
Application Level User Interfaces for Various

Media

D. I. Clark and J. D. Newmarch

Information Science and Engineering

University of Canberra

Abstract

Applications are increasingly being written with the user interface being implemented in
differing media. In this paper we show how a variety of business-oriented applications can
be developed so that the user interface can easily be changed from one medium to another.
We abstract out the user interface requirements, show how they can be met by CUA panels
and how the panels can be implemented in various media. We then use design patterns to
structure the architecture of the application to facilitate easy changes between user
interfaces.

1. Introduction

Since the advent of widely available graphical user interface toolkits such as Windows API and Motif,
much attention has been paid to the design of human computer interfaces. Earlier interfaces were
confined to text. More recently web based and phone based interfaces have also become more widely
used.

Coad and Nicola [Coad+ 93] identify the problem domain (PDC), the human interaction (HIC), the data
management and the task management as the four main components of object oriented design. The
principle of loose coupling between components is well established in enhancing object oriented reuse.

Interest has been growing in application-oriented frameworks [Fayad+97]. These limit the scope of the
problem and allow a more customised set of objects to be built. In this paper we explore how a fairly
common type of application can benefit from a smaller and more specific set of user interface elements,
and how these elements can be realised in a variety of user interface media.

2. User Interface Elements

The HIC can be implemented in many ways: by a graphical user interface, a command line interface,
and so on. The typical set of user interface elements has been defined by the IBM Common User Access

(CUA) [IBM 88] to include elements such as

check box
entry field
prompt

The set of interface elements is intended to be independent of any particular user interface, and may be
thought of as the primitive building blocks for any interface. These are quite low level components, and
may be combined into higher level "panels" such as

menu panel
entry panel
information panel
list panel

This early CUA specification showed how to target these panels to a cursor-addressable terminal, a
programmable terminal and a graphical terminal. Later versions separated these into two documents, to
allow for the greater capabities of graphics terminals.

In current pattern-language terms, the user interface could be implemented by suitable Factory objects: a
MenuPanel Factory could supply a CursorAddressableMenuPanel, a ProgrammableMenuPanel or a
GUIMenuPanel.

In UML-like notation, the PDC/HIC interaction with this added flexibility gives a diagram such as

It should be noted that this does not cover all possible applications: drawing tools, word-processors,
spreadsheets, etc, all rely so heavily on presentation aspects that it would not be possible to separate the
PDC from the HIC so cleanly.

3. User Interface Requirements for Application Frameworks

Application frameworks involve a careful set of tradeoffs. Particular applications must be generalised,
but not so far that their needs are lost - the generalisation must be taken as far as possible, but no further.
The restraining influence is how easy it is then to implement each application within this framework.
Here we are considering applications that are already partitioned into HIC and PDC components, and so
the generalisations and the contraints must apply to both components.

Despite the almost endless variety of business-oriented applications, each with its own particular
interface, user interfaces can often be built from a relatively few components. A typical scenario from a
user of a banking application may be:

1. user identifies him or herself
2. user selects an account on which to operate
3. user is told the balance of the account
4. user selects transaction, such as withdrawal
5. user enters amount to be withdrawn from the account
6. user is told the new balance of the account
7. user terminates the application.

The requirements of this and a wide variety of other business-oriented applications can be summarized
as the ability to:

1. identify a user (number 1 in list above)
2. select an object for transaction from a list of objects (number 2 in list above)
3. select a task and related sub-tasks (number 4 in list above)
4. enter fields of related data (number 5)
5. create new objects
6. amend existing objects
7. display fields of related data (numbers 3 and 6)

This interface functions at a more application-specific level than that of CUA "panels", and additionally
abstracts the HIC requirements of particular applications. Thus, it is a superclass of application HICs,
that uses various panels.

