapter details DUPE JPDA. This implementation of the framework is the
most complete of our implementations, it includes all requirements of a DUPE
compilable middleware and advanced security features. DUPE JPDA is built
using the JPDA mechanisms of the J2SE 1.4 HotSpot JVM [103]. This virtual
machine was specifically chosen for DUPE implementation as it enables us to
implement advanced security features. These security features overcome the se-
curity flaw that we pointed out in Chapter 7.

The elements that alter the DUPE JPDA design structure significantly from that
described in the previous chapters are all due to the uniqueness of its class re-
definition technique. These alterations, however, were not detrimental to DUPE
community interaction, and as a result these aspects of the design remain as orig-
inally described for DUPE Lite (see Chapter 8).

This chapter is structured the same way as the previous chapter. We reintroduce
the DUPE framework and show the areas that are specific to this implementa-
tion. These areas are indicated in blue in Figure 9.1.

To begin our discussion we now provide a detailed analysis of the J2SE 1.4
HotSpot JVM.
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Figure 10.1: Structure of DUPE 5.0

10.2 Java 1.4 HotSpot Virtual Machine

The Java HotSpot Virtual Machine, version 1.4.2, is probably the most widely
adopted JVM. The runtime aspects of this release include fast thread synchro-
nization, garbage collection, and improved support for debugging and profiling
[103]. It is the unique debugging capabilities of this JVM, including dynamic up-
dating, that allow it to be applied as the base JVM for a DUPE implementation.

The language constructs that may be applied in an application using the HotSpot
JVM are extensive. They include, the packages from the standard Java API as
well as those provided for its extended capabilities. Unfortunately, the added
features of this JVM also provide it with a large footprint during the execution
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of any application1.

As mentioned, this version of the JVM also includes dynamic updating capabili-
ties. This is provided by the incorporated Java Programming Debugger Architec-
ture (JPDA). The JPDA is an additional package for the JVM implementation.
As this section of the JVM is the reason why it is used for a DUPE implementa-
tion we will now focus our discussion on the details of its workings.

10.2.1 Java Programming Debugger Architecture

The Java Programming Debugger Architecture (JPDA) is the debugging centre
for the J2SE 1.4 HotSpot JVM. The only requirement for using it is the inclusion
of the lib/tools.jar file as an addition to the JVM’s classpath. The JPDA
consists of two main interfaces, one protocol and two software components. The
components of the JPDA are listed in Table 10.1 (details for the table come from
Sun Microsystems’ technical publications [103, 99]).

Figure 10.2: The JPDA Structure

1We will only discuss the sections of the HotSpot JVM that enable an implementation of the
DUPE framework to be constructed. A complete specification of the JVM would be significantly
large and outside the scope of this work. Further details of the HotSpot JVM can be found in
Sun Microsystems’ HotSpot white paper [103].
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Section Details

Interfaces
Java Virtual Machine
Debugging Interface
(JVMDI)

Describes the functionality that is provided by the
VM which enables the debugging of applications.

Java Debug Interface
(JDI)

A pure Java interface for debugging Java applica-
tions. It is the high level interface which enables
programmers to control the state of the VM

Protocol
Java Debug Wire Proto-
col (JDWP)

Defines the format of the information that is trans-
ferred between the VM and the implementation of
the JDI.

Software Components
Back-end Controls the application which is under debugging.

The back-end is responsible for communicating re-
quests from the debugger front-end to the debuggee
VM and for communicating the response to these
requests (including desired events) to the front-end,
using the JVMDI.

Front-end Determines the usage of the JPDA by implement-
ing the JDI. All communication is achieved via the
communication channel using the JDWP.

Others
Debuggee The general term used to identify the process that is

being debugged. It consists of the application, the
implementing VM and back-end of the debugger.

Debugger The implementation of the JPDA structure which is
controlling the debuggee.

Java Virtual Machine
(VM)

The VM running the application being debugged.
We also show that there is an initial VM running
the Debugger.

Communication Chan-
nel

The Link between the front-end and the back-end
which provides transport mechanism for all messages
as specified by the JDWP.

UI The general term used for the implementation tool
that uses the JPDA structure. For our work this can
be seen as the rest of the DUPE framework imple-
mentation; specifically, the DCLS and DCM.

Table 10.1: Components of the JPDA’s Structure
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The relationship among all the components and their relationship to the JVM
are shown in Figure 10.2. From the figure it can be seen that the JPDA struc-
ture makes use of two Virtual Machine (VM) areas. The first VM is the initial
execution JVM. It controls the front-end and any user interface (UI). This VM
is the standard JVM used by normal applications. The second VM is controlled
by the Java Virtual Machine Debugging Interface (JVMDI). This is an instance
of the com.sun.jdi.VirtualMachine class that is instantiated by the first JVM.
It acts as an application in itself and provides the back-end section of the JPDA
structure (shown in Figure 10.2). This dual VM feature allows an application
to be executed whilst also being controlled and watched by a separate Java de-
bugging application. However, this feature also makes the JPDA execution slow
due to high resource use. The term debuggee is used to describe the back-end
section of the final system. The debuggee essentially contains a target applica-
tion executing within a monitored VirtualMachine object. The other section of
the structure is known as the debugger. The debugger monitors and controls the
execution of the debuggee.

The JPDA allows the debugger to monitor the execution of the debuggee through
VM events. The events provide runtime information on the application run-
ning within the monitored debuggee. All events must initially be requested
by the debugger using specified VirtualMachine methods and calling for a spe-
cific event; for example, creating an instance of the com.sun.jdi.request.-

MethodEntryRequest. The events are then heard by the debugger as com.sun.-
jdi.event.MethodEntryEvent objects. For example, a request for all instances
of the MethodEntryEvent is achieved by using the methodEntryRequesting(...)
method, shown in Figure 10.3. Once the event has been requested there are sev-
eral other manipulative methods that can be used by the debugger to control the
exact timing of all event generation. This includes the ability to filter out specific
packages, or only include a specific package (this is also shown in Figure 10.3).

public void methodEntryRequesting(EventRequestManager erm) {

MethodEntryRequest mer = erm.createMethodEntryRequest(); //create request

/*Filter options placed here*/

//mer.addClassFilter("package.Class"); //example filter

mer.setSuspendPolicy(EventRequest.SUSPEND_ALL); //specify suspend rule

mer.enable(); //enable the request

}

Figure 10.3: Requesting a MethodEntryEvent from the Debuggee VM
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When heard, VM events provide all the necessary information and set the correct
VM status for dynamic class updating. For example, in Figure 10.3 each Metho-
dEntryEvent will cause the debuggee VM stack to lockout general execution calls
until unlocked. This could be a matter of nanoseconds or seconds depending on
the reason. It is during this time that the debuggee application can be altered.
The MethodEntryEvent is used within DUPE JPDA for this reason.

Within the JPDA system structure, the target application, which is part of the
debuggee, should run as normal. This requires that all command line variables
are passed through and all VM settings are applied in the necessary manner. This
is achieved within the JDI section of the application using the com.sun.jdi.-

VirtualMachine and the com.sun.jdi.connect.LaunchingConnector, and must
be programmed into each implementation of the JPDA structure. The Launch-
ingConnector object will provide an initial connection between the back-end and
the front-end (the communication channel) and maintain this connection for the
entire execution of the VM. These sections are all necessary to allow safe execu-
tion and safe dynamic updating of the target application.

10.2.2 Achieving Dynamic Updates in the HotSpot JVM

The JPDA provides the ability to dynamically alter a class structure through use
of its HotSwap class file replacement mechanism [103]. This section of the JPDA
is a part of the functions within the higher levels of the JDWP and the JDI and
can only be called on the debuggee if it is being monitored by the debugger using
the JPDA structure.

The process of class redefinition during runtime involves two main steps:

1. There must be a reason for the alteration. Specifically, the use of the VM
event mechanism is used to pinpoint the exact location and time period for
the class update. Moreover, an event can only be generated as a result of
the execution of the debuggee applications. Therefore, events such as the
MethodEntryEvent and the StepEvent can be used by the debugger system
to identify when a particular class is held in an accessible section of the
JVM stack. The use of the VM event mechanism in this way is necessary
for class redefinition.

2. The JVM stack enables the debugger to gain access to the class structure
of the debuggee without causing complications to its execution. To ensure
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the safety of the class, and any current objects, the events used to trigger
the update will cause the JVM stack to lock. This, in turn, enables the
current class frame to be popped, altered and replaced safely [99].

The methods within the debuggee VirtualMachine object which provide the nec-
essary requirements for class instrumentation are:

1. public void redefineClasses(Map classToBytes)

2. public void popFrames (StackFrame frame) throws

IncompatibleThreadStateException

However, popping the frame from the stack is not necessary if the front-end is
able to establish correctly when the class to be altered is present in the stack.
And, as mentioned earlier, it is possible to achieve this by using the VirtualMa-
chine events (some of which will cause the stack to lock automatically).

To initialise the redefinition of a class the deguggee’s VirtualMachine object must
be provided with the correct information on the altering class object in the form
of a Map argument. The Map contents consist of at least one instance of com.-
sun.jdi.ReferenceType. This class contains the current class version details
along with the new set of verified class bytes (in the form of a byte array)
[103]. The ReferenceType object representation of any class can be obtained
from the VirtualMachine object by calling the method List classesByName-

(String className) using a full class name and gathering the correct class (if
there are multiple versions loaded) from the returned List.

If necessary, the popping of frames can be achieved using the current com.sun.-
jdi.ThreadReference object which is only available from the VirtualMachine
whilst the stack is locked. The class redefinition is then achieved using the
VirtualMachine method public void redefineClasses(Map classToBytes).
Once redefinition has occurred within the VirtualMachine both the debuggee
and the debugger return to executing as normal. The only difference is that the
debuggee application is now using the new version of the class throughout all the
associated class instances.
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10.2.3 Limitations of JPDA Class Redefinition

There are some limitations to the class redefinition capabilities of the HotSpot
VM. As defined within the JDI API [96], the redefined method of the Virtual-
Machine interface is the final point in detecting incorrect class definitions. Any
incorrect changes to the debuggee application will result in this method throw-
ing a java.lang.UnsupportedOperationException. The checks that determine
this are:

• check if the VM allows class redefinition. Can be assessed using the can-

RedefineClasses() method.

• check if the VM allows a new class definition to include new methods. Can
be assessed using the canAddMethod() method.

• check if the VM allows complete unrestricted redefinition of classes. Can be
assessed using the canUnrestrictedlyRedefineClasses() method. This
feature allows a new class definition to:

– change the schema (the fields)

– change the hierarchy (subclasses, interfaces)

– delete a method

– change class modifiers

– change method modifiers.

Generally, when using the JPDA, the JVM will be set to allow class redefinition,
method redefinition and method addition. The allowance of unrestricted features
is dangerous to the execution of a system unless the entire class structure is
redefined. For example, the deletion of a class method that continues to be
called by another class could eventually cause a fatal error. Therefore, in general
some limitations remain in place.

10.3 General Features of DUPE JPDA

DUPE JPDA is able to achieve all the features deemed necessary by the DUPE
framework. However, as indicated in Section 10.2.3, the JPDA has limitations
which directly affect the adaptation capabilities of the implementation. Yet,
these limitations are not detrimental to the overall cooperation of DUPE JPDA
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enabled systems, they only effect their level of adaptation.

As with DUPE 5.0, DUPE JPDA maintains all DUPE community discovery
specifications by implementing all relevant interfaces, and constructing the Dy-
namicClassEntry class and all requirements of the DSO. Table 10.2 provides the
package list for DUPE JPDA.

Package Details

dupe Base package of DUPE contains startup file.

dupe.common Holds the common classes that are used in other
packages.

dupe.config Configuration setup classes. Acts as separate
application.

dupe.discovery Community Management (DCLS).

dupe.dynamic Dynamic Control (DCM).

dupe.security Security Control.

dupe.versioning Adaptation Reasoning.

