

Service Architecture Scalability for Sensor Networks

Robin Kirk and Jan Newmarch
School of Network Computing, Monash University, Melbourne, Australia

(robin.kirk, jan.newmarch)@infotech.monash.edu.au

Abstract

The advent of wireless sensor networks and the
increasing popularity of the service-oriented
computing paradigm mean that ubiquitous
environments may finally become a reality. Such
environments may contain hundreds to many
thousands of services as large scale systems are
deployed. The aim of this paper is to test the
scalability of two popular service-based technologies,
UPnP and Jini, where a large number of services are
created.

1. Introduction

 Miniature wireless sensors have been developed
that can be embedded into any device or inanimate
object. Together these sensors can be connected
wirelessly to form a hardware base for ubiquitous
environments of the future. The computational ability
and connectivity of these sensors are rapidly
improving as a result of silicone chip manufacturing
advances. Although currently sensor networks are
mostly non-heterogeneous, in the near future it is
possible that existing service-oriented technologies
such as Jini and UPnP (Universal Plug and Play) may
be used to help manage large numbers of wireless
sensors. Utilizing a service-oriented architecture for
sensor networks allows platform independent usage
and dynamic discovery of sensor functionality.
 Where a large number of sensors are connected,
performance issues may arise for interested clients, the
underlying network and on core features of the
middleware itself. To determine the appropriateness of
current service-oriented architectures we have
performed scalability stress tests on two popular
middleware, UPnP from Microsoft and Sun
Microsystems Jini.

The structure of this paper is as follows: the next
section discusses the two service management
middleware, UPnP and Jini. Section three describes
and discusses the scalability testing for Jini. Next, the

scalability testing for UPnP is described and discussed.
Section five compares the results of the testing and
concludes with future a discussion of future work.

2. Middleware

2.1 Jini

Jini exploits the mobility of Java code with a

service management system tuned towards network
realities. It gives service advertisement and discovery,
with resilient recovery mechanisms in case of failure.
It is interface based, with total flexibility in
implementation.
The advantages of this are[1]:

• Jini supplies a service advertisement and lookup
registry

• It has inbuilt reflection

• It has an event model

• It supplies a resilient failure mechanism

• It allows flexible proxies, from RPC-like stubs, to
"fat" proxies that can use local resources and any
appropriate middleware

• It can distribute user interfaces as components of a
service

• It can bridge to other middleware systems

• It can handle "legacy" devices through a surrogate
model or through Java JNI

2.2 Universal Plug and Play (UPnP)

UPnP enables zero-configuration networking, by

allowing devices to automatically join a network and
advertise its capabilities as services. Devices may
interact with each other on a peer-to-peer basis.

The advantages of UPnP are:

• Device/service advertisement and discovery with

no single point of failure

• Standard TCP/IP protocols are used

• Independent of OS/Programming language

There are a number of UPnP implementations

written for .NET, C and Java.

3. Jini Scalability

 We have tested the system resource requirements
for such a large number of objects, to determine the
scalability of the framework. A server was written that
created a service 10,000 times, created an exporter and
proxy and exported the proxy.

In a Jini federation containing thousands of source
services, typically a very small percentage would be in
use at any one time. The source services not active in
a session would lay dormant, waiting to be used.
These make individual sources prime candidates for
activatable services. Activatable services are only
created when a client requests its use, reducing the
load and power consumption on the sensor node.
Using activatable services requires use of an activation
server such as rmid or phoenix. While the
service is not activated, it still must renew its lease
with any lookup service (reggie) it has joined.
Rather than activating each service to renew its lease,
this responsibility can be delegated to a lease renewal
service such as norm. The remainder of this section
focuses on testing activatable source services, and their
supporting services.

3.1 Memory Usage

A single Jini service consumes …k of memory.

3.2 Disk Usage

The lookup service (reggie) must write any
leases to disk, so that it can maintain registered
services if it restarts. The lease renewal service
(norm) must also write to persistent storage any
leases it is managing. Figure 5 shows the disk writes
for norm and reggie. The disk writes for
activatable reggie and norm are linear in relation to
the number of services; each service writes around 4k
and 2.7k respectively. The time taken to register a
service with reggie and norm is the same for the
first service and the ten-thousandth service[2].

