
A Service Architecture for Scalable Distributed Audio

Jan Newmarch and Robin Kirk
School of Network Computing, Monash University, Melbourne, Australia

{jan.newmarch, robin.kirk}@infotech.monash.edu.au

Abstract

 Present day personal and home hi-fi products are
designed to work independently. In the near future
these devices will have increased networking
capabilities. This connectivity will enable a large
number of audio/video (A/V) sources such as CD’s,
DVD’s, digital libraries and internet broadcasts to be
linked with A/V sinks such as active loudspeakers,
recorders and home internet gateways. To provide
uniform access to A/V sources, they are best offered as
services. This paper introduces a service-based,
networked multimedia architecture that facilitates the
advertisement, discovery and connectivity of audio
source and sink services. This architecture provides a
scalable and flexible platform for implementing
distributed audio environments that supports many file
formats and transport protocols. Scalability tests have
been performed to identify performance bottlenecks
where a large number of services are present.

1. Introduction

 Over the years we have become accustomed to
listening to music and general audio from an
increasing variety of sources. From only hearing music
in concert halls, we can now hear it from TVs and
radios, piped throughout shopping malls and elevators,
and blaring out from spruikers at individual shops. In
addition to that, more and more people are carrying
their own portable audio sources, culminating in the
current generation of iPods[1] which can store 10,000
music files. The variety of audio sources and possible
audio sinks can only be expected to increase with more
and more devices being able to generate and consume
audio. In addition, we can expect that sources and
sinks will become more volatile, with consumers
moving within range and out of range of a multiplicity
of sources.

Most architectures for home audio-visual systems
such as the Java Media Framework (JMF)[1, 2] or
Microsoft Direct Show[3] are based on a local model,

where all generators (e.g. TV tuner card) and
consumers (e.g soundcard) are all on the same
machine. Even though JMF supports remote audio by
means of HTTP and RTP[4], it hides these under a
local programming model.

Network architectures are either based on existing
middleware such as C++, often extending it in some
way, or build their own middleware structure oriented
towards a particular view of A/V. In the first class are
systems such as Multimedia System Services and the
Multimedia Component Architecture[5]. In the second
category are systems such as Network-integrated
Multimedia Middleware (NMM)[6]. There is work on
distributed A/V systems using Java such as HAVi[7]
but this is quite specific to the Firewire[8] networking
protocol.

This paper is oriented towards providing a large-
scale service-based architecture where the emphasis is
on service advertisement and discovery, simplified as
much as possible, with recovery under failure as
services disappear. The framework acts at an abstract
level of service description, but implementation levels
maintain the capability of accommodating many
transport protocols and handling multiple presentation
formats. Furthermore, implementations may manage
issues such quality of service and make use of multiple
middleware systems. The system uses Jini[9] for
service management. Jini is a middleware system built
on Java that is able to fully exploit Java networking
capabilities and object mobility.

The structure of this paper is as follows: the next
section discusses Jini as a service management
middleware. The following section discusses and
defines the service interfaces for our system. After this,
additional interfaces that give lower level information
are discussed. Some implementation techniques follow
this. The succeeding section looks at scalability issues,
and finally the paper concludes with a summary and
discussion of future work.

2. Java and Jini

 Java is a platform-independent language in which
programs are compiled to portable byte code. It has
become widely accepted from the enterprise level
down to embedded systems in small devices. While the
scale of hardware variation has lead to different levels
of virtual machine and core libraries (CLDC, CDC,
J2SE, J2EE), there is still a much higher degree of
conformability than in languages compiled to the
object code layer.

Controller clients should link sources to sinks, and
leave them to decide how or if they can communicate.
Section 4 discusses the factors that determine
compatibility. Figure 1 shows the communication
paths involved from a client viewpoint.

In addition, Java has well-defined introspection
mechanisms, which leads to standard serialisation
techniques. These can be used to separate object data
from class code so that instance data can be moved
across a network and combined with class definitions
from a separate source. This can be used as the basis
for mobile systems of various kinds, from RMI to Jini
to mobile agent systems.

Jini exploits the mobility of Java code with a
service management system tuned towards network
realities. It gives service advertisement and discovery,
with resilient recovery mechanisms in case of failure.
It is interface based, with total flexibility in
implementation.