Table 10.2: Package Structure for DUPE JPDA

In the previous section, we listed the features of JPDA which limit its class redef-
inition capabilities. These limitations correspond to the dynamic runtime class
redefinition limitations of DUPE JPDA. Therefore, we are able to construct the
types of resources that DUPE JPDA is capable of using. In Table 10.3 we list
these limitations and recommended system settings according to the DUPE cat-
egories previously identified in Chapter 7.

Although these limitations restrict the resources that are used during adaptation,
they do not restrict any other section of the framework; they are simply a reflec-
tion on the JVM applied to this particular implementation. The limitations of
the JPDA, or those that may be applied, are common to most dynamic virtual
machines as a result of type safety requirements for executing applications.

10.4 Implementation Construction

The structure of DUPE JPDA maintains, as close as possible, the design of the
frameworks specification. However, due to the requirements of the JPDA struc-
ture, sections of DUPE JPDA do not match exactly. Irrespective of this, DUPE
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Setting Implications

Class Redefinition
true Allows DUPE JPDA to redefine classes associated with all re-

sources. Does not, however, determine any further specifics of a
new class definition, and by itself will only allow redefinition based
on a class with the same methods (only the methods algorithms
may differ). This should be applied always as the base setting.

false Completely limits the use of all DUPE resources and disables the
adaptation capabilities of the framework. This setting is not recom-
mended and should never be used for a DUPE JPDA instantiation.

Add Method
true Enables a redefining class to include new methods within its struc-

ture. This is generally not seen as detrimental to the overall system
structure and is recommended.

false Disables the ability of the new resource class definition to include
new methods.

Unrestricted Redefinition
true Allows full alteration of the system structure according to resources

from the community. This setting should be only applied when trust
levels are set high and adaptation can be controlled on a basis of
vendor and/or class version with backwards compatibility applied.

false Will disallow the extended adaptation of classes; should be used as
default.

Table 10.3: The Adaptation Setting of DUPE JPDA

JPDA is a fully compatible DUPE middleware (this will be shown in Chapter
11). Figure 10.4 is a re-illustration of the design layout of DUPE JPDA using
both the specification design of DUPE and the JPDA structure (shown in Figure
10.2) for illustrative purposes.

The figure details the JPDA event path (noted using a red path arrow) that is
generated when class redefinition, as determined by the DCM, is triggered. This
part of the framework is where it differs slightly to that of the original frame-
work. However, this is specific to the JPDA design and cannot be avoided. As
in Chapters 8 and 9, during the discussion of DUPE JPDA we will only identify
the key classes of the implementation.
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Figure 10.4: Structure of DUPE JPDA

The package structure of this implementation is exactly the same as the DUPE 5.0
package structure. However, many of the classes within the dupe, dupe.discovery
and dupe.dynamic packages are different.

10.4.1 Distributed System Communication and Code Shar-
ing

As with our other DUPE implementations, the core elements of the DUPE Class
Loading Structure (DCLS) are within the dupe.discovery package of DUPE
JPDA. And, again the most important class is RUCL implementation. However,
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as the RUCL is DUPE’s main class loader it must have access to all loaded
class details. To obtain this access, the RUCL must be implemented as part of
the back-end structure as this is where all classes are loaded and manipulated
(depicted in Figure 10.4). It is not possible for the RUCL to be in the front-end
as it must not only control the loading of the classes, but also indicate to the
DCM when a class cannot be located locally and trigger a community search.
This indication is only achievable if it has a direct connection with the bootstrap
class loader of the target application. Again, this aspect of the implementation
is in the back-end.

Target Application

The target application is initialised by the front-end, as a part of the back-
end, using an instance of com.sun.jdi.VirtualMachine. It is essential that the
target application is executing within the RUCL, and that the RUCL is able
to return information to the rest of the DUPE structure for necessary adap-
tation and loading requirements. Therefore, the RUCL is initialised first as a
separate application (along with many other sections including the Discovery
Manager and Security and Adaptation) in the back-end. The target applica-
tion is then executed using the RUCL as it based class loader. The updating
of the target application is triggered by calling the redefineClass method of
dupe.discovery.RemoteUploadClasLoader.

As a consequence of this design structure, when initialising the VirtualMachine
object, the front-end will append the DCLS to the initial class call and use that
to begin the application. This process is as follows:

1. Application started within DUPE JPDA using a command such as:

java dupe.Dupe -Djava.security.policy=d:\policy.all

-Djava.rmi.server.codebase=http://192.168.0.100:8080/

coffeeMachine.CoffeeMachineGUI 192.168.0.100

where the line follows the procedure:

java dupe.Dupe -security_options -jini_options

target_application arguments_for_target
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2. The front-end structure will gather all required information for target appli-
cation and append dupe.Remote2 to the start of the initialisation command.

3. The VirtualMachine object will begin executing dupe.Remote.

4. Upon start up, dupe.Remote will initialise the target application using all
appropriate JVM settings and system arguments.

This procedure provides the front-end with the ability to receive communica-
tions, in the form of a com.sun.jdi.event.MethodEntryEvent, from the back-
end based on the execution of the target application. The events are a result
of the Virtual Machine Monitor listening specifically for calls to class loading
methods of the RUCL (shown in Figure 10.4).

10.4.2 Dynamic Systems Alteration

The class redefinition aspects of the structure are controlled by the JPDA struc-
ture, hence, the reason for the design changes from the original framework. It
is essential that the VirtualMachine object contains the RUCL. To listen for the
call to the redefineClass, a Virtual Machine Monitor has been included within
the discovery package, dupe.discovery.VMControl. This class controls the dy-
namics of all class updating by triggering VM events where appropriate. This
design is for implementation purposes and the VMControl class must handle all
the stages of physical class redefinition. The main components of this framework
section are now discussed.

Java Virtual Machine

The DUPE JPDA application and the specified target application are initialised
using the J2SE 1.4 HotSpot VM with JPDA setup completed. Within the struc-
ture itself, an instance of VirtualMachine is established controlling the back-end
section of the structure.

Dynamic Class Manager

Most parts of the Dynamic Class Manager (DCM) are found within the back-
end as they provide the essential class information for adaptation. This allows

2dupe.Remote is the initialising class for the DCLS.
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the system to execute correctly by minimising the communication that is passed
between the front-end and the back-end.

As discussed previously, the reloading of a class is controlled by the front-end and
is triggered when the back-end calls the redefineClass method of the RUCL. Once
this event is heard by the front-end, the JPDA elements of the implementation
gather all the required details from the executing stack (according to the proce-
dures discussed in Section 10.2). These details include the new class byte code
and the current class details. Once the redefinition map is created, the redefine
method is called on the VirtualMachine object by the VMControl object, and
class redefinition proceeds. The step by step process of redefinition is as follows:

1. The Community Observer discovers a community resource.

2. Adaptation Control and Security Control are used to verify the resource.

3. If appropriate, the DCM instructs the Community Observer to gather the
complete DynamicClass details from the resource.

4. All Security and Adaptation controls are rechecked.

5. When appropriate, the DCM instructs the DCLS to redefine the class as-
sociated with the DynamicClass instance.

6. Subsequently, the DCLS will call the redefineClass() method.

7. This redefineClass call causes the associated VirtualMachine to generate
an instance of MethodEnteredEvent3.

8. VMControl hears the MethodEnteredEvent and checks the redefinition sta-
tus.

9. If required, the VM stack access is locked.

10. As the VMControl has access to all classes within the back-end, it is able to
gather all necessary information for class redefinition from the stack. This
information is:

• the current class object, and

• the new class byte code.

3The MethodEnteredEvent is set to only generate an event if the DCM enters the
redefineClass method.
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11. The VMControl then instructs the VirtualMachine to redefine the class by
calling the redefineClasses() method with the constructed Map of class
information.

12. The stack is released and the back-end progresses using the new class details.

10.5 Limitations

The limitations of this implementation are the restrictions set by the JPDA struc-
ture (see Sections 10.3 and 10.2.3 for details).

10.6 Systems in DUPE Communities

From the earlier chapters on DUPE’s design and our implementation chapters, it
may be established that there are some slight constraints on a target application
that can be executed using a DUPE middleware. Currently these are compilation,
distribution and execution constraints. These requirements were identified in
Section 7.4.1. In brief they are:

• the target application must be compiled with the -g option.

• the target application must be contained in a Jar file and stored in the
dupe/trusted/ directory of DUPE file structure (the dupe/trusted/ con-
straint is implementation specific, therefore, it may be different, or non-
existent, for other framework implementations.).

• the associated Jar file must have an associated Manifest file that contains
all adaptation information.

• the Jar file must be signed with a minimum of one certificate.

The constraints on the target application are consistent with common program-
ming practices; for example, it is common to distribute Java applications using
signed Jar files [109]. Consequently, we do not view these constraints as negative
aspects of the frameworks.
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10.7 Summary

The J2SE 1.4 HotSpot implementation of the DUPE framework, DUPE JPDA,
is controlled by the class redefinition abilities of the JPDA, and is structured
according to its requirements. It was therefore necessary to alter the design of
the framework to incorporate a back-end and a front-end design. However, the
general design element of the implementation remains the same, and all DUPE
community cooperation complies with the specification of DUPE compatibility.
As a result of the JPDA structure, DUPE JPDA is the most complete and safe
of all our DUPE implementations.

The next chapter provides a DUPE framework evaluation. The evaluation is
achieved by analysing the results of DUPE systems, working either separately or
together within the same community, and recording details such as timing and
memory use. In Chapter 12, we then model the movements of gypsy agents. In
doing this, we aim to determine if this particular element of the framework’s use
provides a significant contribution to mobile system evolution.
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Chapter 11

Evaluation

11.1 Introduction

This chapter provides a formal evaluation of the DUPE framework. For our
evaluation, we give the results from both situational and technical measurement
testing.

The situational testing we analyse is designed to evaluate the communication and
cooperation aspects of DUPE communities. From this, we are able to test DUPE
member cooperation in relation to:

• the same target application executing in the same DUPE middleware

• the same target application executing in different DUPE middleware

• different target applications executing in the same DUPE middleware

• different target applications executing in different DUPE middleware.

The technical evaluation is provided by analysing two sets of results from the
testing of technical measurements. The first measurement is used to determine
if the overhead of a DUPE framework implementation is of concern. This assess-
ment is achieved using measurement tests from the JVM HEAP during DUPE
system execution. The second is a set of technical tests to determine the load
time differences between a system running with DUPE capabilities and a system
executing as a stand alone application.
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11.2 Testing Environment

We use the same testing environment for all tests. It consists of three or more
components, where the number of components required is dependent on the test-
ing scenario. These are listed in Table 11.1. The DUPE community is always
established within a wireless 802.11b network, as this is currently the most widely
used network for mobile device communication. However, due to limitations of
device hardware and operating system, no measurements are given of the frame-
work implementing within a mobile device1.

11.3 Situation Tests

The situational tests that we analyse are designed to determine if the system
interaction within a DUPE community holds true according to the DUPE frame-
work and the requirements of a dynamic community. Specifically, the situations
are for the purpose of analysing:

• DUPE Community Interoperability: during this analysis, we aim to
determine if different DUPE middleware implementations are able to form
DUPE communities, discover resources within DUPE communities and
transfer resource details among other DUPE members. All tests are ap-
plied using heterogeneous DUPE implementations.

• DUPE Member Security: during this analysis, we aim to assess the
security measures recommended, and applied, by the DUPE framework.
The testing scenarios used within this section determine if the security
measures are successful, and if they cause any unforeseen complications to
DUPE community interaction.

• Adaptation Tests: during this analysis, we aim to analyse the behaviour
of DUPE systems. The analysis obtained is the most detailed of all tests.
We analyse different aspects of community resource transfer and system
adaptation. Results are given in Sections 11.6, 11.7 & 11.8.

1We have discussed throughout the thesis that the DUPE framework is designed for mobile
systems; however, as currently, mobile devices, in general, lack the support of a dynamic
updating technique, we are unable to test such a circumstance. Consequently, we indicated
in Chapters 3 & 9 that the reason for our choice of dynamic technique for DUPE 5.0 is that
we predict J2SE 5.0 to be the first commonly dispersed dynamic JVM among mobile devices.

