Chapter 3: Discovering a Lookup Service

Contents

· http://pandonia.canberra.edu.au/java/jini/book/ - Lookup Service
· http://pandonia.canberra.edu.au/java/jini/book/ - Reggie
· http://pandonia.canberra.edu.au/java/jini/book/ - Unicast discovery
· http://pandonia.canberra.edu.au/java/jini/book/ - LookupLocator
· http://pandonia.canberra.edu.au/java/jini/book/ - Running the InvalidLookupLocator
· http://pandonia.canberra.edu.au/java/jini/book/ - Information from the LookupLocator
· http://pandonia.canberra.edu.au/java/jini/book/ - Get Registrar
· http://pandonia.canberra.edu.au/java/jini/book/ - Running the UnicastRegister
· http://pandonia.canberra.edu.au/java/jini/book/ - Broadcast discovery
· http://pandonia.canberra.edu.au/java/jini/book/ - Groups
· http://pandonia.canberra.edu.au/java/jini/book/ - LookupDiscovery
· http://pandonia.canberra.edu.au/java/jini/book/ - DiscoveryListener
· http://pandonia.canberra.edu.au/java/jini/book/ - DiscoveryEvent
· http://pandonia.canberra.edu.au/java/jini/book/ - Staying alive
· http://pandonia.canberra.edu.au/java/jini/book/ - Running the MulticastRegister
· http://pandonia.canberra.edu.au/java/jini/book/ - Broadcast range
· http://pandonia.canberra.edu.au/java/jini/book/ - ServiceRegistrar
· http://pandonia.canberra.edu.au/java/jini/book/ - Information from the ServiceRegistrar
· http://pandonia.canberra.edu.au/java/jini/book/ - Summary
Y

This chapter looks at what is involved in discovering a lookup service or service locator. This is common to both services and clients.
Running a Lookup Service
Jan: I think the preceding heading could be made a little more explanatory to give readers some idea what you will be saying about a lookup service. AndyDone
A client locates a service by querying a lookup service (service locator). In order to do this, it must first locate a lookup service. Similarly, a service must register itself with a lookup service, and in order to do so it must also first locate a lookup service.
Jan: Will readers know what you mean by doing something by unicast or multicast in this context? If not, that should be explained a little more. AndyDone
Yes The initial task for both a client and a service is thus discovering a lookup service. Such a service (or set of services) will usually have been started by some independent mechanism. The search for a lookup service can be done either by unicast or by multicast. Unicast means that you know the address of the lookup service and can contact it directly. Multicast is used when you you do not know where a lookup service is, and have to broadcast a message across the network so that any lookup service can respond. In fact, the lookup service is just another Jini service, but it is one that is specialized to store services and pass them on to clients looking for them.

Reggie

Yes Sun supplies a lookup service called reggie as part of the standard Jini distribution. The specification of a lookup service is public, and in future we can expect to see other implementations of lookup services.
Yes There may be any number of these lookup services running in a network. A LAN may run many lookup services to provide redundancy in case one of them crashes. Similarly, across the internet, people may run lookup services for a variety of reasons: a public lookup service is running on http://www.jini.canberra.edu.au to aid people trying Jini clients and services so that they don’t need to also set up a lookup service. Other lookup services may act as coordination centers, such as a repository of locations for all the atomic clock servers in the world.

Anybody can start a lookup service (depending on access permissions), but it will usually be started by an administrator, or started at boot time.
Jan: Later in this discussion you seem to be implying that the support services you mention below should be started before reggie is started. If that is true, then it should be mentioned, probably in the next sentence. AndyDone
Yes reggie requires support services: an HTTP server and an RMI daemon, rmid. These need to be already running by the time reggie is started. If there is already an HTTP server running, it can be used, or a new one can be started.
Yes If you don’t have access to an HTTP server (such as Apache), then there is a simple one supplied by Jini. This server is incomplete, and it is only good for downloading Java class files—it cannot be used as a general-purpose Web server. The Jini HTTP server is in the tools.jar file, and it can be started with this command:
java -jar tools.jar
Jan: In the following sentence, what is “this”? Is it the Jini HTTP server, or is the statement true of whatever HTTP server you use? AndyDone
Yes This Jini HTTP server runs on a default port (8080), which means that any user can start it as long as local network policies do not forbid it. It uses the current directory as the document root for locating class files. These can be controlled by parameters:

java -jar tools-jarfile [-port port-number] [-dir document-root-dir] [-trees] [-verbose]
Jan: How do the preceding parameters work? What do they do? Will readers know this already? If not, it would probably help a lot to add a table or text that explains them. Andy
Yes The HTTP server is needed to deliver the stub class files (of the registrar) to clients. These class files are stored in reggie-dl.jar, so this file must be reachable from the document root. For example, on my machine the jar file has the full path /home/jan/tmpdir/jini1_0/lib/reggie-dl.jar. I set the document root to /home/jan/tmpdir/jini1_0/lib, so the relative URL from this server is just /reggie-dl.jar.
Jan: You mentioned above that there could be other lookup services than reggie. Is that also true of rmid? If so, that should be mentioned. AndyDone
Yes The other support service needed for reggie is an RMI daemon. This is rmid, and it is a part of the standard Java distribution. Vendors could implement other RMI daemons, but this is unlikely. rmid must be run on the same machine as reggie. The following command is a Unix command that runs rmid as a background process:
Jan: What is the following command? I’d guess that it starts rmid, but that should be mentioned in the sentence that introduces it. AndyDone
rmid &

This command also has major options:

rmid [-port num] [-log dir]

Yes These options can specify the TCP port used (which defaults to 4160). You can also specify the location for the log files that rmid uses to store its state—they default to being in the log subdirectory.
Jan: Following changes okay? AndyOk
Yes There is a security issue with rmid on multiuser systems such as Unix. The activation system that it supports allows anyone on the same machine to run programs using the user ID that rmid is running under. So you should never run rmid using a sensitive user ID such as root, but instead should run it as the least privileged user, nobody.

Yes Once the HTTP server and rmid are running, reggie can be started
Yes
with a number of compulsory parameters:
Andy: if this line spills over, then it should be terminated with a \. I’ve added one, but can’t indent the next line!

java -jar lookup-server-jarfile lookup-client-codebase \ lookup-policy-file \

 output-log-dir lookup-service-group

Yes The parameters are as follows:
*
The lookup-server-jarfile will be reggie.jar or some path to it.

*
The lookup-client-codebase will be the URL for the reggie stub class files, using the HTTP server started earlier. In my case, this is http://jannote.dstc.edu.au:8080/reggie-dl.jar. Note that an absolute IP hostname must be used—you cannot use localhost because to the reggie service that means jannote.dstc.edu.au. To the client it would be a different machine altogether since to the client localhost is their own machine, not jannote.dstc.edu.au! The client would then fail to find reggie-dl.jar on its own machine. Even an abbreviated address, such as jannote, would fail to be resolved if the client is external to the local network.

*
The lookup-policy-file controls security accesses. Initially you can set this to the policy.all path in the Jini distribution, but for deployment, use a less dangerous policy file. The topic of security is discussed in chapter 12, but in brief, Jini code mobility allows code from other sources to run within the client machine. If you trust the other code, then that may be fine, but can you really trust it? If not, you don’t want to run it, and Jini security can control this. However, in the debugging and testing phases, this security can cause extra complications, so turn off security while testing other aspects of your code by using a weak security policy. Then make sure you turn it back on later!

*
The output-log-dir can be set to any (writable) path to store the log files.

*
The lookup-service-group can be set to the public group public.

Yes As an example, on my own machine, I start reggie like this:

java -jar /home/jan/tmpdir/jini1_0/lib/reggie.jar \
 http://jannote.dstc.edu.au:8080/reggie-dl.jar \

 /home/jan/tmpdir/jini1_0/example/lookup/policy.all \

 /tmp/reggie_log public
Yes After starting, reggie will promptly exit! Don’t worry about this—it is actually kept in a passive state by rmid and will be brought back into existence whenever necessary (this is done by the new Activation mechanism of RMI in JDK 1.2).

You only need to start reggie once, even if your machine is switched off or rebooted. The activation daemon rmid restarts it on an as-needed basis, since it keeps information about reggie in its log files.

