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The 6j tensor for compact groups is shown to transform as a basis vector for the identity 
representation of the permutation group S4' This allows character theory to be used to determine 
the minimum number of independent components and a projection operator to determine the 
relations between components-the symmetry properties. 

PACS numbers: 02.20.Hj, 03.65.Fd 

1. INTRODUCTION 

Following the theoretical work of Derome and Sharp, I 
3jm and 6j tensors may be defined for any compact linear or 
compact grey3.4 group. The 3jm tensor, which has been de­
veloped from the 3j symbol of Wigner, reduces a triple pro­
duct of (co) representations to the identity 1 ofthe group. In 
addition to the generalized azimuthal quantum numbers m l' 
m2, m3 , the 3jm tensor also depends on a multiplicity index r 
which spans a range equal to the mUltiplicity of 1 in the triple 
product of (co) representationsjl ®j2 ®j3' The symmetry 
properties of the 3jm tensor generalizeS from those of the 
Wigner 3j symbol: the simple phase factors are replaced by 
permutation matrices in the multiplicity indices. When the 
three representations are equivalent these matrices form a 
representation of the permutation group S3 and are comple­
tely determined (to within a unitary transformation) by the 
properties of the group. When only two are equivalent, two 
of the matrices generate a representation of S2' These again 
are completely determined (understood: to within a unitary 
transformation) whereas the others are highly arbitrary. 
When none are equivalent the permutation symmetry is that 
of the trivial group S I and the matrices are highly arbitrary. 

The 6j tensor 1.4 is defined as a certain invariant product 
off our 3jm tensors. It depends on the four mUltiplicity in­
dices but not on the generalized azimuthal quantum 
numbers. The permutation properties of the 6j tensor de­
pend on the permutation matrices of the four 3jm tensors 
and, with the addition of some 1 - j phase factors, are com­
pletely determined by these matrices. This produces some 
rather extreme cases: when the 3j symmetries are arbitrary, 
so are the 6j symmetries; on the other hand, when all the 
representations are equivalent, these are completely deter­
mined by group properties. 

In this paper a unified method of dealing with all cases 
is developed. The theory is straightforward and is given in 
Sec. 2. It shows that a set of permuted 6j tensors transforms 
as a basis vector for the totally symmetric representation [4] 
of the permutation group S4' Character theory may then be 
used to determine the minimum number of independant 
components required and a projection operator to find rela­
tions between components. These may be used as replace­
ments for the symmetries induced from the 3jm tensors, 
which were found to be quite unmanageable in the presence 
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Australia. 

ence of[21] symmetry.4 Sections 2 and 3 illustrate this 
theory for a number of cases. 

A knowledge of the papers by Derome and Sharpl.5 or 
of Butler2 is assumed and their notations are used. For sim­
plicity only representations of linear groups are used, al­
though all results given here apply equally to the corepresen­
tations of grey groups. 

2. THEORY 
The 6j tensor is defined byl.2 

{ ~I ~2 ~3} = Uljsj6),lm, m'm.U4j2j6)"m.m, m. 

J4 Js J6 'I',','. 

The symmetry properties of the 6j tensor are found 
from the symmetry properties of the 3jm tensors, and are 
collected in Table I. Thus for example from the first entry, 

{
j2 jl 

if J! 

= CPj, CPj, CPj6 m(( 12)jdr j6)"" m(( 12)jJ2J!)s", 

Xm((12)J!N3)s3r3m((12)J1'J!J!)s.r'{J~1 JJ:2 J~3} , 
4 5 6 '1'2")"4 

where m((12)jIJ!j6)s,r, is the permutation matrix given by 

( J!N6)s,m,m,m. = m((12)jIJ!j6)s", UIJ!j6)"m,m,m. 

and so on, and CPj, is the I - j phase factor for ji . 
By examining the ordering of the multiplicity indices, it may 
be seen that each entry in the table corresponds uniquely to a 
permutation in S4' and this is used to label the entries. 