202



Chapter 11: Evaluation

Component Property

PC Desktop • Pentium IV 3000Mhz

• Windows XP OS

• 1024MB RAM

• 802.11b Dlink card

Compaq laptop • Compaq Armarda V700

• Windows XP OS

• 512MB RAM

• Pentium II 330Mhz

• 802.11b PCMIA Dlink card

Wireless Access Point Dlink 802.11b

2nd PC Desktop • Pentium II 2200Mhz

• Windows XP OS

• 512MB RAM

• 802.11b Dlink card

Table 11.1: Components of the Testing Environment
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11.4 DUPE Community Interoperability

The first situation test for community interaction is designed to determine whether
community activity among different DUPE systems is achieved. We ran several
test cases on several different platforms to analyse if different DUPE systems using
different framework implementations can work together as a DUPE community.
All scenarios involve the use of one, two or all of the test DUPE implementations:
DUPE Lite, DUPE JPDA and DUPE 5.0. It is not imperative during this anal-
ysis for us to describe the target application specifics, nor is it necessary for the
details of the transferred DUPE resources to be discussed. We test these aspects
of the DUPE framework during Section 11.6, and during our technical testing,
beginning with Section 11.9. For this initial testing scenario, we wish to keep
the situation description simple. This allows us to concentrate on illustrating the
level of interoperability obtained within DUPE communities. The results of the
testing scenario are provided in Table 11.2.

Within Table 11.2 each junction block describes the level community cooperation
that can be established using the respective DUPE middleware. The community
cooperation includes:

• resource transfer

• resource analysis

• system updating, and

• complete system adaptation.

The results from this testing section are simple. However, what they tell us
is that heterogeneous DUPE systems are able to discover and use each other’s
DSO services. This, therefore, indicates that the DUPE community language is
successful.

11.5 DUPE Member Security

To measure the security aspects of the system, we use several testing scenarios to
determine if the correct behaviour for DUPE systems is maintained irrespective
of security constraints. We also want to determine whether the security and trust
techniques are strong enough to stop a DUPE system from using a community
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DUPE Lite DUPE 5.0 DUPE JPDA

DUPE Lite Limited
community. All

members
display load
time updates

only.

Limited
community.
DUPE Lite

systems display
load time

updates only.

Limited
community.
DUPE Lite

systems display
load time

updates only.

DUPE 5.0 Limited
community.
DUPE Lite

systems display
load time

updates only.

Complete
DUPE

community
interaction for
all members.

Complete
DUPE

community
interaction for
all members.

DUPE JPDA Limited
community.
DUPE Lite

systems display
load time

updates only.

Complete
DUPE

community
interaction for
all members.

Complete
DUPE

community
interaction for
all members.

Table 11.2: Community Cooperation between Framework Implementations
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resource that has either no associated certificates or is signed by an non-trusted
certificate2.

The testing procedures used identify if the community resources that are accessed
derive from a trusted source and contain valid class file details. And, if they do
not, the DUPE system will then dismiss them. We provide results of our security
testing using two different scenarios:

1. Behavioral Studies: we apply tests on the behaviour of DUPE systems
to determine if the security and trust measures interfere with the activity
throughout a DUPE community.

2. Certificate Recognition: the use of certificate recognition determines the
trust levels applicable to a DUPE system during its interaction within any
DUPE community. We construct tests to determine if the trust aspects of
the framework are met during execution, and if they are useful for DUPE
security.

11.5.1 Security Test - Behavioral Studies

The aim of behavioural testing is to determine whether a DUPE community can
continue to work with the signing of community resources incorporated. The
behaviour of all DUPE compatible systems can be measured by monitoring the
target application during three different stages of execution. These stages are:

• execution without DUPE compatibility (outside any DUPE framework)

• execution with DUPE compatibility, however, with all security set as inop-
erable3

• execution with DUPE Compatibility, all certificates valid, all members
trusted and all security operational.

We applied the testing using all the DUPE implementations4. By testing the
validity of the class bytes supplied by resources, we can determine if the contents

2We established in Chapter 7 that trust is determined on an individual basis using the
frameworks Security Control settings.

3The security of the entire DUPE community is switched off.
4Although, this was not necessary as all implementations use the same security package,

we tested all implementations to look for anomalies and to ensure that our testing regime was
comprehensive.
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of the resources were unaffected during transfer. During the tests, all DUPE
members consisted of the same target application and were run in the same
manner. Therefore, any successful adaptation resulted in full redefinition of a
system class resource. The checks assessed during the analysis were:

1. Application Execution: will the execution of the target system be correct
when all security options are in place?

2. Discover Community: is a DUPE system able to become a member of a
DUPE community when all security options are in place?

3. Transfer Resources: as a DUPE member, was the DUPE system able to
discover, advertise, transfer and obtain DUPE resources according to the
DUPE security measures?

4. Redefine Class Details: is the DUPE system able to redefine its structure
using appropriate resource details, while security on option is in place?

Table 11.3 gives a results of the resource transfer testing situations.

DUPE
Lite

DUPE 5.0 DUPE
JPDA

No DUPE

Application Execution yes yes yes yes
Discover Community yes yes yes N/A
Transfer Resources yes yes yes N/A
Redefine Class Details N/A yes yes N/A

Table 11.3: Implementation Results of Security Checks

These testing scenarios cover all interactive aspects of a DUPE community.
Therefore, as all situations produce positive results (this includes DUPE mem-
bers only adapting where applicable), then the test results show that the security
measures do not interfere with DUPE community operations. Table 11.3 clearly
supports this assertion.

Further to testing if the DUPE systems interact correctly, irrespective of their
security settings, the testing procedure also included negative testing. These
testing scenarios were applied to test the validity of resource code by forcing
incorrect data to be discovered within a DSO. This test established that when
the byte code supplied by a DSO was an invalid format, according to Java class
byte specifications, then, irrespective of any correct certificates and adaptation
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settings, the class redefinition is aborted. This particular aspect of testing was
an implementation test, not a framework test. We, therefore, could not extend
this analysis.

11.5.2 Security Test - Certificate Recognition

Certificate recognition is the main trust mechanism of a DUPE community. How-
ever, the validity of a certificate is not determined by the DUPE framework but
by the security and adaptations settings applied by the user (see Chapter 7 for
full details on certificate recognition). Consequently, the testing procedures used
to validate this area of a DUPE community only determines whether the DUPE
framework allows DUPE middleware to check that a certificate exists within a
DSO, that the resource code is signed by the associated certificates and that the
remote code is only loaded by a DUPE system if it is determined valid. The
testing is setup to find out if DUPE members can recognise resource instances
where the certificate does not exist, or where the certificate is not trusted by the
current DUPE system execution settings.

We established in Section 7.4.1 that all DUPE framework implementations require
several aspects of a target application to be correct. These aspects were:

• the target application must be compiled with the -g option

• the target application must be contained in a Jar file and stored in the
dupe/trusted/ directory of DUPE file structure

• the associated Jar file must have an associated Manifest file that contains
all adaptation information, and

• the Jar file must be signed with a minimum of one certificate.

The last two of these requirements are a direct result of the security mechanisms,
while, the second requirement is a security precautionary setup.

The certificate checking tests that were carried out, using all DUPE implemen-
tations, adhered to all the security requirements. However, for testing reasons
certificates were deleted from some DSO resources and invalidly signed code was
used in others. These DSO’s were used to examine the implications of such a
situation. The results from all of our certificate testing are detailed in Table 11.4.
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DUPE
Lite

DUPE
5.0

DUPE
JPDA

Execute unsigned application no no no
Execute application signed with untrusted certificate no no no
Execute resource with invalid signature but valid cer-
tificate chain

no no no

Instantiate, or redefine, unsigned remote class no no no
Instantiate, or redefine, untrusted remote class no no no
Instantiate, or redefine, invalidly signed remote class no no no

Table 11.4: Certificate Security Checks

Table 11.4 presents all the test results as negative, as required. The table is
written as such to demonstrate the purpose of the test. Although, the certificate
analysis testing is implementation specific, it does demonstrate that the use of
certificates with the DUPE community allows member to govern their adaptation
progress in accordance with their individual requirements.

11.6 Adaptation Testing

Adaptation tests are used to provide a study of the community interaction and
demonstrate the cooperation aspects of the framework. There are many different
reasons for adaptation. We limited our testing to the findings from two separate
situation studies which were designed to cover as many of the adaptation require-
ments as possible. However, no matter how generalised our scenarios are there
may be adaptation scenarios not covered. This is due to the open-ended nature
of DUPE communities and system adaptation. All tests are designed for fully
compatible DUPE systems.

Specifically, test scenarios show the results from the two main DUPE community
examples we have previously used in the thesis (see Chapter 6):

• The Home Community: a case study of the interaction within a home
based DUPE community.

• Localised Adaptation: a case study of the movements of DUPE members
throughout localised communities using a tourist application as our test
bed.
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This method of analysis provides access to adaptation testing results from com-
munity interaction within the many foreseeable scenarios of a DUPE community.
This includes the adaptation of gypsy agents; however, we cover these in more
detail in the next chapter.

We have separated our testing scenarios into two sections (Section 11.7 and 11.8).
As mentioned, each section is in the form of a case study, and therefore, the
results are qualitative and not presented as quantitive measurements. It is sug-
gested that the reader analyse the case studies to form a picture of the different
adaptation circumstances being described. We will conclude each case study with
our observations.

11.7 Adaptation Test - The Community

Home automation services are made possible through the use of techniques such
as OSGi [84] and UPnP [72]. These technique provides home services with access
to each other and to external information, including the internet, via the use of a
home gateway and a communication channel. This test scenario is based on the
concept that each home service, including the gateway, is running as a DUPE
member of a DUPE community established within the home network.

A home automation system is designed to allow all services, in most cases appli-
ances and devices, to interact and use each other’s capabilities. Examples of its
use include phone call notification where a user is informed of a phone call via
the television, and device interaction in which a user using a coffee machine will
be informed if there is milk in the fridge or not.

The DUPE framework enables each home system to evolve in accordance with
the home system settings and the current status of the other services within the
DUPE community. Moreover, as the home network is a DUPE community there
are several different scenarios that may cause a system to adapt or evolve. These
adaptations represent a significant number of the common adaptation situations
that may occur in any DUPE community.
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11.7.1 Scenario Analysis A - Addition of New System

In this scenario, a new DUPE system enters the community; for example, a friend
with a PDA. The resources of the entering system can be in three different states
according to the resources currently within the DUPE community. These states
are:

i. New System Containing New Resource Version
The system entering a DUPE community contains a new resource version5;
for example, when a communication package, that has a Specification Ver-
sion of 1.2, is commonly used within the community upon entry of a new
system, for example, a coffee machine, that contains the communication
package with Specification Version 1.3, all systems will upgrade. To be ex-
act, all fully compatible DUPE systems within the community will adapt to
the state of the coffee machine’s communication package. Limited DUPE
systems will only adapt according to their limitations; for example, DUPE
Lite systems will only adapt after a restart. However, irrespective of this,
the adaptation occurring in this context also includes, if required, the adapt-
ing systems gathering new, previously unknown resources.

ii. New System Containing Old Resource Version
The system entering a DUPE community is running an older, or less spe-
cific, version of a resource package; again we use the communication pack-
age. In this case, because the current members of the community contain
a more appropriate version of the communication package, the newly en-
tered member adapts and alters its resource state to that present in the
community.

iii. New System Containing Same Resource Version
The system entering a DUPE community contains the same version of a
resource package currently in the community. In this situation neither the
new member, nor the old members of the DUPE community change state.

11.7.2 Scenario Analysis B - Resource Upgrade

A permanently setup DUPE community provides software vendors with the abil-
ity to alter system components by placing them on any current member within

5In our scenarios we set the version update according to the Specification-Version vari-
able of the Manifest file (see Section 7.3 for further details).
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the community. A vendor may wish to use such a capability, for example, to re-
pair a software bug or, distribute update software components. This is a concept
we introduced in Section 6.7.