Unicast Discovery

Yes Unicast discovery can be used when you know the machine on which the lookup service resides, and can ask for it directly. This approach is expected to be used for a lookup service that is outside of your local network, but that you know the address of anyway (such as your home network while you are at work, or a network identified in a newsgroup or email message, or maybe even one advertised on TV).
Unicast discovery relies on a single class, LookupLocator. This class is described in the next section. Basic use of this class is illustrated in the sections on the “Invalid Lookup Locator”. The InvalidLookupLocator should be treated as an introductory program that you can use to establish if you can build and run a simple Jini program without having to worry about issues involving the network. Connecting to a lookup service using the network occurs by use of the getRegistrar()method of LookupLocator, and an example program using this is shown in the section “Unicast Registrar”.
Jan: It would help to add a brief mention of the general process of unicast discovery here. For example, the LookupLocator, InvalidLookupLocator, Get Registrar, and unicastRegistrar, discussed in the following subsections presumably all work together for unicast discovery, but you haven’t really given any big-picture explanation of what happens. This needn’t be a detailed or long explanation. Just something to introduce the readers to the different pieces so that they have some idea of the big picture while reading about the details. AndyDone above
LookupLocator
Jan: At the end of the next sentence, what is the “this”? AndyDone
The LookupLocator class in the net.jini.core.discovery package is used for unicast discovery of a lookup service.. There are two constructors:
Jan: It looks to me like the first constructor below has the URL, but there is no place to enter a port or host. The port and host parameters are in the second constructor. So the following paragraph seems a bit confusing because it all seems to be talking about the first constructor until the last sentence. This needs to be clarified. AndyDone
package net.jini.core.discovery;

public class LookupLocator {

 LookupLocator(java.lang.String url)

 throws java.net.MalformedURLException;

 LookupLocator(java.lang.String host,int port);

}

For the first constructor, the url parameter follows the standard URL syntax of “protocol://host” or “procotol://host:port”. The protocol is jini. If no port is given, it defaults to 4160. The host should be a valid DNS name (such as pandonia.canberra.edu.au or an IP address (such as 137.92.11.13). So for example, ”jini://pandonia.canberra.edu.au:4160” may be given as the URL for the first constructor. No unicast discovery is performed at this stage, though, so any rubbish could be entered. Only a check for the syntactic validity of the URL is performed. The first constructor will throw an exception if it discovers a syntax error. This syntactic check is not even done for the second constructor, which takes a host name and port separately.
Jan: What is the point of the following program? I’m not second-guessing it’s importance—I just think it needs a little more introduction than the following couple of sentences provide. You’ve explained what it does, but not why it is here. Why will this program be useful for readers, and what will it show them how to do? Done
And if this really is the InvalidLookupLocator program, as it appears to be, shouldn’t the following heading be moved up here so that this program is included in the InvalidLookupLocator section? AndyDone
InvalidLookupLocator
The following program creates some objects with valid and invalid host/URLs. They are only checked for syntactic validity rather than existence as URLs. That is, no network lookups are performed. This should be treated as a basic program to check that you can build and run a simple Jini program.

Jan: I’ve replaced the tabs in the code with spaces, which work better when the book is in the layout stage. Please check to see that the indentations still look appropriate. This applies to all code in the chapter. AndyGood – I guess it is too late to supply you with a version with this already done (On my version of Word, there seems to be a huge amount of space between each line – can this be reduced?
Andy: how do I edit these programs? Word ignores backspace and space! I don’t know how to insert spaces at the start of lines or how to join lines
package basic;

import net.jini.core.discovery.LookupLocator;

/**

 * InvalidLookupLocator.java

 */

public class InvalidLookupLocator {

 static public void main(String argv[]) {

 new InvalidLookupLocator();

 }

 public InvalidLookupLocator() {

 LookupLocator lookup;

 // this is valid

 try {

 lookup = new LookupLocator("jini://localhost");

 System.out.println("First lookup creation Andy:join these linessucceeded");

 } catch(java.net.MalformedURLException e) {

 System.err.println("First lookup failed: " + Andy:join these linese.toString());

 }

 // this is probably an invalid URL,

 // but the URL is syntactically okay

 try {

 lookup = new LookupLocator("jini://ABCDEFG.org");

 System.out.println("Second lookup creation Andy:join these linessucceeded");

 } catch(java.net.MalformedURLException e) {

 System.err.println("Second lookup failed: " + Andy:indent this lineto “e.toString());