Given any 6j tensor 

VI j2 j3} 
j4 js j6 ""r",' 

it is related to other 6j tensors by Table I. The number of 
distinct tensors depends on the irreducible representationsj I 
to k Thus, if all are inequivalent there are 24 distinct ten­
sors, whereas if they are all equivalent with real character 
there is only 1. Each component of each of these tensors may 
be considered as a basis vector for a vector space Vof dimen­
sion equal to the product of the four 3j multiplicities (M) 
times the number of distinct 6j tensors (M'). We write 

V= UI Gl U2 Gl····Gl UM ., 

where each Ui has as basis vectors the M components of the 
ith 6j tensor. A representation of the permutation group S4 
may now be defined over Vby the entries of Table I: each 
permutation 1T maps the basis of Ui onto the basis of ~ to 
give the (j, i) block d ji(1T) of the matrix D (1T). For example, 
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when all the representations are inequivalent, the division 
into the subspaces Uj may be taken as 

{
jl j2 j3} {j2 jl j3} {j3 jl j2} {jl 
j4 js j6' it it J"t' j6 j4 js' it 

~~},. ... 
is 

This gives for the block structure of D (( 12)) 

o d 12((12)) 0 o 
d 21 ((12)) 0 0 

D((12)) = 000 
o 0 d 43((12)) 

Each block d jj(11") is then determined directly from the 
entry for 11" in Table I by relating ~ back to Uj : 

= (h tPj, tPj6 m((12)jIi1' j6)s,r, m(( 12)jJ2J"t)s,r, 

X m((12)jt jSj3)s,r, m(( 12)j1' Ji jt)s.r.' 

= tP j~tP ~tP': m((12)j2j4J"t)s,r, m((12lJ1' jlj6)s,r, 

Xm((12)jsJ! j3)s,r, m((12lJi Jf J1'ls,r" 

and so on. By the multiplicative properties of the 3j permuta­
tion matrices l

•
2

,S it readily follows that the matrices 
D = {D (11") : 11"ES4J form a representation ofS4. Generally, of 
course, it is reducible. 

We now write the basis vectors of Vas a column vector 

{~I j2 j3} 
14 js j6 '.'2'_1'4 

v= {j2 jl j3 } 
J1' J! J! rlr2r~r4 

It follows easily that 

D(11")v = v. 

Hence v transforms as a basis vector for any totally symmet­
ric component [4] of D. The number of such basis vectors 
equals the multiplicity n(4 I of the irreducible representation 

I 

{I4 J {I 22 J {I3 J 

XD (Xiii {I3j)4 Xiii {13j(Xiii (I2Jf) Xiii {I
3

JXiii{3J 

The multiplicity n(4 I follows directly from this. It may 
be cast into different forms by letting 

Xiii(O') = n(3 I X(3 1(0") + n(21 !.K(21 1(0") + n[l' I X(I' 1(0"), (3.2) 

which gives 

n(4 1= (n(3 1+ 2n(21 1+ n(I' I) {(n(3 1+ 2n(21 1+ n(I' 1)3 

+ 6(n[3 I - n(l'I,)2 + lln(3 I - 2n(21 I + lln(I' I + 6}/24 
(3.3) 

or, by writing Xiii in terms of the character Xj of the represen­
tationj, 

n(41 = _1-4 i [Xj(U)P du{(i Xj(U)3 dU)3 + 61G I 
241G I G G 
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[4] in D, and so the character of D completely determines the 
minimum number of components of a 6j tensor required to 
determine all others. The actual relations between compo­
nents requires a knowledge of these basis vectors, which can 
be found by use of the projection operator 

P = l:1T£s,D (11"), 

and these may be used to replace the symmetry properties 
given in Table I. 

This approach is rather long-winded when the symme­
try properties are simple (e.g., in a simply reducible group). 
However, when the 3j permutation matrices possess a more 
complex symmetry this method has been found to drastical­
ly reduce the labor involved in using the symmetry proper­
ties. In Secs. 3 and 4 examples are given to show how the 
method is used. 

3. EXAMPLE 

The 24 S4 permutations map one 6j tensor into itself 
only when a1l6j-values are equal toj, and whenj if·. Setting 
tPj = 1 as in the quasi-ambivalent case, the permutation ma­
trices simplify and as representative of each class we have 

= m((12)1U)s,r, m((12)1U)s,r, m(( 12liiils,r, m((12)1Uls.r.' 