Figure 1. Communication Paths

For simplicity we define two interfaces: Source

and Sink. To avoid making implementation decisions
about pull versus push, we have methods to tell a
source about a sink, a sink about a source, to tell the
source to play and the sink to record. However,
adopting such open interfaces does not address any
incompatibility issues between A/V services. There is
no way for a client to know if participating services
can talk to each other as they may use different
transport protocols, or the sink may not support the
source media format. For example, if a WAV service
sends the file using an array of bytes, a sink expecting
an RTP transmission cannot receive the media.
Streaming media protocols such as RTP were designed
for client/server use, and may not cooperate from
source to processor to sink. The responsibility of
negotiating a transport protocol and media content
must fall on the source and sink. If the source and sink
fail to negotiate a valid transport and content, an
exception should be thrown. This violates the
principle that a service should be useable based on its
interface alone, but considerably simplifies matters for
controller clients.

The advantages of this are[10]:

• Jini supplies a service advertisement and lookup
registry

• It has inbuilt reflection

• It has an event model

• It supplies a resilient failure mechanism

• It allows flexible proxies, from RPC-like stubs, to
"fat" proxies that can use local resources and any
appropriate middleware

• It can distribute user interfaces as components of a
service

• It can bridge to other middleware systems

• It can handle "legacy" devices through a surrogate
model or through Java JNI

A controller that wants to play a sequence of audio
tracks to a sink will need to know when one track is
finished in order to start the next. The play() and
record() methods could block till finished, or return
immediately and post an event on completion. The
second method allows more flexibility, and as a result
requires add/remove listener methods for the events.

3. Service Interfaces

At the most abstract layer an A/V system consists
of three players:

1. Sources of A/V data
2. Sinks for A/V data Finally, there are the exceptions that can be thrown

by the methods. Attempting to add a source that a sink
cannot handle should throw an exception such as

3. Controller clients

IncompatableSourceException. A sink that
can handle only a small number of sources (for
example, only one) could throw an exception if too
many sources are added. A source that is already
playing may not be able to satisfy a new request to
play.

These considerations lead to a pair of high-level
interfaces that seem to be suitable for controllers to
manage sources and sinks (other event constants may
be added later):

public interface Source extends
java.rmi.Remote {

int STOP = 1;

void play() throws RemoteException,

 AlreadyPlayingException;

 void stop() throws RemoteException,
 NotPlayingException;

void addSink(Sink sink)throws
 RemoteException,

 TooManySinksException,
 IncompatableSinkException;

void removeSink(Sink sink) throws
 RemoteException,
 NoSuchSinkException;

EventRegistration addSourceListener
 (RemoteEventListener listener,

MarshalledObject handback) throws
RemoteException;

}// Source

public interface Sink extends java.rmi.Remote{

int STOP = 1;

void record() throws RemoteException,
 AlreadyRecordingException;

void stop() throws RemoteException,

 NotRecordingException;

void addSource(Source src) throws
 RemoteException,

 TooManySourcesException,
 IncompatableSourceException;

void removeSource(Source src) throws

RemoteException, NoSuchSourceException;

EventRegistration addSinkListener(
 RemoteEventListener listener,

 MarshalledObject handback)
throws RemoteException;

void removeSinkListener(

RemoteEventListener listener)
throws RemoteException,

 NoSuchListenerException;

}// Sink

4. Additional Interfaces

There are many variables that affect how A/V is
sourced, moved around a network and delivered.
Interfaces should contain all the information about
how to access services. With audio, all the information
about a service can be quite complex: for example, a
service might offer a CD track encoded in 16-bit
stereo, big-endian, 44.1kHz sampling in WAV format
from an HTTP server. A consumer that wants to play
the file may need this information.

4.1 Design Factors

The transport layer may be reliable (slow) TCP,

unreliable (faster) UDP, HTTP (even slower), with
some QOS such as RTP or some other network
technology protocol such as Bluetooth[11] or
FireWire.

There are an enormous number of formats, from
encumbered formats such as MP3[12] (for which you
are supposed to pay license fees for encoders and
decoders), unencumbered equivalents such as Ogg-
Vorbis[13], compressed (MP3 and Ogg-Vorbis) or
uncompressed (Sun AU[14] or waveform), lossy or
lossless. In addition, there are many wrinkles in each
format: little- or big-endian; 8, 16 or 32 bit; mono,
stereo, 5.1; sample rate such as 44.1 kHz, 8 kHz, etc

Audio comes from many different sources: tracks
off a CD, streaming audio from an FM station, speech
off a telephone line. The MPEG-7standard[15]
concentrates on technical aspects of an audio signal in
attempts to classify it, while the CD databases (CDDB)
such as Gracenote [16] classify CDs by Artist/Title -
which breaks down with compilation CDs and most
classical CDs (who is the artist - the composer, the
conductor or the orchestra?)