 }

 // this IS a malformed URL, and should throw an Andy:join these lines exception

 try {

 lookup = newjoin these lines LookupLocator("A:B:C://ABCDEFG.org");

 System.out.println("Third lookup creation Andy:join these linessucceeded");

 } catch(java.net.MalformedURLException e) {

 System.err.println("Third lookup failed: " + Andy:indent this linee.toString());

 }

 // this is valid, but no check is made anyway

 lookup = new LookupLocator("localhost", 80);

 System.out.println("Fourth lookup creation succeeded");

 }

} // InvalidLookupLocator

Running the InvalidLookupLocator
All Jini programs will need to be compiled using the JDK 1.2 compiler. Jini programs will not compile or run under JDK 1.1 (any versions).
Jan: Following changes okay? Andy

The InvalidLookupLocator program defines the InvalidLookupLocator class in the basic package. The source code will be in the InvalidLookupLocator.java file in the basic subdirectory. From the parent directory, this can be compiled by a command such as this:
javac basic/InvalidLookupLocator.java

This will leave the class file also in the basic subdirectory.
Jan: Following changes okay? Andy
When you compile the source code, the CLASSPATH will need to include the jini-core.jar Jini file. Similarly, when a service is run, this Jini file will need to be in its CLASSPATH, and when a client runs, it will also need this file in its CLASSPATH. The reason for this repetition is that the service and the client are two separate applications, running in two separate JVMs, and quite likely will be on two separate computers.

The InvalidLookupLocator has no additional requirements. It does not perform any network calls and does not require any additional service to be running. It can be run simply by entering this command:
java -classpath ... basic.InvalidLookupLocator

Information from the LookupLocator
Jan: Are the following the only two methods? Andy
A LookupLocator has two methods:

String getHost();

int getPort();

These methods will return information about the hostname that the locator will use, and the port it will connect on or is already connected on. This is just the information fed into the constructor or left to default values, though. It doesn’t offer anything new for unicasting. This information will be useful in the multicast situation, though, if you need to find out where the lookup service is.

Get Registrar

Search and lookup is performed by the getRegistrar() method of the LookupLocator, which returns an object of class ServiceRegistrar.

public ServiceRegistrar getRegistrar()

 throws java.io.IOException,

 java.lang.ClassNotFoundException

Jan: The broken hyperlink in the following sentence needs to be replaced. Andy
The http://pandonia.canberra.edu.au/java/jini/book/ - serviceRegistrar is discussed in detail later. This performs network lookup on the URL given in the LookupLocator constructor.

UML sequence diagrams are useful for showing the timelines of object existence, and the method calls that are made from one object to another. The timeline reads down, and method calls and their returns read across. A UML sequence diagram augmented with a jagged arrow showing the network connection is shown in Figure 3.1. The UnicastRegister object makes a new() call to create a LookupLocator, and this call returns a lookup object. The getRegistrar() method call is then made on the lookup object, and this causes network activity. As a result of this, a ServiceRegistrar object is created in some manner by the lookup object, and this is returned from the method as the registrar.

[image: image1.png]Unicast

Register Lookup
1 Locator .
| Service
nes
: Snew0 ! locator
! lookup !
] '
| etRegistra 1
i 9eHeg 0 | Service
registrar ! Registrar
l
I
I
I
I

Figure 3.1: UML sequence diagram for lookup
Jan: In the following sentence, what program are you referring to? Is this the program in the diagram, or the LookupLocator or InvalidLookupLocator? This needs to be introduced a little more clearly. Andy
By this stage, the program looks like this:
package basic;

import net.jini.core.discovery.LookupLocator;

import net.jini.core.lookup.ServiceRegistrar;

/**

 * UnicastRegistrar.java

 */

public class UnicastRegister {

 static public void main(String argv[]) {

 new UnicastRegister();

 }

 public UnicastRegister() {

 LookupLocator lookup = null;

 ServiceRegistrar registrar = null;

 try {

 lookup = new LookupLocator("jini://www.jini.canberra.edu.au");

 } catch(java.net.MalformedURLException e) {

 System.err.println("Lookup failed: " + e.toString());

 System.exit(1);

 }

 try {

 registrar = lookup.getRegistrar();

 } catch (java.io.IOException e) {

 System.err.println("Registrar search failed: " + e.toString());