This produces a diagram such as

4. User Interface Components in various media

In this section we explore how the requirements indetified above can be met by the use of panels, and
how the panels are, or can be, implemented in various media. CUA defines a set of panels:

menu panel: displays one or more lists of choices
entry panel: displays fields in which users type information and select choices
information panel: displays information that cannot be changed
list panel: displays lists of items with single or multiple selection
logo panel: displays ownership and copyright information

A panel in turn is made up of a set of panel components such as checkbox, command area, entry field

and so on.

4.1 Components as Panels

1. Identifying a user can be performed using an Entry panel, in particular a Parameter Entry Panel.
Such a panel would contain a title and a set of prompts for text fields. The text fields would be for
user identifier, and possibly password.

2. Selection of a task may be performed using a Menu panel.
3. Selection of an object may be performed using a Menu or a List panel.
4. Entering fields of related data may be performed using a Parameter Entry panel.
5. Creating a new object may be done using an Entry panel to enter an identifier for the object, and

then using a Form Entry panel to set values.
6. Amending an object may be done by first selecting an object from a Menu panel, and then using a

Form Entry panel to amend values.
7. Displaying fields of data may be done using Information panels.

4.2 GUI based

Let us look at the details of GUI based User Identification. The title, instructions and set of prompts
could be set by Labels. The text fields would be single line TextField boxes. Completion (or
cancellation) of entry would be done by PushButtons.

Such an interface would look like:

The mapping would be summarised as

Panel component GUI component

checkbox checkbox/radiobutton

command area textfield/textarea

entry field textfield

headings label

instructions label

message area label

panel title label

pushbutton pushbutton

4.3 Web based (WUI)

In a web based interface the equivalent of a window is a form. A form to allow user identification is
given below. It uses lines of text for the title and instructions, a textfield for the name, a password box
for the pin and a submit button.

Other HTML components can be used to implement panel components as shown below.

Panel component HTML component

checkbox option

command area text field/text area

entry field text field/password

field prompt text in HTML

headings text in HTML

instructions text in HTML

message area text in HTML

title text in HTML

pushbutton submit/reset/anchor

4.4 Text based (TUI)

In a text based interface there is no physical equivalent of a window or gui widgets such as pushbuttons.

However classes can be written to simulate these. A console menu class to allow user a choice of action,
a console pick list to allow object selection, a text box for entry of data, and a password box for entry of
non-echoing data. Information can be displayed via lines of text. Finally a console window would act as
a container for these components, the event loop being simulated by a console menu. The mapping is
given in the table below.

Panel component HTML component

checkbox input box

command area input box

entry field input box/password box/console pick list

field prompt lines of text

headings lines of tex

instructions lines of text

message area lines of text

title lines of text

pushbutton console menu

A console window to allow user identification is given below. It uses lines of text for the title and
instructions, a textbox for the name, a password box for the pin and a submit button.

Welcome to the bank
Please enter your name and personal identification number.
Name : John
PIN : ****
Press <enter> to submit.

4.5 Phone based (PUI)

As in the case of text based interfaces, there are no physical equivalents of windows, buttons, etc.
However, they may again be simulated by writing classes similar to those in text based interfaces. At a
low level of implementation, each will use text to voice components for display, prompt, etc, and receive
digits for both data and choice of action. The only difference from TUI is that there is no need of a
password box .

5. Putting it together

In this section we describe how to build an application so that the user interface medium can be easily
changed. To do this we will use and interaction between the Command and Facade design patterns.

5.1 The Command pattern

The Command pattern [Gamma+95, pp233ff] is one of the simplest yet most powerful of design
patterns. It is used when there is a need to decouple an object which initiates an operation from the
object which carries out the operation. It does this by encapsulating a request as an object.