An audio stream may be "pushed", such as an FM
radio stream that is always playing. Or it may be
"pulled" by a client from a server, such as in fetching
an MP3 file from an HTTP server

The two interfaces given in Section 3 are enough to
identify sources and sinks to a third party client (or to
each other). In order to negotiate whether they can talk
to each other may require more information, which can
be supplied by further interfaces.

4.2 Content interfaces

The Java Media Framework (JMF) has methods
such as getSupportedContentTypes() which
returns an array of strings. Other media toolkits have
similar mechanisms. This isn't type-safe: it relies on all

parties having the same strings and attaching the same
meaning to each. In addition to this, if a new type
comes along, there isn't a reliable means of specifying
this information to others. A type-safe system can at
least specify this by class files.

Interfaces are more type-safe than strings: a WAV
interface, an Ogg interface, etc. This doesn't easily
allow extension to the multiplicity of content type
variations (bit size, sampling rate, etc), but the current
content handlers seem to be able to handle most of
these variations, so it seems feasible to ignore them at
an application level.

The content interfaces are just place-holders:

package presentation;

public interface Ogg extends java.rmi.Remote {
}

Figure 2. Communication Paths: “pull” sink A source that could make an audio stream available

in OggVorbis format would signal this by
implementing the Ogg interface. A sink that can
manage OggVorbis streams would also implement this
interface.

4.3 Transport interfaces

In a similar way, the transport mechanisms may be
represented by interfaces. A transport sink will get the
information from a source using some unspecified
network transport mechanism. The audio stream can be
made available to any other object by exposing an
InputStream. This is a standard Java stream, not
the special one used by JMF. Similarly, a transport
source would make an output stream available for
source-side objects to write data into.

public interface TransportSink {
 public InputStream getInputStream();

Figure 3. Class Diagram : “pull” HttpSink.
}// TransportSink
 The classes involved in a "pull" sink are shown in

figure 3. The choice of transport and content
implementation is based on the interfaces supported by
the source.

public interface TransportSource {

 public OutputStream getOutputStream();

 }// TransportSource

 5. Implementation
4.4 Linkages A variety of implementations have been built using

these interfaces. The separation of transport and
content (presentation) and the networking support built
into Java means that the implementations are very
small - typically just a few dozen lines.

By separating the transport and content layers, we

have a model that follows a part of the ISO 7-layer
model[17] transport and presentation layers. The
communication paths for a "pull" sink are shown in
figure 2.

A number of clients to link sources to sinks have
also been built. The simplest just links any source to
any sink. More complex graphical user interfaces have

also been built, and here the bulk of the code lies in the
Swing objects.
6. User interfaces

Sources and sinks can attempt to link to each
directly or via a third party agent. The Source and
Sink interfaces form a first step in this. They may
need to negotiate based on further interfaces that each
implements. A sink service that records to a file on
disk presents an interesting case that can be handled
within this framework, but which adds additional
information.
A service is defined by its contract. A sink must be
able to record, or throw a known exception. A file sink
will need to have a file selected. If none is selected, it
could throw a NoFileSelectedException, but
this would break the contract since a client may not
know about this exception. So a file sink will need to
be able to handle this case without complaint (say by
discarding the file or saving it in a default file).

A file sink will expose an interface that will allow
any third party to browse and choose a sink file:

public interface FileSink extends common.Sink
{
 public boolean setFile(File sinkFile)
 throws RemoteException;

 /**
 * methods to browse the file system

* Based on FileSystemView from
* JFileChooser

 */

 public File[] getFiles(File dir, Boolean
 useFileHiding) throws RemoteException;

 public File getHomeDirectory() throws
 RemoteException;
 public File getDefaultDirectory() throws
 RemoteException;
 public File createNewFolder(File dir)
 throws RemoteException,
 java.io.IOException;

}// FileSink

A GUI client will not be expected to know this

interface, though (or any interface apart from Source
and Sink). So it will not be able to choose a file
unless the sink itself can provide a UI.

The Jini community has standardised a UI
mechanism. This allows a service to specify one or
more user interface objects, for example based on an
AWT Frame or Swing JDialog. A client may
choose to use such a UI based on its own preferences.
However, the standard Jini UI will not quite handle the
"file sink" situation. The Jini UI assumes that a client
knows all the interfaces of a service, and is just
replacing its own UI with that supplied by the service.

Roles such as "main UI" allow the service to specify
non-modal UI objects such as Frame or non-modal
JDialog.

The requirement to choose a file before recording
means that the standard Jini UI roles are not adequate.
We have therefore added "Setup" and
"Supplementary" roles to cover the cases where a
service has extra interfaces that the client does not
know about, but which may be needed in a modal or
non-modal manner (a non-modal additional interface
may be a volume control, for example).