D (( 123 ))s,s,s,s •. r,r,r,r, 

= m((123)1U)s,r, m((123)1U)s,r, m((123)1U)s,r"m((123)1Uls.r., 

D (( 12)(34))s,s,s.s" r,r,r,r. 

= m(I,1Uls,r, m(I,1U)s,r, m(I,1U)"r, ,m(I,1U)s.r.' 

and 

D (( 1234))s,s,s.". r,r,',r, 

= m((I3)1U)s,r, m((I3)1Uls,r, m(( I3 1U)s"," m((13)1U)s,r,· 

In this case the matrices {m(O',1U) : 0" ES3 J form a repre­
sentation of S3 and thus the trace X D (11") of each matrix D (1T) 
may be found in terms of the trace Xiii (0") of m (0", 1U). Inspec­
tion of Table I shows that X D (1T) is a class function of S4 in 
terms of the class function Xiii (0") of S3' This gives for the 
character vector X D 

{22] {4] 
( Xiii {I3 j)2 Xiii {I3 J 

X(LXj(U 2)Xj(U)dUY + IGI 2
L3[Xj(UlP 

+ 8Xj(U)3 du + 61G 13} . (3.4) 

The meaning of these equations may be illustrated by 
taking special cases. For example, if n l21 I = nil' 1= 0, 

n(4 I = (n(3/24)(n(3 I + l)(n(3 I + 2)(n(3 I + 3). 

Thus if the 3j multiplicity is 2, the 6j tensor has 16 compo­
nents, of which only 5 are independent. These are of course 

{ ll: . '} ~ ~ 1111' {~ ~ ~L 112' {~ ~ ~L 122 ' 

{ l~ j j} ,and { ~ 
j j 1222 1 ~ ~L222' 

J. D. Newmarch 452 
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TABLE I. Permutations of the 6j tensor .• 

S. permutation abed j; ji ji j~ jU~ II> (J' 

(12) 2 1 3 4 j2 j, j3 It if J't <Pi, <Pi, <Pi, (12) 

(13) 3 2 1 4 j, j2 j, J't l; J! <Pi, <Pi, <Pi, (13) 

(14) 4 2 3 1 i't J't j3 j. j3 J! <pi,<PJA. (23) 

(23) 1 324 j, j3 j2 jt J't i~ <p},<piA. (23) 

(24) 1 432 j. J! J! it j, j, <PI, <PI, <Pi, (13) 

(34) 1 2 4 3 i~ j. it j2 It j6 <PdiA, (12) 

(123) 2 3 1 4 j2 j3 j, j3 j. j. 1 (123) 
(124) 2 4 3 1 J't J'"! j, jt J! j2 <PI, <Pi, <Pi, <Pi, (132) 

(134) 324 1 j, It J'"! j2 jT J'! <Pi, <p), <p}, <Pi. (123) 

(132) 3 124 j3 j, j2 j6 j. j3 1 (132) 
(142) 4 1 3 2 J! j6 J! j1 j3 J'"! <p}, <p}, <p}, <p}, (123) 

(143) 4 2 1 3 It j. if J't j, J! <Pj, <Pj, <p}, <Pi, (132) 

(234) 1 342 j. J'! J! j3 J-r if <Pi, t/Ji, <p}, ¢i, (132) 

(243) 1 4 2 3 J! J! j4 J! J't j, t/Jj, <Pj, <Pj, t/Jj, (123) 

(12)(34) 2 143 J! J! j3 i't it j. <p}, <Pi, <Pi, <p}, I 

(13)(24) 3 4 1 2 J'! J! j6 J'"! J! j3 t/J}, <p}, ¢}, ¢}, I 

(14)(23) 432 1 J'"! j~ Jt J! j2 J! <Pi, <Pi, ¢i, ¢j, I 
(1234) 234 1 Jt j, J'"! j3 J! j4 ¢jAA. (13) 