The new resource components will most likely be placed on the home gateway
of the community, as this service provides a connection to the internet. When
the component is placed on the gateway, the home gateway itself may adapt, if
appropriate, and then generate a new community event6. Following this, all other
home community members can adapt. However, as DUPE enables systems to
use components found within their system structure, within their normal system
reach, and, via resource discovery, a component may actually be placed anywhere
in the home network, and a member would react in the same manner. This would
include the placement of the resource of a visiting system within community for
the sole purpose of upgrading community components. We tested this scenario
in the following manner:

i. Resource Placed on Home Gateway
A new class version, in a Jar file, was placed within a gateway system
that was designed to find it within itself. According to the attributes of
a dynamic community, when the gateway created an instance of the class
found in the new resource, a DUPE community event was generated and
all other members began to obtain the resource data, where appropriate.
However, not all systems obtained the resource directly from the gateway.
As more systems were running the new component version, they were able
to distribute it throughout other community members. This meant that the
gateway did not have to upload the resource contents to all of the DUPE
members.

ii. Resource Contained within Entering Systems
A new class version, in a Jar file, is contained within a system that enters
the community. The results of this simulation were exactly the same as
those shown previously in Section 11.7.1, Scenario Analysis A(i). The tests
showed that although this scenario was designed for a different task, its
fundamental, underlying adaptation scenario was the exact same concept
as system evolution. Furthermore, as the current community members have
adapted to the resource, when a new member enters the community it will
also have access to it.

6If the home network does not adapt to the resource, if developed to do so, it can recognise
the addition of the resource and notify the community that it is accessible.
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11.7.3 Observations of Adaptation Test - The Community

The scenarios presented by the home DUPE community demonstrated several
advantages that DUPE provides when some members are semi-permanent. It
was interesting to observe the adaptation of a single system and the subsequent
chain reaction of system adaptation throughout the entire community. There-
fore, it is reasonable to suggest that if a new version of a generic component, for
example a communication component, is placed somewhere within a community,
then one by one each community member would adapt. Moreover, the scenarios
also illustrated that each separate discovery of the system resource does not need
to be achieved via the same member. We conclude that this particular feature
of the DUPE member interaction is a result of the framework specification that
all (most) community members can receive and send resources, as illustrated in
Chapter 4. Thus, as a new resource is introduced to each member, the number
of systems that offer the component as a service increases.

11.8 Adaptation Test - Localised Adaptation

This adaptation test is based on a dynamic tourist application. We developed
a small program that can be executed within a DUPE middleware with the
adaptation settings set for location based adaptation. The tourist system is a
general tourist application. When implemented as a DUPE system it is able
to execute a destination specific version of the application. The test in this
scenario represents the adaptation of a wandering system adapting according
to its current community and location. There are several different factors that
determine this method of adaptation. All of these factors are associated with the
adaptation settings of each DUPE system, as we discussed in Section 7.3. All the
movements throughout a localised community maintain the common scenario
of random community adaptation; consequently, it is not necessary to test all
possible adaptation situations. We will now provide a test scenario which is
designed to analyse the ability of a DUPE system to change state according to
its current community.

11.8.1 Scenario Analysis

We designed a tourist application contained within the tourist Java package. It
has two main Java classes:
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tourist.Tourist: a Tourist object is the applications instantiating class. How-
ever, it is not the main class of the Tourist application. This function be-
longs to the tourist.TouristInit class. Moreover, when using a DUPE
middleware, this class is the only file that is needed on a user’s system. The
Tourist class is extremely small in design so it would easily fit on a resource
limited device.

tourist.TouristInit: the TouristInit object, as previously mentioned, is the
most important object for the tourist application. The TouristInit class
initiates all other classes for a specific version of the application. The
tourist application is designed so that it is easier to establish which version
it is executing during community adaptation. Neither the TouristInit class,
nor any class resulting from the TouristInit class, needs to be initially stored
within the executing DUPE system.

The Tourist system application was designed so that, if appropriate, a central
server can be located at a tourist destination. However, this is not necessary as
DUPE communities allow members to gather resources from other members and,
as a result, create or maintain destination specific systems.

Our scenario tested the Tourist application as a DUPE System7, and analysed its
ability to alter behaviour based on a current proximity. Moreover, each proximity
the system entered contained a different (simulated) tourist destination applica-
tion. The scenario showed that under such circumstances the tourist application
worked efficiently and correctly whilst running within the DUPE framework, and
was able to adapt according to a current community. This testing scenario was
specifically used to analyse the capabilities of a target application, particularly
its network capabilities, while executing as a DUPE system. Therefore, several
of the tourist destination applications (those adapted by a DUPE tourist system)
called for access to images and information that were located on remote HTTP
servers; for example, photographs of the tourist destination. The testing during
this aspect of the analysis was positive. It was seen that DUPE allowed the ap-
plication to interact within the network as it would without DUPE. As a result of
resource reloading, it obtained access to images and information from locations
that were initially unknown.

7DUPE 5.0 and DUPE JPDA were used as DUPE middleware for tourist applications.
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11.8.2 Observations of Adaptation Test - Localised Adap-
tation

During the testing scenario the execution of an incomplete target tourist pro-
gram was attempted. In this case the results indicated that a DUPE system is
able to load multiple classes that are all unknown to its structure. The positive
observation resulting from this is that there are no restrictions on the quantity
of resources a system can discover using a DUPE middleware. Moreover, these
results also demonstrated that, if it is possible to determine the details of the
first class that must be discovered, it is possible to execute an entire application
that does not exist within a system. For example, it is possible to execute the
command:

java ... dupe.DUPE unknownApplication.UnknownClass ...

and the DUPE framework will gather, if available, all details of the unknown
application and execute it.

The results obtained from testing the Tourist program also indicates that the
DUPE framework is as useful for complex applications as it is for simple appli-
cations. Furthermore, it also affirms that a specialised application executing as
a DUPE System can act as an advanced dynamic web browser, and in a similar
manner to Web Start [109]. The application is not only able to display informa-
tion but also regenerate an entire application.

11.9 Technical Testing

The technical testing of the DUPE framework is based completely on our test
implementations: DUPE Lite, DUPE 5.0 and DUPE JPDA. These are tested
using tools that provide measurements during the execution of a system. How-
ever, some tests were not applicable to DUPE Lite due to its runtime adaptation
limitation. The technical tests are designed to provide an insight into how a
DUPE framework operates and the impact its operation has on the target appli-
cation and device. The core intent of these measurements is to determine if the
framework has an acceptable level of physical overhead, and whether the addi-
tional time it takes for a system to locate and instantiate a class is an acceptable
trade-off for its distributed capabilities. Specifically, we provide the following
measurements:
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• VM Overhead Measurements: these measurements analyse the added
load the DUPE framework gives to the memory and processing capacity of
an executing system.

• Application Speed Tests: these are speed measurements that are anal-
ysed in order to determine the overall effect of DUPE in terms of application
execution timing. The measurements analysed are:

– Class and Object Loading Speeds

– Adaptation Speed

– Community Interaction Speed

– Gathering Resources

– Registering within a Community

11.10 VM Overhead Measurements

We took measurements of the size of the JVM HEAP size during execution. The
same target system is executed each time, and the measurements are taken during
the following three different executing environments:

• as a normal stand alone system

• as a DUPE compatible system using DUPE Lite

• as a DUPE compatible system using DUPE 5.0

• as a DUPE compatible system using DUPE JPDA.

All testing measurements were accurately obtained using the JProfile (Version
4.0.2) tool [37]. The measurements were then averaged from a large set of execu-
tions of the exact same scenario. Within these scenarios, all the measurements
were obtained at three key executing points:

• during standard application processing (initial/normal adaptation)

• during adaptation8

8During execution stages such as class redefinition, it is not possible to measure the target
application whilst it is executing outside a DUPE middleware or with DUPE Lite.
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• post adaptation.

The results of the analysis are provided in Table 11.5 and shown graphically in
Figure 11.1.

The results of the HEAP measurement testing indicate that during adaptation the
HEAP size of the application rises by only a small amount, and that once an initial
adaptation has occurred the HEAP size remains approximately at the higher level.
Therefore, the most appropriate measurement to use for the calculation of any
overhead of a DUPE framework is after system adaptation. This is because after
system adaptation, the measurements represent the state the entire system is
most likely to be in during most of its execution. The measurements during this
period are:

• DUPE 5.0 produces on average overhead of approximately 500 MB.

• DUPE JPDA produces on average overhead of approximately 700 MB.

Furthermore, by dissecting the HEAP measurements during the testing, the anal-
ysis also revealed that the average measurement of a DynamicClass object, which
may initially be seen as the largest and most variable object of the DUPE frame-
work, has a smaller than expected average size of 24 bytes per instance. This
figure can be used to indicate that due to the small size of the these objects, the
actual overhead size of the DUPE framework will not alter significantly as the
target application execution continues, and more classes are instantiated.

Application Setup Adaptation State Minimum
(MB)

Average
(MB)

Normal N/A (Normal) 488 515
DUPE Lite N/A (Normal) 723 756
DUPE 5.0 Initial/Normal 926 998
DUPE 5.0 During 1002 1069
DUPE 5.0 Post 1012 1036
DUPE JPDA Initial/Normal 926 964
DUPE JPDA During 1223 1260
DUPE JPDA Post 1212 1250

Table 11.5: HEAP Size Results
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Figure 11.1: JVM HEAP Size Graphical Representation

11.11 Application Speed Tests

To understand further the impact a framework implementation has on an ap-
plication, we analysed tests to determine the added time they give to system
execution. The measurements are used to determine the general impact of the
framework during standard operation. That is, the measurements were not taken
when DUPE related processing, such as class redefinition, was being achieved.
However, we also measured the impact the framework has during DUPE related
processing. This measurement is used to compare the impacts of the different
DUPE implementations and determine how each might execute on devices with
limited capability.

11.11.1 Class and Object Loading Speeds

During the speed measurements of class object instantiation, the measurements
determined to be useful are those of redefinition and object loading speed . These
results provide the details to illustrate the close relationship that the DUPE im-
plementation has with its specific dynamic updating technique. Tables 11.6 and
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11.7 give the averaged timing results from 20 execution measurements on all of
our randomly chosen test machines. This test is not applicable to DUPE Lite as
measurements were taken during runtime adaptation.

Application Scenario Initial Load
Speed (ms)

Subsequent
Loading
Speed (ms)

Standard Execution 0 - 10 0
DUPE 5.0 Execution 78 - 94 0
DUPE JPDA Execution 2656 - 2828 0 - 16

Table 11.6: Loading Class Bytes and Object Instantiation - Small Class

Application Scenario Initial Load
Speed (ms)

Subsequent
Loading
Speed (ms)

Standard Execution 0 - 130 0
DUPE 5.0 Execution 78 - 103 0
DUPE JPDA Execution 2969 - 3921 0 - 16

Table 11.7: Loading Class Bytes and Object Instantiation - Large Class

It is easy to see from these results that the DUPE JPDA implementation, as can
be predicted from Chapter 10, requires a much greater amount of processing time
in comparison to the other executing scenarios. From this we can suggest that
DUPE 5.0, in terms of execution speed, is best suited for mobile devices.

11.11.2 Adaptation Speed

There are two different aspects of the adaptation speed that are measured.
First, the measurements of aspects directly affected by the community inter-
action speeds, and second, the class updating speed the result from the updating
technique applied to the framework implementation. In Table 11.8, we show the
measurements for the latter. We provide all aspects of community interaction
speed testing in Section 11.11.3. For the same reason as the previous tests, these
tests are not applicable to DUPE Lite.

As all classes vary in size, we present the loading speed from a variety of different
sized classes. This allows the testing to give a realistic indication as to the speed
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Implementation Min(ms) Average(ms) Max(ms)

DUPE 5.0 16 40 130
DUPE JPDA 134 682 2469

Table 11.8: Reloading Class File Measurements

of each execution. Moreover, as we provide a minimum, average and maximum
test value, it may also be seen that a small sized class will load at (approximately)
the minimum speed, whilst a larger than normal sized class is likely to load at
the maximum rate.

The analysis of the speed measurements further supports the view that, as indi-
cated by Sun [106], J2SE 5.0 improves immensely on the instrumentation time
of the previous technique J2SE 1.4 using the JPDA structure. However, they
also indicate that neither implementation of the framework inhibits the speed
of a system’s execution to a degree that system use is affected. And, although
DUPE JPDA does create a slower application, it may be the case that a user will
conclude that its extended capabilities outweigh any loss of execution speed.