When used to decouple the HIC from the PDC, the command object will often be a menu item. A
concrete command class will inherit from an abstract class Command containing a single abstract

method execute(). When a menu item has been selected by a user the execute method of the associated
concrete command object is invoked. The concrete commands link the HIC to the PDC. Any user action
which requests user information from or changes to the state of the PDC are passed from the HIC to the
command and then to the PDC. Any information from the PDC is passed to the command whch
forwards it to the HIC for display. The Command pattern is thus:

5.2 The Facade Pattern

The Facade pattern [Gamma+95, pp185ff] is used when there is a need to decouple the clients of a
subsystem from the individual components of the subsystem which carries out their requests. It does this
by inserting an interface object (the facade) between the clients and the components of the subsystem.
When the client of a subsystem interacts with the subsystem, it sends a request to the facade object
which then forwards it to the appropriate object(s) in the subsystem. Responses are sent by these
compnents to the facade object which then forwards them to the client. Among the consequences of the
Facade pattern are insulating clients from any changes to the subsystem, and decoupling sussystems by
reducing (to one) the number of objects in the subsystem that clients have to interact with.

5.3 Command Facade Interaction

In order to simplify the substitution of one user interface medium with another we use a combination of
the Command and the Facade patterns. We treat each window as a facade, and user requests are passed
to a command object via the facade. The command object does not interact directly with widgets such as
check boxes. Instead the facade has a number of fields representing data which the user has entered
(account number, deposit amount, etc.) The command object queries the facade object for the data fields
which are then used to parameterise requests to the PDC. Responses from the PDC are forwarded by the
command object to the facade object. The execute method of the command object is then

 get fields from window
 ask PDC if fields are OK // editing
 if fields are OK
 request to PDC with fields as parameters // query, update
 inform window of result
 else
 ask PDC what is wrong
 inform window of what is wrong
 end

The facade object then forwards the responses to the medium specific object for display. One difference

in this use of a window as a facade is that normally a facade is a singleton, whereas here there will
typically be several in an application. However the same facades will be kept when the user interface
medium changes. Each facade window is an abstract class containing abstract getField() and
displayMessage() methods. It is these that the command object sees. For each medium a concrete
window class inherits from the abstract facade window and implements the methods using the widgets
applicable to that medium. All commands are then independent of the HIC medium and both commands
and PDC can be used without change irrespective of the medium used.

5.4 Examples

Our first example is "The Weighing Game". Whilst it is not a conventional business application it has
the same user input requirements. In the weighing game, a user is given 12 coins and a pair of scales.
One of the coins is fake. Its weight differs from the weight of the genuine coins. The player is given 3
weighings to gain enough information to decide which coin is fake and whether it is light or heavy. Each
weighing consists of selecting which coins to put on the left scale and which to put on the right scale.
The response to each weighing is "right side is heavier", "left side is heavier" or "sides are equal
weight". After 3 weighings, the player chooses the fake coin and whether it is light or heavy. The
response will be "correct" or "no, it was coin ... and it was ...".

In this application there is a window to get a player’s weighings, and a window to get the player’s choice
of fake coin and weight. Examples of these for a web based interface are shown below.

Corresponding to each window will be a command, which edits the input and applies it to the weighing
game. The weighing window facade is

The execute method of the WeighCommand is

 get weighings from the weighing window

 ask weigh game edit weighings
 if weighings are OK
 apply weighings to weigh game
 get result from weigh game
 inform weighing window of result
 else
 get edit error from weigh game
 inform weighing window of edit error
 end
 ask weigh window to generate next window

The choice window facade is

The execute method of the ChooseCommand is

 get choice (coin + weiight) from the choice window
 ask weigh game edit choice
 if choice is OK
 apply choice to weigh game
 get result from weigh game
 inform choice window of result
 else
 get edit error from weigh game
 inform choice window of edit error
 end
 ask weigh window to generate next window

The weighing game can be played at http://willow.canberra.edu.au/~davidc/weigh.html

Our second example is taken from a more traditional business application in a banking domain. We
illustrate the technique with a deposit command which links a transaction window to the bank. The
transaction window is shown below.