(1243) 241 3 j4 J! J! J'"! j. j2 ¢j, ¢j,¢i, (23) 
(1324) 3 4 2 1 j, J-r It )! j. j3 ¢},¢},<pj, (12) 
(1342) 3 1 4 2 it j. J! j, J! j, ;j.¢J,<Pj, (23) 
(1423) 4 3 1 2 J! jt j. j, j, J! <Pi,¢}, ;j, (12) 
(1432) 4 1 2 3 J! J! j. j6 j2 J'"! t/J}, ¢l, ¢I, (13) 

a { j; ji ji} IP ( . >0') (.. >0) (>0" ) (>0 >0 >O){ j, j2 ~:} """,,' j~ j; j~ S..rtTVd 

= m (J',JIli.16 "', m 2 (J',J4hJ. ',r, m3 (J',J. J313 "" m. (J',J, h 13 j. 
j, 

Similarly, ifn(3 I = nil' I = Oand n l21 I = 1, there are 16 com­
ponents, of which only 1 is required. The representation 
j = [321] of the symmetric group S6 is of interest in that it 
was the first nonsimple phase representation discovered.s 

Here n[31 = 2, n[21 I = 1, and nl1' I = 1. Hence there are 35 
independent 6j components out of a total of 625. 

The equations above hold whatever the choice of basis 
in the 3j multiplicity space. However, in most practical cases 
it will almost certainly be chosen to block diagonalize the 
permutation matrices according to symmetry type. For ex­
ample we may write 

(

mlll.J(O') 

m(O"iii) = 0 m~Il'I(O') 

or 

o 
m IIA,I(( 12)).,r, m IIA'/((12)).,r, 

X m4
IA•I((12)).,r, m I IAd(( 12)) •• r. 

o 
o 

453 J. Math. Phys., Vol. 24, No.3, March 1983 

where m)1l 1(0') is irreducible. Since we are about to introduce 
a large number of different multiplicity values we shall adopt 
the first form as it easily allows identification of one or a pair 
of multiplicity values with i in mill I. The argument is inde­
pendent of the form, which is primarily notational. 

The block diagonalization of these matrices allows an 
easy partial reduction of the representation D. Given four 
sets of mUltiplicity values corresponding to the ordered set 
ii, 12' i3, 14' the S4 permutations transform these sets among 
themselves and form a closed subspace under S4' The dimen­
sion of this subspace equals the product of the orders of each 
multiplicity set times the number of distinct permutations of 
ii' 12, i3 , and 14 , (The method in miniature is the same as the 
method applied to full 6j tensors.) The character depends on 
the matrices mj and the equality orinequality of ii' 12, i3, and 
i4· Consider one case: i I = i2 = i3 -=1= ;4' There are four per­
muted sets of multiplicity values corresponding to 11i1i1i4' 
i 1i 1i4;1' i11411il' and iilili1' A typical matrix over this sub­
space is 

o 
o 
o 

m4
IA•I((12)).,r, milA, 1(( 12)).,r, 

XmIIA')((12)).,r,ml)A')((12)L. 

J. D. Newmarch 453 
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TABLE II. The character vector X' in terms of the character vectors X)).;] of the reduced matrices m)).,] when alljvalues are equal. 

WJ {l22J 

il = i2 = i3 = i. (x 1)..1 {I 3])' X 1)..11 13J(x 1),.11 12Jf 
il = i2 = i3¥i. 4(x 1)..11 13])'X 1).')1 13J 2X 1)..11 13Jx IA.JI 12Jx 1).')1 12J 
i l = i2¥i, = i. 6(x 1,,".11 13J)2X ~""')I 13 J f X 1,,".11 I'J(x ~""')I 12Jf 

+ X ~""')I 13 J(x 1"".11 12])2 
i l = i2¥i,¥i.¥i l 12(x 1,,".11 13 J)2X l""') I 13 J 2X 1"".1 I 13 JX ~""')I 12JX l""') I 12J 

xxl).·)I I'J 
none equal 24X I).') I I'Jx ~A.,) I 13 J 0 

XX ~A.')I 13 JX lA.·) I 13 J 

from which the character is 

x'(( 12)) = 2X17,1(1) X17,1((12)) X17·1(( 12)) 

or 

xiI 122J = 2X17,11 13 J x17']1 12J x17·11 12J. 