11.11.3 Community Interaction Speed

The results of the community interaction time, gathering class data, analysing
Dupe Service Objects and discovering DUPE communities were predictable. This
is a result of the exact nature of this section of the framework. For example, when
a DUPE system is gathering resource details, the variables that play a part in
determining the community interaction time are:

1. the size of the class bytes being gathered

2. the speed of the delivery system, and

3. the active state of reloading and discovery mechanism (loaded state within
the JVM).

We found that, for example, gathering the same resource from two different sys-
tems, gave slower testing times when the testing system was busier. However,
these results do not come as a surprise and are common measurements of dis-
tributed applications.

We will now provide further analysis of resource gathering and system adaptation.
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11.11.4 Gathering Resource Testing Results

The gathering of resource details is measured as a single timing entry which takes
into account the period of time it takes to:

• find a DSO

• search through all the resource details within the DSO, and

• determine their usefulness for system adaptation.

It is reasonable to suggest that classes which may be used for adaptation by an
application may produce a time lapse. These tests aim to measure this overhead.
Specifically, a major aim of these tests, is to determine whether searching through
unusable resources presents unacceptable lag delays for DUPE systems.

As we did with the JVM analysis in Section 11.9, we have analysed both ends of
the extreme for a class file size (small and large) along with measuring the aver-
age speeds of standard, miscellaneous, application classes9. All times the results
from the analysis of all possible different situations within the test environment
are averaged to determine an over-all time.

The results are divided into three categories:

Resource Unusable: the discovery of a resource that will never be applicable
to the target application.

Known Resource - Tested Unusable: a resource that may be used within
the target system, yet, due to adaptation settings or security constraints
will not be used.

Known Resource - Tested Usable: a resource that is known within the tar-
get application and can (will be) loaded or reloaded accordingly10.

Each category is identified clearly as a separate timing entity during tests, and
as a consequence, if viewed as a single measurement the results are misleading.
The results of the testing are presented in Table 11.9 for ease of comparison.

9The standard miscellaneous application classes are those that we have created for our
analysis in Section 11.3.

10The timing of a known and usable resource does not include the period of time taken to
load and define the class.
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Implementation Resource
Unknown (ms)

Known Tested
Unusable (ms)

Known Tested
Usable (ms)

DUPE Lite 0 0 - 230 10(min),
6572(avg),
20163(max)

DUPE 5.0 0 0 - 310 15(min),
6719(avg),
23213(max)

DUPE JPDA 0 - 16 0 - 400 127(min),
8609(avg),
23046(max)

Table 11.9: Gathering and Analysing Resource Details

A foreseeable concern of the DUPE framework is that unnecessary CPU usage
time may be allocated to tasks which have no direct impact on the target appli-
cation. One such task is the discovery of a resource which is deemed immediately
unusable; for example, an application that will never make use of classes from the
helloWorld package. This application, if set as DUPE compatible, will, however,
discover all resources present in the same DUPE community, including those from
helloWorld. The analysis of these resources should not hinder the progress of
the application in any way.

The timing results obtained during this analysis show that the effect that the
discovery of an unnecessary resource has on the target application is minuscule
and in most cases immeasurable, hence a measurement of zero micro seconds.
These results are positive. They indicate that unnecessary computations that
occur during DUPE community interaction have minimal, if any, impact on the
processing of a DUPE system.

11.11.5 Registering within a Community

To gain an overall view of the timing of a DUPE system, we analysed the period
of time it takes a DUPE member to discover and register within a community.
The speed of this aspect of the framework will determine, along within other
factors such as resource transfer time, how long a system needs to be within the
proximity of a community before it is able to benefit from interaction.

222



Chapter 11: Evaluation

Implementation Discovery and Registration (ms)

DUPE Lite 940
DUPE 5.0 1004
DUPE JPDA 6824
Jini 1.1 HelloWorld 240

Table 11.10: Community Discovery and Registration Average Speeds

Table 11.10 gives the average discovery speeds of entering DUPE members recorded
over many different executions of each of our test frameworks. In order to show
how the framework has affected these speeds, we have also included the measure-
ments of a simple HelloWorld Jini 1.1 application. As DUPE makes use of Jini
for discovery purposes, we can view this timing as the overhead created by the
DSO and DUPE’s gateway proxy structure.

The overhead of the discovery time corresponds to the overhead in general of
the middleware. DUPE JPDA takes longer to discover the communities, adding
approximately 6 seconds to the standard Jini discovery time, while, DUPE 5.0
and DUPE Lite add only about 0.5 of a second to the same time. We also note
that the capabilities of the host system and the setup of the network always have
an impact on the discovery time. However, this is standard for all distributed
applications.

11.12 Other Observations

The testing procedures applied during this chapter showed DUPE to be an ef-
fective means of component exchange. And, as is evident from our technical
evaluation, all implementations could possibly be used within mobile devices.

During our observations of the DUPE testing, we encountered some instances
where unexpected results were obtained. These instances were interesting to
observe as, in general, they were a result of the unknown limitations of each
dynamic updating technique. The most problematic of these results were found
during post-redefinition observations.
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Specifically, we note that Java Swing components, javax.swing, in both DUPE
5.0 and DUPE JPDA displayed irregular performance. At times a main compo-
nent of a Swing GUI, for example javax.swing.JFrame, would produce a new
GUI Frame on the screen and leave the older versions visible. This problem is,
however, not something we see as detrimental to the framework design, and is
most probably due to a combination of repaint problems and Stack pointer vari-
ables. Moreover, problems such as these are obviously related to the dynamic
updating within each respective JVM, and therefore, not a direct result of the
DUPE framework.

11.13 Summary

Our test DUPE implementations all provide the functionality of the DUPE frame-
work (although DUPE Lite has limited functionality). Not only are they able
to generate and cooperate within DUPE communities, our tests show that the
DUPE communication language design succeeds in allowing different applica-
tions, using different DUPE middleware, to share resources. The analysis in this
chapter also demonstrates that, in comparison to DUPE JPDA and DUPE Lite,
DUPE 5.0 is far more suited to mobile devices. DUPE 5.0 provides complete
DUPE compatibility, maintains faster execution speeds, creates the least amount
of overhead for target systems, and as a result, consists of a small system foot-
print. However, this is not to say that, for example, DUPE JPDA is of no use;
for instance, J2SE 1.4 is currently the most deployed JVM, and subsequently,
DUPE JPDA is the most applicable technique for most current systems.

The analysis provided in this chapter is a framework analysis. It focuses on the
fundamental aspects of DUPE, and looks at the middleware implementations in
order to assess the added overhead given to systems. It weighs this up against the
added benefits of community interaction. However, as the concept of a DUPE
community is new, the analysis we have provided can only be used to determine
whether the DUPE middleware inhibits the execution of a system to a degree
that it is no longer beneficial.

In order to provide further indication of the possible benefits of DUPE, the follow-
ing chapter provides models of the expected movements of gypsy agents. These
models are used to determine the usefulness of DUPE as a software transfer and
deployment technique. The models also provide us with the means to discuss
how gypsy agents provide an alternative and unique means of system evolution.
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Chapter 12

Model Analysis

12.1 Introduction

This chapter provides an analysis of gypsy agents. We achieve this by developing
mathematical models based on the movements of these agents among DUPE com-
munities. We provide the analysis of both a simple model and complex models.
The simple model is mathematically conclusive. However, our complex models
could only be developed as a result of simulation analysis. These models are used
to determine probabilities on how fast a system resource might be dispersed via
gypsy agents. Then, to conclude our modeling, we develop a relationship between
gypsy agent movements and a positive perspective of epidemic models.

12.2 Modeling Gypsy Agents

The movements of gypsy agents are random. Consequently, an exact measure-
ment of their movements is unobtainable. We will instead show that with random
graph modeling and probability analysis we can provide valuable insight.

There are several techniques that have been used to determine the spread of soft-
ware throughout a network; for example, the modeling of web community crawl-
ing [27], computer virus progression [57], and AI techniques, such as, flocking and
spawning [90]. Each of these examples is a measurement of the movements of a
semi-predictable software system. Gypsy agents are physical mobile agents which
are governed by human movements. This element must be taken into account
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and consequently the modeling is different. Accordingly, we identify biological
epidemiology scenarios and modeling as useful. The relationship among these
models and computer viruses has been addressed [57], however, their use in com-
bination with random graphs for software transfer models has not. We aim to
show that this type of modeling best represents the nature of gypsy agents, and
is the most appropriate means of determining their distribution attributes. Thus
finalising their contributions to the field.

During Sections 4.4.3 and 6.9, we argued that the movements of gypsy agents
may be similar to that of the spread of infectious disease [78]; both are a result
of human interaction. In modeling and determining the probability of the spread
disease, the use of random graphs [15, 78] can be applied in a similar manner to
that used to determine the evolution of networks [33]. However, such infectious
disease models are extremely complex; for example, those applied by Newman,
Strogatz and Watts [78]. We do not require such an in-depth analysis. The aim of
this section of our work is not to discover a new means of mathematical modeling,
we only wish to use it to analyse the usefulness of the gypsy agent concept. That
is, the contribution of gypsy agents to the thesis is the concept itself. We use
modeling analysis as a measurement and proof of concept. However, in Chapter
13, we do suggest that more complex modeling may be developed as a future
contribution to the field.

We will present the usefulness of gypsy agents in the form of an evaluation of
the probability that their movements are active enough to spread a software
component version through communities at a reasonable rate. Firstly, however,
we will briefly discuss other current methods of software transfer. We will then
apply a simple line model to obtain very general results. We will follow this with
more realistic complex models. Although, as will be discussed, most comparisons
between other techniques and our models are not appropriate due to differences
in analysis.

12.3 Techniques for System Evolution

The distribution of system updates is most commonly achieved by depositing the
necessary update components on web based servers and making them available for
users to download. There are different ways to use this technique. For example,
the user’s system may be automatically timed to search for an update. At times,
in this scenario, the user is unaware of their system’s updating procedures; for
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example the Windows operating system is set (as default) to search for updates
at periodic time intervals, unbeknown to the user. However, these setting can
always be altered at the users discretion. A consequence of this technique is that
a high degree of user interaction is required for system evolution. As such, there
is no movement of the system update itself only its downloading by users. For
example, any model for a Windows XP security update would show a high initial
download that progressively declines as all users install the update. Therefore, it
is reasonable to state that, the download rate of a software component is depen-
dent on the needs and wants of all users. Consequently, any subsequent model is
specific to the software component, and not measurable against the more general
use of gypsy agents movements.

Peer-to-Peer (P2P) sharing is direct system cooperation that results in file trans-
fer. It allows systems to obtain data from one device directly to another device
without a middle server. The connectivity between systems in P2P situations is
more flexible and usable than server downloading, as the required data can be
gathered from a wider range of systems. However, the system update procedure
is still restricted by the need for user interaction. Any P2P connectivity is flex-
ible in terms of what systems it allows to communicate, consequently, there is
no requirement for a system to be mobile or PC based. Therefore, it is possible
that community based cooperation could be built on top. Doing this may allow
systems to cooperate in a network where there is a possibility of adapting to the
current state of a community, and subsequently, update system states accordingly.
Although, currently, this seems far-fetched. The modeling of P2P interaction by
Zhong, Shen and Seiferas [124], is similar to ours. And, although their model is
not based on community cooperation or dynamic systems, it does demonstrate
the interaction of P2P applications. However, their results, and the reason for
their results, are different to ours. Consequently, it would be unreasonable to
compare their results with ours.

Gypsy agents can carry a new updated version of any system with them and
distribute it amongst users. Although, comparisons are minimal, what we can
determine without any comparative measurement is that gypsy agents encourage
system evolution according to a chosen variable, for example location, without
any user intervention. This is unique in comparison to both web downloads and
P2P. What we need to determine is, whether the distribution is at a relatively
reliable rate.
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In response to this query, we will now begin our model analysis for gypsy agents.