 System.exit(1);

 } catch (java.lang.ClassNotFoundException e) {

 System.err.println("Registrar search failed: " + e.toString());

 System.exit(1);

 }

 System.out.println("Registrar found");

 // the code takes separate routes from here for client or service

 }

} // UnicastRegister

The registrar object will be used in different ways for clients and services: the services will use it to register themselves, and the clients will use it to locate services.
Jan: The broken hyperlink in the following note will need to be replaced. Andy
Note: This program might not run as is, due to security issues. If that is the case, see the first section of the chapter on http://pandonia.canberra.edu.au/java/jini/book/Security.html.
Running the UnicastRegister
Jan: What program are you referring to in the following sentence? Andy
The program needs to be compiled and run with jini-code.jar in its CLASSPATH. When run, it will attempt to connect to the service locator, so obviously the service locator needs to be running on the machine specified in order for this to happen. Otherwise, the program will throw an exception and terminate. In this case, the host specified is localhost. It could, however, be any machine accessible on the local or remote network (as long as it is running a service locator). For example, to connect to the service locator running on my current workstation, the parameter for LookupLocator would be jini://pandonia.canberra.edu.au.
Jan: Again, what program are you referring to in the following sentence? Andy
This program will receive a ServiceRegistrar from the service locator. However, it does so with a simple readObject() on a socket connected to the service locator, so it does not need any additional support services, such as rmiregistry or rmid. It can be run by
Jan: The preceding sentence should explain this a little more. Is the following a command to run the program? And if so, what are the three periods in it? Andy
java -classpath ... basic.UnicastRegister

Broadcast Discovery

If the location of a lookup service is unknown, it is necessary to make a broadcast search for one. UDP supports a multicast mechanism that the current implementations of Jini use. Because multicast is expensive in terms of network requirements, most routers block multicast packets. This usually restricts broadcasts to a local area network, although this depends on the network configuration and the time-to-live (TTL) of the multicast packets.

There can be any number of lookup services running on the network accessible to the broadcast search. On a small network, such as a home network, there may be just a single lookup service, but in a large network there may be many—perhaps one or two per department. Each one of these may choose to reply to a broadcast request.

Groups

Some services may be meant for anyone to use, but some may be more restricted in applicability. For example, the Engineering department may wish to keep lists of services specific to that department. This may include a departmental diary service, a departmental inventory, etc. The services themselves may be running anywhere in the organization, but the department would like to be able to store information about them and to locate them from their own lookup service. Of course, this lookup service may be running anywhere, too!

So there could be lookup services specifically for a particular group of services, such as the Engineering department services, and others for the Publicity department services. Some lookup services may cater to more than one group—for example, a company may have a lookup service to hold information about all services running for all groups on the network.

When a lookup service is started, it can be given a list of groups to act for as a command line parameter. A service may include such group information by giving a list of groups that it belongs to. This is an array of strings, like this:

String [] groups = {"Engineering dept"};

LookupDiscovery

The LookupDiscovery class in package net.jini.discovery is used for broadcast discovery. There is a single constructor:

LookupDiscovery(java.lang.String[] groups)

The parameter in the LookupDiscovery constructor can take three possible values:
*
null, or LookupDiscovery.ALL_GROUPS, means that the object should attempt to discover all reachable lookup services, no matter which group they belong to. This will be the normal case.

*
An empty list of strings, or LookupDiscovery.NO_GROUPS, means that the object is created but no search is performed. In this case, the method setGroups() will need to be called in order to perform a search.

*
A non-empty array of strings can be given. This will attempt to discover all lookup services in that set of groups.

DiscoveryListener

A broadcast is a multicast call across the network, and lookup services are expected to reply as they receive the call. Doing so may take time, and there will generally be an unknown number of lookup services that can reply. To be notified of lookup services as they are discovered, the application must register a listener with the LookupDiscovery object, as follows:

public void addDiscoveryListener(DiscoveryListener l)

The listener must implement the DiscoveryListener interface:

package net.jini.discovery;

public abstract interface DiscoveryListener {

 public void discovered(DiscoveryEvent e);

 public void discarded(DiscoveryEvent e);

}
Jan: Following changes okay? It wasn’t clear what place you were talking about. Andy
The discovered() method is invoked whenever a lookup service has been discovered. The API recommends that this method should return quickly and not make any remote calls. However, the discovered() method is the natural place for a service to register, and it is also the natural place for a client to ask if there is a service available and to invoke the service. It may be better to perform these lengthy operations in a separate thread.