A complete list of character vectors is given in Table II. 
By substitution of the various S3 characters into this the n[41 
multiplicities may be readily calculated. When none of ii' i2, 
i3, or i4 are equal, n[41 is the product of the multiplicity 
ranges corresponding to the labels ii' i2, i3, and i4. When all 
are equal n[41 is easily shown to be one for all of [A..] = [3], 
[21], and [1 3

]. The remaining cases are given in Tables III-V. 
Some of these may be compared to results in the literature. 
The tables of Butler6 which extend the earlier work of Butler 
and Wyboume,7 give all components of the 6jtensor 

{~ T 
T 

where T is the three-dimensional simple phase representa­
tion of the tetrahedral group. The 3j permutation matrix is 
equivalent to [3] $ [13], and Tables III and IV and equation 
(3.3) are in agreement with their results. 

One which has not appeared before is when 
il = i2 = i3 = i4 and the symmetry [A.] = [21]. Using the or 
dering of components 1111, 1112, 1121, 1122, 1211, 1212, 
1221,1222,2111,2112,2121,2122,2211,2212,2221,2222, 
the projection operator is easily found from which the single 
[4] basis vector is 

(900 3 0 3 3 00 3 3 0 3 00 9(, 

TABLE III. The multiplicity n[4] using reduced matrices when 
i l = i2 = i3¥i. for allj values equal. 

[3] 
[3] 
[3] 
[21] 
[21] 
[21] 
[I'] 
W] 
[I'] 

454 

[3] 
[21] 
[1 3

] 

[3] 
[21] 
[1 3

] 

[3] 
[21] 
[13

] 

Total number 
of components 

4 
8 
4 

32 
64 
32 
4 
8 
4 

Number n[4] of 
independent components 

I 
o 
o 
2 
2 
2 
o 
o 
I 

J. Math. Phys., Vol. 24, No.3, March 1983 

{l3J 122 J 14J 

X 1)..1 I 13 Jx 1)..1 I 3 J (x 1)..1 {l3])2 xl)..J{l'J 
x 1"".11 I'Jxl""')13J 0 0 
0 2X 1"".1 I 13 JX l""') I 13 J 0 

0 0 0 

0 0 0 

giving 

{~ 
j 

j} = 3{j 
j 

~L.22 j j 1111 j j 

=3e 
j 

~L12 j 

= 3{~ j 

~L21 j 

=3e 
j 

~L12 j 

=3e 
j 

~L21 j 

= 3{~ j 

~LII j 

=e 
j 

~}222/ j 

with all other components zero. 

4. FURTHER EXAMPLES 

A closed set of three 6j tensors under S4 permutations is 
formed when one of the 6j tensors is 

{
jl j] j2} 
j] j] j2 ',',',r, 

andjl=j1',h=j!.Thel-jphasefactorsaretPj, = ± l,tPj, 
= ± 1. Each 3jm tensor is formed of the triple U]jlj2) and 

hence only those S2 permutations of the two equalj values 
are determined by group theory. By the same techniques as 
before, typical matrices over the basis 

{ ~' ~, ~2}, 
J, h 12 

{ ~I ~2 ~,}, 
JI 12 h 

are 

TABLE IV. The mUltiplicity n[4] using reduced matrices when 
i l = i2 ¥i, = i. for allj values equal. 

Total number Number n[4) of 
[AI] [A 3] of components independent components 

[3] [3] 6 I 
[3] [21] 24 2 
[3] [1 3

] 6 I 
[21] [21] 96 5 
[21] (13] 24 2 
[1 3

] [1 3
] 6 I 

J. D. Newmarch 454 
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= 

m((12)j)j)j2)s", m((12)j)jd2)s", 

Xm((12)j)j)j2)s", m((12)jljlj2)s", 

o 

o o 

o 

o m((12)jlj2jl)s", m((12)jd2jl)s", 

m((12)j2jljl)s", m((12)j2jljl)s", 

X m((12)j2jljtls", m((12)j2jljl)s." 

o 
X m((12)jlj2jils", m(( 12)j)j2jl)s.,. 

and 

D ((12)(34))js,s,s.s" i,,""'. 
m(I,jljd2)s", m(I,j)j)j2)s", o o 
X m(I,jljd2)s", m(I,jdlj2)..,. 

o 

o 

m(I, jl j2jils", m(I,jlj2jl)s", 

Xm(I,jlj2jils", mI,jlj2jils.,. 

o 

o 

m(I,j2jljl)s", m(I,j2jljl).", 

Xm(I,j2jljl)s,r, m(I,j2jljils.r. 