12.4 Basic Line Model

The scenarios presented throughout this chapter model multiple gypsy agents.
At each generation stage, one agent will move from each community to one of
its neighbouring communities. Although this movement will occur if an agent is
infected or not, we are only interested in the movements of the infected agents.

This is the most basic of our models. Its simplicity is shown in Figure 12.1 (com-
munities are shown as nodes, and infected communities are shown using dark
circles; all others circles represent non-infected communities).

Figure 12.1: Straight Line Movements of Gypsy Agents

In this scenario any contiguous set of infected points will change in one of 3 ways:

• 2 more nodes get infected by the endpoints moving out

• 1 more gets infected by the endpoints both moving right

• 1 more gets infected by the endpoints both moving left

• no more get infected by both moving in.

These movements are shown in Figure 12.1 as arrows. The probabilities of each
contiguous set are all equal: 1/4.

In general, the probability that N nodes are infected at a generation1 n equals:

probability that N are infected at n− 1 times probability that no more get
infected

plus

1We refer to a step in time as a generation according to common epidemiology terminology.
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probability that N −1 are infected at n−1 times probability that one more
gets infected

plus

probability that N −2 are infected at n−1 times probability that two more
get infected.

That is:

Pn(N) =
Pn−1(N)

4
+

Pn−1(N − 1)

2
+

Pn−1(N − 2)

2

except in the following special cases:

P1(1) = 1
P2(2) = 1

From this we can find that:

P3(4) = P2(2)/4 = 1/4
P3(3) = P2(2)/2 = 2/4
P3(2) = P2(2)/4 = 1/4
P4(6) = P3(4)/4 = 1/16
P4(5) = P3(4)/2 + P3(3)/4 = 4/16
P4(4) = P3(4)/4 + P3(3)/2 + P3(2)/4 = 6/16
P4(3) = P3(3)/4 + P3(2)/2 = 4/16
P4(2) = P3(2)/4 = 1/16

and so on. Interestingly, the numerators form the pattern:

1
1 2 1

1 4 6 4 1
1 6 15 20 15 6 1

On observation it is simple to see that this represents every 2nd row of Pascal’s
triangle. And that the denominators are powers of 4.

The actual formula depends on when you start time. If you start at t = 1 (as in
the above), then the probability that N communities are infected at time n is:
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Pn(N) =

(

2n − 2
2n − N

)

/4n−1

Prove by induction.

Everything else (maximum number infected, average number infected, and so on)
all follow from properties of Pascal’s triangle.

To further verify this model we ran a simulation analysis

12.4.1 Simulation Results

The simulation runs through 2000 random generations of gypsy movements (this
number of runs remains for all simulation throughout this chapter). The results
from the simulation will now be compared against those from the model.

Figure 12.2: Line: Average Number of Infected Communities

The medium rate of distribution comparison is shown in Figure 12.2. The results
match. Furthermore, the slope of the line indicates that the rate of distribution
of gypsy agents is useful for component transfer.

For further descriptive analysis we look at distribution curves. This analysis de-
tails the predictability of gypsy distribution by calculating the probability of N
infected communities at a selected generation n (Pn(N)). Again, the results are
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positive. We provide the results for n = 10 and n = 20 (Figures 12.3 and 12.4
respectively) to show the comparison of the model results against our.

Figure 12.3: Line: Histogram Distribution at n = 10

Figure 12.4: Line: Histogram Distribution at n = 20

12.5 Complex Models

Although the basic line model provides an insight into the movements of gypsy
agents, it is unrealistic. A more realistic arrangement of communities is obscure.
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In reality DUPE communities will never be arranged according to a particular
predetermined pattern. The introduction of complex model patterns may pro-
vide valuable details on gypsy agent movements. Such analysis would produce
results similar to, for example, the use of complex webs models for the community
growth, in terms of internet relationships, adopted by Dorogovtsev and Mendes
[33]. Their models were based on web page links and pages using random graphs
for their analytical conclusions. We will apply a similar scenario technique to our
complex modeling.

The literature provides many results on complex random movements that are
applicable to our work. For example, the recent work of Burioni and Cassi [19]
provides an overview of random walk modeling. Their work includes the analysis
of a random walk through different complex graph arrangements. This common
random graph analysis is applicable to our work.

However, overly complex arrangements of DUPE communities are unnecessary.
Instead, we use four complex, shape based community arrangements: square,
triangle, diagonal square and hexagon. These arrangements were chosen, making
modeling simpler, for they are the branching factors of 4, 6, 8 and 3 respectively.
The shapes are illustrated in Figure 12.5 and the branching factor can be seen in
Figure 12.6.

a) Square b) Triangle

c) Square with

Diagonals d) Hexagon

Figure 12.5: Shape Based Complex Mode Designs
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a) Square b) Triangle

c) Square with

Diagonals d) Hexagon

Figure 12.6: A Random Walk through Complex Models

Within these graph patterns, there are two types of movements that are appro-
priate to gypsy movements. These are:

1. a traveling salesman (a planned, non-random, walk that passes through all
communities), and

2. a random walk.

However, considering that gypsy agent movements are a direct result of human
movements, the random walk is most appropriate. Figure 12.6 provides an exam-
ple of a random walk after three generations (contacted communities are shown
using blacked nodes). This random walk directly represents the movements of a
single gypsy agent.

Models for traveling salesmen, and random walks, are covered intensely in the
literature [15, 19, 33, 78]. Standard results from these areas are applicable to
our work, therefore, we will not reiterate them. We focus our modeling on the
random movements of many gypsy agents, as this is more appropriate for our
purposes, and, according to our research, it is also less prevalent in the literature.
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Moreover, while similarities to epidemic models are present, we will show that
the epidemic models are not exactly the same as our models.

We will now provide an individual analysis of each model. The analysis results
are derived from simulations. Although it is possible to write a program to cal-
culate the exact model, such as that provided for the line model (see Section
12.4), we found that such programs required system capabilities beyond those of
a standard PC, and thus, exceeding the capabilities of the systems we had access
to. As such, the complete execution of such programs, and subsequent analysis,
is noted as future work (see Section 13.1).

The process for developing a model is repetitive for all models. In the latter
models several steps of the modeling process will therefore be skipped. However,
it is simple to decipher their complete modeling process using our first complex
model, the square model (see Section 12.5.1).

It is important to note that terms related to ‘infections’, such as infects, are used
in positive context; for example, it is good for a bee to infect a flower with pollen
from another.

12.5.1 Square Model

The first of the random movement models is based on a square node graph. This
is the most common use of random graphs. The number of possibly infected
nodes N can be determined according to generation step n:

N(n) = 2n(n + 1)

We ran a simulation to determine the movements of gypsy agents. Each sim-
ulation was run 2000 times. The results of the simulations produced two main
graph types. Firstly, we established a medium curve. This best represents the
expected number of infected communities at each generation. The results of this
part of the square simulation are provided in Figure 12.7.

The results are simple. They show a steady progression that approximately fol-
lows a curve of 0.5156n2 − 1.1566n + 3.8132 according to n generation.
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Figure 12.7: Square: Average Number of Infected Communities

The second of the graphed results are probability distribution. These indicate the
probability of N infected communities (Pn(N)) after n generations. We provide
the results for generation 10 (Figure 12.8) and generation 20 (Figure 12.9).

Figure 12.8: Square: Histogram Distribution at n = 10

These graphs indicate that the distribution presents a bell curve. This is indica-
tive to the results from the line simulation (see Section 12.4), this is positive.

The distribution analysis provides an insight into the probability of the spread
of infection as generations progress. It indicates that lower generations have a
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Figure 12.9: Square: Histogram Distribution at n = 20

predictable infection. For example, in Figure 12.8 the curve remains close to the
medium. Whereas the larger generations, such as that shown in Figure 12.9, have
a wider curve. Consequently, lower generations are more predictable than larger
generations. This is common for such a distribution.

We now analyse the simulation in order to show an approximate of an expected
distribution ratio according to time n (Ed(n)). A simple equation is:

Ed(n) =
Infected Mean at Generation n

Possible Communities at Generation n

Therefore, the square model the ratio Ed(n) is:

Ed(n) =
0.5156n2 − 1.1566n + 3.8132

2n(n + 1)

This equation is plotted in Figure 12.10.

The results of this analysis show that, although the infection rate peaks at the
start, it levels off to a gradual rise. The degree of this rise, although low, is enough
to indicate that gypsy agents move continually into uninfected communities.
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Figure 12.10: Square: Generation n Infected/Possible (Ed(n))

Assuming this equation holds for large numbers, asymptotically, as n → ∞

Ed(n) ∼ 0.2578.

We will now provided the same analysis for each of our complex models. However,
we will not elaborate on them. It will be obvious to the reader that the comments
provided for this model hold true for all of our complex models.

12.5.2 Triangle Model

The number of possibly infected nodes of the graph N at time n is:

N(n) = 3n2 + 3n + 1

The medium distribution analysis, resulting for 2000 simulations, is provided in
Figure 12.11. This approximately follows a curve of 0.6098n2 − 1.5291n+4.3044.

Distribution probability (Pn(N)) curve examples are provided in Figure 12.12
(n = 10) and Figure 12.13 (n = 20).

237



Chapter 12: Model Analysis

Figure 12.11: Triangle: Average Number of Infected Communities

Figure 12.12: Triangle: Histogram Distribution at n = 10

Figure 12.13: Triangle: Histogram Distribution at n = 20
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The expected distribution ratio (Ed(n)) formula is:

Ed(n) =
0.6098n2 − 1.5291n + 4.3044

3n2 + 3n + 1

This equation is plotted in Figure 12.14, asymptotically, as n → ∞ Ed(n) ∼

0.2032.

Figure 12.14: Triangle: Generation n Infected/Possible (Ed(n))

12.5.3 Square Diagonal Model

The number of possibly infected nodes of the graph N at time n is:

N(n) = 4n2 = (2n)2

The medium distribution analysis, resulting for 2000 simulations, is provided in
Figure 12.15. This approximately follows a curve of 0.847n2 − 2.7705n + 6.1456.

Distribution probability (Pn(N)) curve examples are provided in Figure 12.16
(n = 10) and Figure 12.17 (n = 20).
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Figure 12.15: Square Diagonal: Average Number of Infected Communities

Figure 12.16: Square Diagonal: Histogram Distribution at n = 10

Figure 12.17: Square Diagonal: Histogram Distribution at n = 20
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The expected distribution ratio (Ed(n)) formula is:

Ed(n) =
0.847n2 − 2.7705n + 6.1456

(2n)2

This equation is plotted in Figure 12.18. Asymptotically, as n → ∞ Ed(n) ∼

0.4235.

Figure 12.18: Square Diagonal: Generation n Infected/Possible (Ed(n))

12.5.4 Hexagon Model

The number of possibly infected nodes of the graph N at time n is:

N(n) = 1.5n2 + 1.5n + 1

The medium distribution analysis, resulting for 2000 simulations, is provided in
Figure 12.19. This approximately follows a curve of 0.3734n2 − 0.565n + 3.0026.

Distribution probability (Pn(N)) curve examples are provided in Figure 12.20
(n = 10) and Figure 12.21 (n = 20).
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Figure 12.19: Hexagon: Average Number of Infected Communities

Figure 12.20: Hexagon: Histogram Distribution at n = 10

Figure 12.21: Hexagon: Histogram Distribution at n = 20
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The expected distribution ratio (Ed(n)) formula is:

Ed(n) =
0.3734n2 − 0.565n + 3.0026

1.5n2 + 1.5n + 1

This equation is plotted in Figure 12.22, asymptotically, as n → ∞ Ed(n) ∼

0.2489.

Figure 12.22: Hexagon: Generation n Infected/Possible (Ed(n))

12.6 Limited Complex Community

All aspects of the previous modeling hold true for limited communities. The
exception is that once the number of contactable communities reaches the com-
munity maximum, it remains there. As a result of this, the infection rate will
reach an epidemic level. We will now provide results for this analysis.

We limit our total communities to a wrap around grid of 10×10 nodes, 100 com-
munities, for all models. Figure 12.23 shows all possible paths for both the square
model (red paths only) and the square diagonal model (both blue and red paths),
Figure 12.24 shows the triangle model and Figure 12.25 shows the hexagon model.