There are other timing issues involved—when the DiscoveryListener is created, the broadcast is made, and after this, a listener is added to this discovery object. What happens if replies come in very quickly, before the listener is added? The “Jini Discovery Utilities Specification” guarantees that these replies will be buffered and delivered when a listener is added. Conversely, no replies may come in for a long time—what is the application supposed to do in the meantime? It cannot simply exit, because then there would be no object to reply to! It has to be made persistent enough to last until replies come in. One way of handling this is that if the application has a GUI interface, the application will stay until the user dismisses it. Another possibility is that the application may be prepared to wait for a while before giving up. In that case, the main could sleep for, say, ten seconds and then exit. This will depend on what the application should do if no lookup service is discovered.

The discarded() method is invoked whenever the application discards a lookup service by calling discard() on the registrar object.

DiscoveryEvent

The parameter of the discovered() method of the DiscoveryListener interface is a DiscoveryEvent object.

package net.jini.discovery;

public Class DiscoveryEvent {

 public net.jini.core.lookup.ServiceRegistrar[] getRegistrars();

}

This has one public method, getRegistrars(), which returns an array of ServiceRegistrar objects. Each one of these implements the ServiceRegistrar interface, just like the object returned from a unicast search for a lookup service. More than one ServiceRegistrar object can be returned if a set of replies have come in before the listener was registered—they are collected in an array and returned in a single call to the listener. A UML sequence diagram augmented with jagged arrows showing the network broadcast and replies is shown in Figure 3.2.

[image: image2.png]Multicast

Register Lookup

i Discovery Lookup
! new() Services
—newy o
) discover i
i addDiscoveryListener() 1

T
1 |
| | Discovery
| discovered(evt) ! Event

] !
! I
j getRegistrars() Service
h
I
.
i
I
I
i

i
|
i i N
registrars | ' Regl‘strar
|
i
i

Figure 3.2: UML sequence diagram for discovery
Jan: There’s no horizontal line connecting to the ServiceRegistrar at the bottom right. Is that okay? Andy
In Figure 3.2, the creation of a LookupDiscovery object starts the broadcast search, and it returns the discover object. The MulticastRegister adds itself as a listener to the discover object. The search continues in a separate thread, and when a new lookup service replies, the discover object invokes the discovered() method in the MulticastRegister, passing it a newly created DiscoveryEvent. The MulticastRegister object can then make calls on the DiscoveryEvent, such as getRegistrars(), which will return suitable ServiceRegistrar objects.
Jan: In the following sentence, what program are you referring to? Andy
By this stage the program looks like this:
package basic;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

/**

 * MulticastRegister.java

 */

public class MulticastRegister implements DiscoveryListener {

 static public void main(String argv[]) {

 new MulticastRegister();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(10000L);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

 public MulticastRegister() {

 System.setSecurityManager(new java.rmi.RMISecurityManager());

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 e.printStackTrace();

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

 // the code takes separate routes from here for client or service

 System.out.println("found a service locator");