7. Scalability
 Devices such as an iPOD use a file system capable
of storing 10,000 individual music files. Not only do
network devices require this same file system
capability, they must be capable of advertising all
10,000 files as services.

In a normal service architecture, creating 10,000
services will create at least 10,000 objects. In Jini 2.0
using Jini Extensible Remote Invocation (JERI), this
number will be substantially larger: the programmer
will need to create an exporter for each service, and
generate a proxy for each service. Behind the scenes,
many more objects may be created.

 We tested the system resource requirements for
such a large number of objects by writing a server that
just created a normal audio source service 10,000
times, created an exporter and proxy and exported the
proxy. Each source service added to the source server
adds about 500k of memory, resulting in a limit of
around 120 services using Java’s default heap size of
64Mb. The maximum heap size can be increased to
the limit of physical memory but eventually a limit will
be reached.

In a Jini federation containing thousands of source
services, typically a very small percentage would be in
use at any one time. The source services not active in
a session would lay dormant, waiting to be linked to a
sink by a controller client. These make individual
sources prime candidates for activatable services.
Activatable services are only created when a client
requests its use, reducing the load on the source server.
Using activatable services requires use of an activation
server such as rmid or phoenix. While the
service is not activated, it still must renew its lease
with any lookup service (reggie) it has joined.
Rather than activating each service to renew its lease,
this responsibility can be delegated to a lease renewal
service such as norm. The remainder of this section
focuses on testing activatable source services, and their
supporting services.

7.1 Memory Use 7.3 Disk Usage

Using activatable services drastically reduces the
memory load on the source server. Figure 4 highlights
the improvement, the source group for 10000 services
and phoenix (both run on the same machine) will
run without paging on a machine with 256Mb of
RAM. The default maximum heap size of 64Mb must
be increased to 128Mb for the source activation group
where 7000 or more services are required. The heap
sizes reached by reggie and norm are within
reasonable limits, considering theses services would
most likely be running on different hosts to the source
server.

Creating a large number of activatable services has
a side effect, disk usage, as each service must be
written to activation server (phoenix) disk to enable
the service to be recreated on demand. The lookup
service (reggie) must also write any leases to disk,
so that it can maintain registered services if it restarts.
The lease renewal service (norm) must also write
to persistent storage any leases it is managing. Figure
5 shows the disk writes for phoenix, norm and
reggie. The disk writes for activatable reggie and
norm are linear in relation to the number of services;
each service writes around 4k and 2.7k respectively.
Disk writes for phoenix however are cumulative, the
first 1000 services write around 3Mb, the next 1000
write 6Mb, and the next 1000 write 9Mb and so on.
For systems with slow disks such as laptops, this can
make the creation of large numbers of services a
lengthy process. On a laptop with a 4200-rpm drive, it
takes around 20 minutes to create and add 10000
services to phoenix, and another 45 minutes to
register the services with norm and reggie. On a
desktop machine with an ATA100 7200rpm hard disk
and 10ms less disk latency, the entire start-up time was
reduced to 10 minutes, and CPU usage became the
limiting factor. The time taken to register a service
with reggie and norm is the same for the first
service and the ten-thousandth service[18]. Although
time consuming, this process need only be performed
once.

88.21

57.2 62.36 68.725

0
20
40
60
80
100

Heap
Used

(Mbytes)

sources phoenix norm reggie

Service

Heap Used - 10000 Activatable Source
Services

Figure 4. Memory heap used for 10000 activatable
HttpSource services.

7.2 Threads

Once services are created, have discovered and joined
a lookup service, and registered a lease with a lease
renewal service, there is still an ongoing disk usage
cost when norm renews each lease. Similar leases are
batched, causing a large disk usage spike when leases
are renewed. The amount of data written to disk is the
same amount that was required when registering with
norm, but it occurs every time a lease expires (about 7
minutes using reggie’s default settings). If the time
taken to renew the leases exceeds the lease time itself,
the hard disk is constantly on. For 1000 activatable
services, lease renewal time can take between 2
minutes and 2 seconds, depending on the hard disk
access speed. To minimise the frequency of lease
renewal the lease time can be extended.

The heart of Jini is its discovery, join and lookup

protocols. To join a Jini federation, a service must
discover and join lookup services, to allow clients to
lookup and use the service. This is an ongoing task;
services must check for new lookup services that enter
the network, and renew leases it has with lookup
services. For each Jini service, between six and eight
threads are created to manage multicast announcement
and response, lookup service discovery and
registration. For non-activatable services these threads
consume memory and processor time. However, if the
service is activatable, the service can release the
resources while not in use. While the service is not
active, the task of renewing leases can be delegated to
a LeaseRenewalService. A shared, “always on”
server, can manage discovering and joining new
lookup services for activatable services. The result is
that the number of threads is drastically reduced, and
the service still fulfils its obligations.