An epidemic model is based on the spread of gypsy agents according to the max-
imum number of possible contactable communities.
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Figure 12.23: Limited Community Model - Square and Diagonal
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Figure 12.24: Limited Community Model - Triangle
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Figure 12.25: Limited Community Model - Hexagon
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The results from our simulation are presented in two graphs. Figure 12.26 shows
the epidemic growth line according to the total number of communities while
Figure 12.27 shows the epidemic growth in relation to the number of contactable
communities according to each generation.

From both graphs, we can determine that an epidemic level will be reached in
all models. All complex models produce a similar epidemic curve. And, the rate
at which the epidemic is reached is determined by the branching factor of the
model. On analysis, it is seen that, once all communities are contactable (100
communities) the gradient to the epidemic level increases rapidly. This is com-
mon to all non-curable infection models.

12.7 Final Analysis

We presented several different models for the movements of gypsy agents. In each
model, using simulation analysis, we have determined the following:

• The average infected communities according to each generation step.
The subsequent analysis from this, finds the rate at which the gypsy agents
spread a system component throughout communities.

• A histogram distribution according to a generation (two examples were
provided for each model).
The subsequent analysis from this, determines how predictable the number
of infected communities is after a selected generation. The analysis showed
that, in all models, as the generations increase, the distribution of infected
community counts increases. However, for most generations, it is obvious
that the peak of probability is equal to its mean point. This analysis, gives
greater meaning to the next measurement.

• An expected distribution ratio,

Infected Mean at a Generation

Possible Communities at a Generation

The subsequent analysis from this, indicates that, at each generation, the
probability exists that an epidemic will be reached. This analysis showed,
for all models, that during low generations the generation epidemic levels
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Figure 12.26: Epidemic Growth According to Total Communities

Figure 12.27: Epidemic Growth According to Generation Contactable Commu-
nities
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were high in comparison to greater generations. We concluded from this
that all graphs, leveled to a consistent epidemic rate.

• An analysis of limited communities (only provided for complex models).
This analysis was provided to give an insight into the capabilities of gypsy
agents for infecting all communities in a limited population. We limited the
population to 100 communities. The results of this analysis were interesting.
Each model was able to reach epidemic states, however, the rate of the
epidemic growth is obviously related to the branching factor of the model.

Out of all our analyses, the limited communities presented the most interesting
results. This analysis presented gypsy agents in the same context as epidemiology.
We show that each complex model will reach an epidemic given a period of time,
and that this time is related to the branching factor. In fact, we can deduce
from all our results that, as with epidemiology, the branching factor of a model
determines its rate of spread and its progression toward an epidemic. The results
of our work are ordered according to this in Table 12.1.

Model Branches Generation
Epidemic
Reached
(100 Communities)

Square Diagonal 8 23
Triangle 6 27
Square 4 30
Hexagon 3 32

Table 12.1: Complex Models Ordered According to Final Results

The interesting result from this is that, the epidemic will be reached according to
the branching factor. This is clearly evident from Table 12.1. What can be de-
rived from this is that, the higher branching factors will reach an epidemic more
quickly, even if their initial spread rate in low. Therefore, the more branches
that exist among the communities, the more effective the gypsy agents are at
spreading system components.

Reaching an epidemic in this manner is typical of simple epidemiology models.
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Chapter 13

Conclusion

Since the rise of pervasive computing, it has become more apparent that everyday
life is a relevant aspect of technological developments. Of particular interest are
community gatherings. Communities of people result in gatherings of systems.
In this research project, we set out to discover what unique situations such com-
munity gatherings present to systems. Our objective was to determine how, and
why, communities from the perspective of systems, could be useful. We found
that current research into similar concepts is overly concerned with the context
of a location, or the type of system in the location. Generally missing from the
research is the capabilities that other systems located in the community could
share. This led us to the concept of systems adapting to communities, and the
definition of a dynamic community. A dynamic community allows for systems
adaptation and community adaptation.

To enable us to develop dynamic communities, we created the DUPE framework
using system adaptation. The framework was designed as a middleware frame-
work for heterogeneous system based on our initial analysis on the requirements
of dynamic communities. Our initial analysis focused on the aspects of dynamic
communities, dynamic system updating (see Chapter 2) and distributed coop-
eration (see Chapter 3). We discovered that dynamic updating techniques for
languages, such as Java, are present in many forms, and that these techniques
are able to execute standardised applications. We also discovered that distributed
cooperation has the ability to enable remote resources to contain system code.
From this, we designed a community cooperation language for dynamic com-
munities by allowing systems to share code resources, as Java byte code, using
distributed communication (see Chapter 4). This technique allowed for dynamic
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community interaction. This was then used to design the DUPE framework (see
Chapters 5 and 6). We label a community resulting from the DUPE framework,
a DUPE community.

Our work with DUPE communities, in turn, instigated further new ideas. The
most important of these rose from an analysis into how mobile systems would use
these communities. For example, a mobile system passing through a community
could either present the community members with new constructs, or it could
adapt to the resources available in community. We identified this capability
as a physical mobile agent and termed it a ‘gypsy agent’ (initial concepts were
presented in Section 4.4 and expanded in Section 6.6). This unique concept
was a serendipitous outcome from the development of our DUPE framework.
Along with these gypsy agents, and the other contributions presented in Chapter
1, several further contributions to the field arose from DUPE communities (see
Section 6.6). In brief, these contributions are identified as:

• System Alteration Deposits: the planned inclusion of a system compo-
nent within a dynamic community for system evolution.

• Context Specific Functioning: the use of system components as location
specific context.

• Evolution Transfer: the use of dynamic communities and mobile adapt-
able systems for the transfer of system components. This contribution forms
the basis for the concept of physical mobile agents, gypsy agents.

However, during our analysis of DUPE communities, we also discovered that
DUPE communities, and the interaction of gypsy agents, presented new safety
issues to systems that needed to be addressed (see Chapter 7). These security
issues caused limitations to the interaction within a DUPE community. The
main security limitation is technical. This limitation was a result of problems
associated with class loader redefinition. In addressing this issue, we determined
that some DUPE framework implementations are likely to lose some flexibility
of system adaptation as a result of a security requirement. We did develop one
technique to account for this limitation, however, unfortunately, the technique is
only applicable to that specific DUPE implementation. We note this limitation
as a limitation of the framework but not of the concept of dynamic communities.
Nevertheless, we recommend changes to the JVM that may allow the security of
the framework to remain whilst giving DUPE systems more flexibility in their
community interaction. Further to this limitation, we identified that the general
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trust issues related to certificate chains remain for the DUPE framework. We
note that although the use of certificates does provide some level of trust, they
do not provide indisputable trust. Therefore, the changes to the security and
trust elements of DUPE and are anticipated as future work. Other than this
limitation the framework design complied with all requirements of dynamic com-
munity adaptation.

To further assess the contributions from this thesis (see Chapter 1 for complete
thesis contribution details), three DUPE framework implementations were de-
veloped; these were DUPE Lite, DUPE 5.0 and DUPE JPDA (see Chapters 8,
9 and 10 respectively). Each implementation was unique. DUPE Lite is a lim-
ited implementation that is designed for standard JVMs, DUPE 5.0 uses the
new J2SE 5.0 specification, and DUPE JPDA was designed using the J2SE 1.4
HotSpot JVM. Both the latter implementations are fully compatible DUPE mid-
dleware. We analysed the properties of our implementations in order to assess
the framework and its contributions to the field (see Chapter 11). And, as the
implementations were individual, we were also able to assess the heterogeneity
of DUPE communities. This was an important aspect of our original goal. Our
analysis of DUPE communities was comprehensive. We used situation tests to
show that DUPE systems produced dynamic communities, and to demonstrate
that the conceptual contributions of the work were present. We also assessed
the overhead of the DUPE implementations. During this analysis we saw that in
most implementations there is a trade-off between extended community interac-
tion and overhead; for example, DUPE JPDA was able to achieve more tasks in a
DUPE community, however, it required more system resources than, for example,
DUPE 5.0. From the perspective of DUPE communities, this analysis was in-
cluded to determine the technical implications of DUPE community interaction.
The results from this section of our work were as predicted.

Gypsy agents required a different approach to determining their contribution to
the field. We designed simulations on the movements of gypsy agents throughout
dynamic communities and modeled the rate at which they spread a system com-
ponent (see Chapter 12). This was achieved using random graph modeling. This
approach allowed us to draw similarities between gypsy agents and epidemics,
traveling salesmen and random walks. This work was particularly interesting.
We were able to show, on a large scale, a benefit of dynamic communities that
originally, we had not contemplated. In fact, we perceive that, along with the
concept of dynamic communities, the concept of gypsy agents is a unique contri-
bution to knowledge in the field. However, this area needs more theoretical work.
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Nevertheless, the concept has opened up a new area of research which, if pursued,
is likely to further enhance the applicability of our work to contemporary society.

13.1 Future Research

A further result of our research is that we are motivated to continue to concep-
tualise new ideas associated with dynamic communities, the DUPE framework
and gypsy agents. Generally, our future endeavors will relate to extensions to
the interaction within dynamic communities, including security enhancements,
a further analysis of gypsy agents, and the combination of our work with other
fields of research.

We now identify the most interesting future work concepts that are related to this
thesis. These concepts are research areas based on problems found during the
testing of the DUPE implementations, or ideas that formed during our research,
but were outside the requirements of this thesis.

DUPE Community Interaction

Currently, other than for DUPE Lite, system interaction in DUPE communities
involves fully compatible DUPE systems. Further analysis and development of
restricted DUPE implementations would provide an insight into the extent of
the use of framework; for example, a limited DUPE implementation for mobile
phones. This possible area of future work arose from our discussions on the gen-
eral features of DUPE Lite (see Section 8.2).

Along with the above work, it is seen that testing the DUPE framework using
more diverse applications is applicable to our work. Further, analysis of the type
of systems that are best applied as DUPE systems is likely to discover new ways
in which the concept of dynamic communities can be applied. During this thesis
the focus was on allowing any system to make use of dynamic communities.
We perceive that if systems are developed with dynamic communities in mind,
then their use of community interaction constructs could be enhanced, resulting
in advanced concepts; for example, the tourist application we used during our
analysis in Section 11.8.1.
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Multiple Community Memberships

It is possible to have multiple DUPE communities in the same location. There-
fore, a DUPE system could possibly interact in more than one community at
any given time. The possibilities of this concept have not been analysed in this
thesis. It is anticipated that using DUPE communities in this manner would be
beneficial to macro-community analysis. This concept was introduced in Section
5.6.1.

Security Improvements

We clearly identified security limitations of the DUPE framework in Section 7.2.
These limitations remain for all our DUPE implementation, except DUPE JPDA
(for full details on DUPE JPDA security capabilities see Section 7.2.5 and Chap-
ter 10). We identify the solutions to this as future work. We discussed several
recommendations for future work that may solve the problem in Section 7.2.6.
Currently, none of these recommendations are being pursued.

Furthermore, we also discussed in Section 7.2.7 the need for further research
into DUPE’s use of certificates as a trust mechanism. We note that the use of
certificates may be seen as an inadequate level of trust. We identify this area as
future work in regards to the DUPE framework and as a research area in itself.

Advanced Gypsy Agent Modeling

The movements of gypsy agents, and their use for software transfer is an entirely
new concept. Although we provided substantial analysis of this in Chapter 12,
further work is applicable. Of particular interest, is further modeling of gypsy
agents to determine the full extent of their relationship to epidemics. We visualise
that the analysis should include concepts of epidemics in terms of gypsy agents
and dynamic communities. The following are examples.

• Cured Systems: a DUPE system, more specifically a gypsy agent, which
initially applies the software component only to remove it later and note it
as unusable for future adaptation.

• Immunization: a DUPE systems whose adaptation and security settings
are such that it will not adapt to the software component being carried by
the gypsy agent(s).
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• Inner-Community Transfer: the internal rate of infection transfer among
DUPE members within a DUPE community.

• Complete Analysis: the combined analysis of inner-community transfer
(as above) and the movements of gypsy agent among different communities.