The transaction window facade is simply

The execute method of the withdraw command is

 get account and amount from the transaction window
 ask bank if amount can be withdrawn from account
 if amount can be withdrawn
 request withdrawal from bank
 inform transaction window of withdrawal
 else
 get reason for not being able to withdraw from bank
 inform transaction window of reason
 end

A simple banking application using this approach has been written (in Eiffel) with GUI and TUI
interfaces. The source code can be downloaded from http://willow.canberra.edu.au/~davidc/banking.zip

6. Automating the change between media?

When Gamma, et al [Gamma+95] describe the Abstract Factory pattern they specifically address
changing between different look-and-feel standards such as Motif and Presentation Manager. They
further claim (p 89) that "It makes exchanging product families easy." This gives rise to the question of
automating the change between media. This is an attractive proposition, but we do not believe that it is
practical due to different characteristics of the media. It is certainly possible to have a set of abstract
classes which can be implemented in various media. For example, there could be a common parent of
menu, submit buttons and console menu. However this would be a minimal set of user interface classes
and not include components such a scroll bars that are specific to one or two media, it would not address
the problem of GUI and WUI being non-modal whilst TUI and PUI are modal, and the event loops in
Windows and HTML Forms are quite different to the simulated event loops in TUI and PUI windows.

7. Using the Technique in Teaching Object Oriented design

Both the Command pattern and the Facade pattern are readily understood by students and they do not
find any difficulty in implementing them. A teacher, however, aims for understanding on the part of the
students and this is where use of these patterns opens opportunities for learning. One of the authors takes
a 3rd year undergraduate elective in OO design. Students develop and implement a system using text
based HIC in the first half of the semester. (Application domains have included a library and a hire
firm.) In the second half of the semester students replace the text based HIC with a Web based interface.
This gives students first hand experience that loose coupling really does enhance the reusability and
maintainability of their software. It also helps in teaching reuse. Firstly, because both systems are in the
same problem domain, students reuse classes they have written themselves and they learn from their
mistakes and from the feedback they are given on their first system. Secondly the text based HIC classes
(console menu, console pick list, etc) are developed in lectures, in the context of developing a banking
system. This means that students reuse classes they have seen developed and know the design decisions
made during development. And thirdly, the students are supplied with web based classes to help in
writing cgi scripts and generating HTML documents. This means that they have to understand and reuse
a toolkit of co-operating classes - the one used being EiffelWeb, from Interactive Software Engineering
[EiffelWeb]. This approach to teaching was presented by Clark at the 21st Australasian Computer
Science Conference [Clark98]. He reports a significant improvement in the quality of students’
assignments when the approach was adopted.

8. Conclusion

In this paper we have shown how applications can be written so that the medium of the user interface
can be easily changed. This has been achieved through an architecture which loosely couples the user
interface with the rest of the application, and employs both the Command pattern and the Facade pattern.
We have also shown how the adoption of this architecture and different interface media can enhance
learning by students of O/O.

9. References

[Clark98] Clark, D. I., (1998) Using the World Wide Web to teach Object Oriented Design, Proceedings
of the 21st Australasian Computer Science Conference (ACSC’98), Perth, February, 1998, 357-365.
[Coad+93] Coad, P. and Nicola, J, (1993) Object-Oriented Design, Prentice-Hall.
[EiffelWeb] Interactive Software Engineering, http://www.eiffel.com/

[Gamma+95] Gamma, E., Helm, R., Johnson, R., Vlissides, J.,(1995) Design Patterns: Elements of
Reusable Object Software, Addison-Wesley
[Fayad+97] Fayad, M. E. and Schmidt, D. E, editors, Object-Oriented Application Frameworks, Comm
ACM 32-38, October, 1997
[IBM 87] IBM (1987) System Application Architecture: Common User Access Panel Design and User
Interaction
Last modified: Tue Jul 13 14:18:23 EST 1999