Disk Writes - Activatable Services

phoenix

reggie
norm

0

5 0

10 0

15 0

2 0 0

2 5 0

3 0 0

50
0
10
00
15
00
20
00
25
00
30
00
35
00
40
00
45
00
50
00
55
00
60
00
65
00
70
00
75
00
80
00
85
00
90
00
95
00
10
00
0

Number of Services

Di
sk

 W
rit

es
 (M

By
te

s)

Figure 5. Disk writes for reggie norm and phoenix.

6.4 CPU Usage

Adding services to the activation service for a
laptop with a Pentium 1.4M processor resulted in an
average of 20% CPU usage, and registering them with
norm and reggie averaged 7% CPU usage. As
discussed in the previous section the hard disk access
was the limiting factor. In a desktop system with an
AMD 2400+XP processor, CPU usage was constantly
100% adding the services to phoenix, norm and
reggie, as the hard disk speed was more than
adequate. As this is a once off task, the cost is
considered necessary and can be overlooked at this
stage.

A problem that does need addressing is lease
renewal, as performing this task 10000 times consumes
as much CPU as it can, providing the hard disk can
keep up. The desktop test system took 12 seconds to
renew the leases; this may adversely affect quality of
service, especially if norm is running on the same host
as the sources.

When a client queries a lookup service for services,
and 10000 are returned, it took 25 seconds at 100%
CPU for the laptop to add all the service descriptions
to a GUI. More CPU efficient methods of renewing
leases and displaying available services are needed.

8. Conclusion

We have presented an architecture for A/V systems
that will scale to large numbers of services. The system

is targeted towards simplicity while still retaining the
ability for detailed service negotiation using multiple
transport and middleware systems.

Keeping large numbers of services active leads to
limitations in the number of services possible. Making
them activatable allows a much larger number of
services. However, some aspects such as lease
renewals and UI’s show up as potential bottlenecks
and require further work.

There is much work to be done in exploiting this
architecture by filling in the details of various content
types. New schemes for lease renewal and service
discovery are needed to efficiently manage large
numbers of sources. Limits in service architecture
scalability and techniques to deal with highly dynamic
situations need to be explored further.

9. References

1. iPod - Apple Computer Inc.
2. Java Media Framework (JMF).
3. Microsoft Direct Show.
4. RTP - The real time transport protocol.
5. G.Coulson, D.W.a. A Multimedia Component

Architecture. in 1st IEEE International
Workshop on Enterprise Distributed Object
Computing - EDOC'97. 1997. Surfers
Paradise, Gold Cost, Australia.

6. Marco Lohse, M.R.a.P.S. An Open
Middleware Architecture for Network-
Integrated Multimedia. in Protocols and
Systems for Interactive Distributed
Multimedia Systems, Proceedings of
IDMS/PROMS'2002 Joint International
Workshops on Interactive Distributed
Multimedia Systems / Protocols for
Multimedia Systems. 2002. Coimbra,
Portugal.

7. HAVi - Home Audio/Video Interoperability
Architecture.

8. FireWire.
9. Ken Arnold, B.O.S., Robert W. and

J.W.a.A.W. Scheifler, The Jini
Specification. 1999: Addison-Wesley.
10. Newmarch, J., A programmer's guide to Jini

technology. 2000, Berkeley, Calif.: Apress.
xxi, 448.

11. Bluetooth Website.
12. Fraunhofer IIS Website.
13. Ogg Vorbis Website.
14. Sun/NeXT Sound File Format (.au).
15. MPEG-7 Specification.
16. Gracenote CDDB.

17. International Standards Organisation
Website.

18. Martha L. Kahn, C.D.T.C. CoABS Grid
Scalability Experiments. in Second
International Workshop on Infrastructure for
Agents, MAS, and Scalable MAS. 2001.
Montreal, Canada.

	1. Introduction
	2. Java and Jini
	3. Service Interfaces
	4. Additional Interfaces
	4.1 Design Factors
	4.2 Content interfaces
	4.3 Transport interfaces
	4.4 Linkages

	5. Implementation
	6. User interfaces
	7. Scalability
	7.1 Memory Use
	7.2 Threads
	7.3 Disk Usage
	6.4 CPU Usage

	8. Conclusion
	9. References