A comprehensive analysis would take into account all the above scenarios, among
others. It is likely that this analysis would draw further similarities to epidemics.

Extension to Other Programming Languages

The concept of dynamic communities is transferable to other languages. In par-
ticular, our specification of the dynamic community language can easily be ap-
plied using a different code format. Therefore, it would be possible to include
aspects of dynamic communities into the design of a new programming language.
This would create a standardised programming language that inherently allows
applications to cooperate in dynamic community scenarios. As a result, the het-
erogeneity aspects of the concept would be expanded.

Research Combinations

During our early chapters, we identified techniques, such as AI and context aware-
ness, as possible means of creating dynamic communities. And, although we con-
cluded that these had short-comings for our research goals, the combination of
them with the DUPE framework and dynamic communities is intriguing. We see
that using context aware applications in combination with DUPE communities
could allow systems to alter their execution in accordance with their current,
selective, context, and according to the code available at that point in time.
The advantages of a combination of dynamic communities with AI are more elu-
sive; for example, dynamic communities provide a perfect situation for knowledge
transfer among AI entities. We believe that this area of research is only limited
by imagination.
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Appendix A

DUPE Specification

This appendix provides the high-level specification for implementations of the
DUPE framework. The specification focuses mainly on the communication lan-
guage of DUPE communities. The elements of the framework related dynamic
redefinition are generally specific to the technique applied, consequently, only a
broad specification of this section is defined. Specifically provided in this speci-
fication are:

• Requirements of a DUPE Compatible Middleware

• Requirements for DUPE System Adaptation

• Requirements for using a DUPE Service Object, including:

– The specification of a LoaderType

– The specification of a DynamicClassEntry

– The specification of a DynamicClass

• DUPE Community Events

• Security Specification

• Adaptation Specification

• Configuration Files

• Target Application Requirements
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Requirements of DUPE Compatible Middleware

There are several requirements that must be met for a DUPE implementation to
be recognised as DUPE compatible. To incorporate all the requirements of the
framework, the following is a suggested implementation design.

There are two levels of compatibility for these requirements.

Mandatory: a section of the framework which must be included for a DUPE
compatible middleware.

Standard: a section of the framework which is generally included for a DUPE
compatible middleware. If the section is excluded, the DUPE implemen-
tation can still interact as a member of a DUPE community, however, its
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interaction is on a limited level. All such DUPE implementations are iden-
tified as limited DUPE middleware.

The requirements are listed below.

Section Description Inclusion

DUPE community dis-
covery

The ability to locate and recog-
nise a Jini Registrar as a DUPE
community

Mandatory

DSO Understanding The ability to understand the
contents of a DSO.

Mandatory

DSO Creation The ability to create and adver-
tise a DSO object.

Standard

DSO Discovery The ability to discover DSO ob-
jects within a DUPE commu-
nity.

Standard

Load time dynamic code
redefinition

The ability to alter the state of
Java byte code during start up.

Standard

Runtime dynamic code
redefinition

The ability to alter the state of
Java byte code during runtime.

Standard

DUPE Event Recogni-
tion

The understanding of a DUPE
community event and its con-
tents.

Mandatory

DUPE Specification Un-
derstanding

The understanding of the con-
tents of DUPE specification de-
tails associated with Dynamic-
Class and DynamicClassEntry
objects.

Mandatory

Certificate Recognition Differentiating between an illicit
or unwanted certificate.

Mandatory

Requirements for Dynamic System Adaptation

A fully compatible DUPE middleware can dynamically update the runtime code
of a target system using DUPE community resources. This aspect of the specifica-
tion results in system adaptation. However, this feature of the DUPE framework
is not mandatory (although it is recommended for most implementations).
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The specification of any dynamic system updating implementation will be unique.
Consequently, an exact specification of this aspect of a DUPE implementation
can not be given. However, all implementations should maintain the following
during execution:

• Control the class loading of the entire target system during execution.

• Search for class details within a DUPE community when they can not be
located locally, or in response to a DUPE event.

• Redefine class details based on the resources of a DUPE community1.

• Maintain a dynamic list of current executing classes.

• Continuously link all class details to an associated DSO.

This element of the framework specification should be maintained within the
DUPE Class Loading Structure, the Remote Upload Class Loader, the Dynamic
Class Manager and the Class List Manager.

Requirements of a DUPE Service Object

The most exact elements of the DUPE specification language specification are
contained within the DUPE Service Object (DSO). The specification of the DSO
must be followed exactly to ensure interaction in a DUPE community is correct.

The following classes and interfaces are requirements of the DSO:

• dupe.discovery.DynamicRemoteAccess.java (interface)

• dupe.discovery.RemoteClassLocator.java (interface)

• dupe.discovery.LoaderType.java

• dupe.dicsovery.DynamicClassEntry

• java.security.cert.Certificate
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The structure of the DSO as a Jini Service is provided above.

The specification of java.security.cert.Certificate is located in the Java
Security Specification [42]. The specification of the other classes and interfaces
will now be detailed.

DynamicRemoteAccess

The DynamicRemoteAccess interface determines the basic requirements of the
DSO. This interface provides DSO with the methods used for gathering remote
class details.
The dupe.discovery.DynamicRemoteAccess.java interface is as follows.

public interface DynamicRemoteAccess extends java.io.Serializable, RemoteEventListener{

public DynamicClass generateDynamicClass(String className)

throws ClassNotFoundException, RemoteException;

public void notify(RemoteEvent evt) throws RemoteExceotion, UnknownException;

}

RemoteClassLocator

The RemoteClassLocator is the main interface of the DSO. This interface should
be used for DSO discovery and advertising. However, it essentially provides only

1All class updates should be according to security and adaptation settings.
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the methods of its super interface, DynamicRemoteAccess. The extra methods
provided by this interface will generally be empty for implementation as they are
unnecessary at this stage. It is likely that the extra methods will be removed in
future changes to the specification.
The dupe.discovery.RemoteClassLocator.java interface is as follows.

public interface RemoteClassLocator extends DynamicRemoteAccess {

public Class loadClassBytes(byte[] classData, String name) throws java.rmi.RemoteException;

}

LoaderType

The LoaderType class is the Jini details class of a DSO. This class contains an
array of DynamicClassEntry objects that represent the resources that can be
accessed via the associated DSO. The LoaderType API is now provided.

public class LoaderType implements net.jini.core.entry.Entry2

Name Type Description

hostName String The name of the DSO’s server
system. May be set as null.

allowInternalSearch boolean Indicates if the DSO’s server sys-
tem allows internal searching for
uninitiated resources.

classes DynamicClassEntry[] An array DynamicClassEntry
objects representing the re-
sources known to be available on
the DSO’s server system.

DynamicClassEntry

The transfer of class resources throughout a DUPE community is achieved using
dupe.common.DynamicClass objects. The specification of this class is below.

The adaptation attributes in a DynamicClassEntry must be stored correctly. This
is to make sure that all DUPE systems can understand them.
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public class DynamicClassEntry implements Serializable

Name Type Description

className String The reference name for the class
file resource.

attributes String[][] The details of all attributes that
have been assigned to the class
resource.

certificates java.security.-

cert.Certificate[]

An array of certificates that have
been assigned to this class re-
source.

DynamicClass

After a DynamicClassEntry is designated as useful to a DUPE system, it can
request the complete details of the associated class. This achieved using the
generateDynamicClass method of the DSO.The return type of this method call
is a dupe.common.DynamicClass object. The API for this class is provided.

public class DynamicClass implements Serializable

Name Type Description

classBytes byte[] The class bytes of the Java class
which the objects represents.

name String The class name of the Java class
which the objects represents.

attributes String[][] The adaptation attributes as
assigned at the initial compila-
tion of the class.

certificates java.-

security.cert.-

Certificate[]

Certificates that have been as-
signed to the class.

DUPE Community Events

All DUPE community events are in the form of Jini events. Specifically, they
are all an instance of net.jini.core.lookup.ServiceEvent. For the specifica-
tion on how to discover and listen for Jini events see the Jini Specification [110].
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According the Jini specification, in a DUPE community the DSO (see previous
section) should be used for discovery and advertising purposes.

The following details how the Jini events are interpreted as DUPE community
events:

Name Description

<TRANSISITION NOMATCH MATCH> New member into the commu-
nity or an update of current
member.

<TRANSISITION MATCH NOMATCH> Exited member.
<TRANSISITION MATCH MATCH> Change in current member, but

not necessarily an update of
DUPE details.

The DUPE information of the event is found as a DSO representation. A DUPE
community event is generated by a DUPE middleware according to the execution
of the target application. This element of the specification should be maintained
in the Discovery Manager, the Event Generator and the Community Observer.

Security Specification

There are two elements of the security specification which are standardised for
all DUPE communication. All other trust aspects of security involve Certificate
recognition. The Certificates are located either within the Jar file for the details
of Certificates), the DSO (Section A) or the DynamicClass (Section A). For the
complete specification on understanding Java Certificates see the Java Security
Specification [42].

The most important part of the DUPE Security Specification is its Permission
sets. There must be two sets of Permissions:

• a Permission set governing the DUPE middleware, and

• a Permission set governing the target application.

However, if possible, the Permission set for the target application should be split
further into two, making three Permission sets:
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• a Permission set governing the DUPE middleware,

• a Permission set governing local classes of the target application, and

• a Permission set governing downloaded classes of the target application.

An implementation with this type of permission setup is safer.

Moreover, the following Permission sets should only be allowed cautiously. Unless
absolutely necessary, they should remain locked to a target application.

• java.security.AllPermission

• java.security.SecurityPermission

• java.io.FilePermission

• java.lang.reflect.ReflectPermission

• java.util.PropertyPermission

• java.lang.RuntimePermission, specifically:

– RuntimePermission.createClassLoader

– RuntimePermission.setContextClassLoader

– RuntimePermission.setSecurityManager

– RuntimePermission.createSecurityManager

– RuntimePermission.exitVM

– RuntimePermission.getProtectionDomain

– RuntimePermission.accessDeclaredMembers

The security of a DUPE system should be maintained within the Security Man-
ager.
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Adaptation Specification

The adaptation of a DUPE system is based on the Adaptation Details of DUPE
resources. These details are in both the DynamicClassEntry and the Dynamic-
Class objects that are associated with a resource. Other settings may be added
to some resources, however, the specification only states that those shown below
are necessary.

Attribute Description

Name Full class name of package name.

Specification-Title The Specification Title for the associated
class.

Specification-Version The Specification Version for the associated
class.

Specification-Vendor The Specification Vendor for the associated
class.

Implementation-Title The Implementation Title for the associated
class.

Implementation-Version The Implementation Version for the
associated class.

Implementation-Vendor The Implementation Vendor for the
associated class.

The adaptation of a DUPE system is a result of DUPE community events found
by the Community Observer. Determining if an event is useful should be achieved
within the Adaptation Control.

Configuration Files

The configuration files follow standard Policy file structure. Using this technique
results in a simplification of configuration and also provides a format for the
configuration files. An example of an the adaptation configuration file is now
provided.

Configuration files can be redesigned according to the requirements of a DUPE
implementation.
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#

#Wed Nov 10 15:42:01 EST 2005

SPECIFICATION_VERSION_CHECK=true

SPECIFICATION_VENDOR_CHECK=false

IMPLEMENTATION_TITLE_CHECK=false

IMPLEMENTATION_VENDOR_CHECK=false

IMPLEMENTATION_VERSION_CHECK=true

SPECIFICATION_TITLE_CHECK=false

Target Application Requirements

There are several compilation and distribution requirements that are necessary
for DUPE community interaction, that must be applied to any target application
of a DUPE system. These are:

1. the application must be complied using javac with the -g option

2. the application must be contained in a signed Jar file

3. the Jar file must have an associated Manifest file containing all adaptation
information, and

4. the Jar file must be signed with a minimum of one certificate.

There are no special coding requirements that must be met for the application
of a DUPE system. However, as a result of the security constraints of the DUPE
specification, there are aspects of standard programming that are not recom-
mended. For example, an application wishing to create its own class loader may
not execute correctly in some DUPE systems. This is a result of the DUPE
framework’s security specification.
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