 }

 }

 public void discarded(DiscoveryEvent evt) {

 }

} // MulticastRegister

Staying Alive
Jan: What constructor are you referring to in the following sentence? Andy
Jan: Also, there’s a broken hyperlink in the paragraph that needs to be replaced. Chapters should also be referred to by number. Andy
In the constructor, we create a LookupDiscovery object, add a DiscoveryListener, and then the constructor terminates. The main() method, having called this constructor, promptly goes to sleep. What is going on here? The constructor for LookupDiscovery actually starts up a number of threads to broadcast the service and to listen for replies. (See Chapter ?? http://pandonia.canberra.edu.au/java/jini/book/Architecture).
When replies come in, the listener thread will call the discovered() method of the MulticastRegister. However, these threads are daemon threads. Java has two types of threads—daemon and user threads—and at least one user thread must be running or the application will terminate. All these other threads are not enough to keep the application alive, so it keeps a user thread running in order to continue to exist.
Jan: Preceding and following changes okay? Is sleep() a method or something else? Andy
The sleep() method ensures that a user thread continues to run, even though it apparently does nothing. This will keep the application alive, so that the daemon threads (running in the “background”) can discover some lookup locators. Ten seconds (10,000 milliseconds) is long enough for that. To stay alive after this ten seconds expires requires either increasing the sleep time or creating another user thread in the discovered() method. Later in this book, use is made of “leasing” a useful constant, Lease.FOREVER. While the “leasing” system understands this FOREVER constant, the standard Java sleep() method merely uses the Long.MAX_VALUE value and just sleeps for a lengthy period.
Jan: What do you mean when you say that it looks a bit strange there? If this is more than a personal preference, then it should probably be explained a little more. Andy
I have placed the sleep() call in the main() method. It is perfectly reasonable to place it in the application constructor, and some examples do this. However, it looks a bit strange there, so I prefer this placement. Note that although the constructor for MulticastRegister will have terminated without us assigning its object reference, a live reference has been passed into the discover object as a DiscoveryListener, and it will keep the reference alive in its own daemon threads. This means that the application object will still exist for its discovered() method to be called.

Any other method that results in a user thread continuing to exist will do just as well. For example, a client that has an AWT or Swing user interface will stay alive because there are many user threads created by any of these GUI objects.

For services, which typically will not have a GUI interface running, another simple way to keep them alive is to create an object and then wait for another thread to notify() it. Since nothing will, the thread (and hence the application) stays alive. Essentially, this is an unsatisfied wait that will never terminate—usually an erroneous thing to do, but here it is deliberate:
Object keepAlive = new Object();

synchronized(keepAlive) {

 try {

 keepAlive.wait();

 } catch(InterruptedException e) {

 // do nothing

 }

}

This will keep the service alive indefinitely, and it will not terminate unless interrupted. This is unlike sleep(), which will terminate eventually.

Running the MulticastRegister
Jan: Again, you should identify the program in the following sentence. Andy
The program needs to be compiled and run with jini-core.jar and jini-ext.jar in its CLASSPATH. The extra jar file is needed because it contains the class files from the net.jini.discovery package. When run, the program will attempt to find all the service locators that it can. If there are none, it will find none—pretty boring. So one or more service locators should be set running in the network or on the local machine.

This program will receive ServiceRegistrar’s from the service locators. However, it does so with a simple readObject() on a socket connected to a service locator, and so does not need any additional support services, such as rmiregistry.

Broadcast Range

Services and clients search for lookup locators using the multicast protocol by sending out packets as UDP datagrams. It makes announcements on UDP 224.0.1.84 on port 4160. How far do these announcements reach? This is controlled by two things:

*
the time-to-live (TTL) field on the packets

*
the network administrator settings on routers and gateways

By default, the current implementation of LookupDiscovery sets the TTL to be 15. Common network administrative settings restrict such packets to the local network. However, the TTL can be changed by giving the system property net.jini.discovery.ttl a different value. However, be careful about setting this; many people will get irate if you flood the networks with multicast packets.

ServiceRegistrar

The ServiceRegistrar is an abstract class that is implemented by each lookup service. The actual details of this implementation are not relevant here. The role of a ServiceRegistrar is to act as a proxy for the lookup service. This proxy runs in the application, which may be a service or a client.
Jan: I’m not sure what you are saying in the following sentence. Why is this object moved from one Java process to another Java process? Or do you mean that it is moved from one Java process to a Jini process, or to a Java process in Jini? The end of the sentence is a little ambiguous. Andy
This is the first object that is moved from one Java process to another in Jini. It is shipped from the lookup service to the application looking for the lookup service, using a socket connection. From then on, it runs as an object in the application’s address space, and the application makes normal method calls to it. When needed, it communicates back to its lookup service. The implementation used by Sun’s reggie uses RMI to communicate, but the application does not need to know this, and anyway, it could be done in different ways. This proxy object should not cache any information on the application side, but instead should get “live” information from the lookup service as needed. The implementation of the lookup service supplied by Sun does exactly this.
Jan: Is the following change okay? Andy
The ServiceRegistrar object has two major methods. One is used by a service attempting to register:
public ServiceRegistration register(ServiceItem item,

 long leaseDuration)

 throws java.rmi.RemoteException
Jan: Following change okay? Why was the (s) in the following sentence? What might there be more than one of? Andy
The other method(s) is used by a client trying to locate a particular service:
public java.lang.Object lookup(ServiceTemplate tmpl)

 throws java.rmi.RemoteException;

public ServiceMatches lookup(ServiceTemplate tmpl,

 int maxMatches)

 throws java.rmi.RemoteException;
Jan: Following change okay? Also, the hyperlinks need to be replaced. Andy
The details of these methods are given in http://pandonia.canberra.edu.au/java/jini/book/ServiceRegistration.html and in http://pandonia.canberra.edu.au/java/jini/book/ClientSearch.html. For now, an overview will suffice.