These combine to give the character vector 

{14} {122} 

XD 3''' .. · {12})4 X'" {12},,, ... {2})2 
\..{ Jdd2 Jdd2 \..(.111112 

{ 13} 

o 

As in Sec. 3 this may be broken down into subrepresenta­
tions according to the block diagonalization of the 3jm per­
mutation matrices. No new ideas are involved. 

An interesting case occurs for the 6j tensor 

{ ~I j2 ~3}, 
it j2 13 

withj.=j"t,j2=J'!,h==ff. S4 permutations generate only 
six tensors, while the 3jm permutation matrices are essen-
tially arbitrary. However, in this case it is easy to see that the 
only nontrivial elements of S4 whose character does not van-
ish belong to the class {22}, i.e., those which interchange a 

TABLE V. The multiplicity n(4) using reduced matrices when 
i, = i2 #i3 #i.#i, for allj values equal. 

Total number Number n(4) of 
[A,l [A3l [A.l of components independent components 

[3) (3] (3] 12 I 
[3) [31 [21) 24 I 
[3) [3] W] 12 0 
[3] [21] [21] 48 2 
[3) [21] [1 3

] 24 1 
[3] [1 3

] [1 3
] 12 I 

[21] [3] [3] 48 3 
[21] [3] [21] 96 4 
[21] [3] W] 48 1 
[21] [21] [21] 192 8 
[21] [21] [1 3

] 96 4 
[21] [1 3

] W] 48 3 
[1'] [3] [3] 12 I 
[1'] [3] [21] 24 I 
[1 3

] [3] W] 12 0 
[P] [21] [21] 48 2 
W] [21] [1 3

] 24 I 
[1'] [Il) [1 3

] 12 I 
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{4} 

x ," {12},,, ... {2})2 
Jd.12 \.{ Jdd2 

I 

pair on the top row with the corresponding pair on the bot­
tom. The elements of this class all use the identity permuta­
tion of the 3jm tensors and hence the character is completely 
determined from a knowledge ofthe multiplicities alone: 

{14} {122} {13} {22J {3} 

XD 6( X' . . {1}4 0 0 6( X' . . {1}2 0 
l1hb ld2h 

For example in the gray tetrahedral group the multiplicity of 
A in the product U' ® E ' ® E is two.3 This gives 5 indepen­
dent components from a total of 16, no matter what form the 
3j permutation matrices are in. 

By way of contrast, the 6j tensor 

withk~j"t andk=l=J'!, contains a wealth of information as 
each 3jm permutation matrix is determined by either S2 or S3 
symmetries. However, none of this is used in the character 
(apart from multiplicities) as the S4 permutations generate 
twenty-four different 6j tensors. The only non-vanishing 
character is in the class {14} where it is 

24 X'" {13} X {12} X {12} X {12} 
1,1,1, j,j,iT jr jrj, iT 11 ff . 

The S2 and S3 information is of course used in the projection 
operator. 

This is merely a representative sample of possible 6j 
tensors. All others may be dealt with in the same manner and 
it is not difficult to calculate projection operators for each. 

5. CONCLUSION 

With the basic theory of 3jm and 6j tensors for compact 
groups given by Derome and Sharp, 1.5 the major problem in 
applying Racah algebra methods appears to be the computa­
tional one of actually finding these tensors for specific 
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groups. Butler and WybourneB have developed a recursive 
technique which has been successfully applied to a number 
of simple phase representations. 6•7.9-13 Many groups, how­
ever, have nonsimple phase representations 14.15 and if 6) 
symbols are to be calculated efficiently for these cases it will 
prove important to know how many components need to be 
calculated. The method developed here will allow an easy 
determination of this number. A simple projection operator 
can be used to give other components. 
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