Although time consuming, this process need only be
performed once.
Once services are created, have discovered and joined
a lookup service, and registered a lease with a lease
renewal service, there is still an ongoing disk usage
cost when norm renews each lease. Similar leases are
batched, causing a large disk usage spike when leases
are renewed. The amount of data written to disk is the
same amount that was required when registering with
norm, but it occurs every time a lease expires (about 7
minutes using reggie’s default settings). If the time
taken to renew the leases exceeds the lease time itself,
the hard disk is constantly on. For 1000 activatable
services, lease renewal time can take between 2
minutes and 2 seconds, depending on the hard disk
access speed. To minimise the frequency of lease
renewal the lease time can be extended.

Disk Writes - Activatable Services

reggie

norm

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

Number of Services

D
is
k
W

rit
es

 (M
B
yt

es
)

Figure 5. Disk writes for reggie and norm.

3.3 CPU Usage

A problem that does need addressing is lease
renewal, as performing this task 10000 times consumes
as much CPU as it can, providing the hard disk can
keep up. The desktop test system required 12 seconds
to renew the leases; this may adversely affect quality
of other applications running on this machine.

When a client queries a lookup service for services,
and 10000 are returned, it took 25 seconds at 100%
CPU for the laptop to add all the service descriptions
to a GUI. More CPU efficient methods of renewing
leases and displaying available services are needed.

3.4 Bandwidth Usage

 The bandwidth usage during service registration
was high, for 10,000 services 330,670 TCP packets
were captured.
 During lease renewal … .packets were captured,
this low number is due to the lease renewal server
batching the leases.

 The controller client produced only 58236 TCP
packets, as the service proxies are returned to the client
from the lookup service in an array.

4. UPnP Scalability

 To simulate an environment containing many UPnP
services, a device was created containing 10000
services. Once all the services were created, a GUI
control point was created to display the available
services.

4.1 Memory Usage

A simple device that contained a power and
temperature service running under Windows consumes
a maximum of 2.8Mb of memory.

4.2 Disk Usage

Disk usage for the control point was minimal, with
only 20,337 Kb being read from disk.

4.3 CPU Usage

 The control point took 15 minutes on the laptop to
receive the service descriptions from all 10000
services at …. % average CPU usage.

4.4 Bandwidth Usage

For each UPnP service that is advertised two
multicast UDP packets were transmitted over the
network each of 327 bytes, which occurs on startup
and at lease renewal time.
 When a control point was started with 10000
services present, over 132,000 packets were captured
during the 15 minute period required to discover all
services.

5. Discussion

 The results show the lookup service of Jini scales
far better than the multicast announcement method
employed by UPnP. A UPnP client (control point)
took 15 minutes to display 10,000 services in a GUI,
compared to just 25 seconds for the Jini client.

Disk usage for lease renewal is a bottleneck for a
Jini lease renewal service. This can be minimized
through the use of a high speed disk. The lease
renewal method employed by UPnP produces far more
network traffic but does not suffer from slow disk
access issues.

The overall results of the scalability tests show that
neither Jini nor UPnP scale well when very large
numbers of services exist. This is not unexpected,
since both middleware were not designed with such
large scale systems in mind. Jini is the more scalable
of the two middleware providing a high speed disk is
used for the lookup service and lease renewal service,
and could operate with 10,000 plus services.

 6. Conclusion

We have performed scalability tests on two service
middleware to evaluate the possibility of their
application to a sensor networks.

Keeping large numbers of Jini services active leads
to limitations in the number of services possible.
Making them activatable allows a much larger number
of services. However, some aspects such as lease
renewals and UI’s show up as potential bottlenecks
and may require further work.

New schemes for lease renewal and service
discovery are needed to efficiently manage large
numbers of sources. Limits in service architecture
scalability and techniques to deal with highly dynamic
situations need to be explored further.

7. References

[1] J. Newmarch, A programmer's guide to Jini

technology. Berkeley, Calif.: Apress, 2000.
[2] M. Kahn, C. Della, and T. Cicalese, "CoABS

Grid Scalability Experiments," presented at
Second International Workshop on
Infrastructure for Agents, MAS, and Scalable
MAS, Montreal, Canada, 2001.

“FUTURE of sensor
networks:INTRO”
Qi, H., Kuruganti, P. T.
and Xu, Y., “The
Development of
Localized Algorithms in
Wireless Sensor

	1. Introduction
	2. Middleware
	2.1 Jini
	2.2 Universal Plug and Play (UPnP)

	3. Jini Scalability
	3.1 Memory Usage
	3.2 Disk Usage
	3.3 CPU Usage
	3.4 Bandwidth Usage

	4. UPnP Scalability
	4.1 Memory Usage
	4.2 Disk Usage
	4.3 CPU Usage
	4.4 Bandwidth Usage

	5. Discussion
	6. Conclusion
	7. References