A service provider will register a service object (that is, an instance of a class), and a set of attributes for that object. For example, a printer may specify that it can handle Postscript documents, or a toaster that it can deal with frozen slices of bread. The service provider may register a singleton object that completely implements the service, but more likely it will register a service proxy that will communicate back to other objects in the service provider. Note carefully: the registered object will be shipped around the network, and when it finally gets to run, it may be a long way away from where it was originally created. It will have been created in the service’s JVM, transferred to the lookup locator by register(), and then to the client’s JVM by lookup().

A client is trying to find a service using some properties of the service that it knows about. Whereas the service can export a live object, the client cannot use a service object as a property, because then it would already have the thing, and wouldn’t need to try to find one! What it can do is use a class object, and try to find instances of this class lying around in service locators. As discussed later in http://pandonia.canberra.edu.au/java/jini/book/ClientSearch.html, it is best if the client asks for an interface class object. In addition to this class specification, the client may specify a set of attribute values that it requires from the service.
Jan: Please fix hyperlinks above and below. Andy
The next step is to look at the possible forms of attribute values, and at how matching will be performed. This is done using Jini http://pandonia.canberra.edu.au/java/jini/book/Entry.html objects. The simplest services, and the least demanding clients, will not require any attributes: the Entry[] array will be null. You may wish to skip ahead to http://pandonia.canberra.edu.au/java/jini/book/ServiceRegistration.html or to http://pandonia.canberra.edu.au/java/jini/book/ClientSearch.html and come back to entries later.
Jan: Above you refer to coming back to entries, but you haven’t mentioned where they are discussed. Are they next? I don’t see that term used anywhere. Andy
Information from the ServiceRegistrar

The ServiceRegistrar is returned after a successful discovery has been made. This object has a number of methods that will return useful information about the lookup service, itself. So, in addition to using this object to register a service or to look up a service, you can use it to find out about the lookup locator. The major methods are these:

String[] getGroups();;

LookupLocator getLocator();

ServiceID getServiceID();

The first method, getGroups(), will return a list of the groups that the locator is a member of.

The second method, getLocator(), is more interesting. This is exactly the same object as is used in the unicast lookup, but now its fields are filled in by the discovery process, so you can find which host the locator is running on, and its hostname, by using the following statement:
registrar.getLocator().getHost();
Jan: In the second sentence below, what do you mean by “information such as host can be found”? Host isn’t really information. Do you mean “information about the host can be found” or something like that? Andy
This can be used to get a list of which locators are running. From there, information such as host can be found—this information will be filled in by the discovery process, rather than being preset as in unicast lookup.
Jan: What is the following code, and how does it relate to the preceding sentence? Andy
public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

 System.out.println("Service locator at " +

 registrar.getLocator().getHost());

 }

}
Jan: Following change okay? Andy
You could use this method to find out where a service locator is so that the next time this program runs, it could connect directly by unicast.
Jan: Following change okay? Or should it just be “global identifier”? “a globally identifier” doesn’t seem to make sense. Andy
The third method, getServiceID(), is unlikely to be of much use to you. In general, service ID’s are used to give a globally unique identifier (GUID) for the service (different services should not have the same ID), and a service should have the same ID with all service locators. However, this is the service ID of the lookup service, not of any services registered with it.

Summary

Both services and clients need to find lookup services. Discovering a lookup service may be done using unicast or multicast protocols. Unicast discovery is a synchronous mechanism. Multicast discovery is an asynchronous mechanism that requires use of a listener to respond when a new service locator is discovered.

When a service locator is discovered, it sends a ServiceRegistrar object to run in the client or service. This acts as a proxy for the locator. This object may be queried for information, such as the host the service locator is on.

