Chapter 21: Architecture
[Andy, I think this chapter should probably be dropped as it is too short, doesn’t contain much information, and I don’t think I will ever expand it]
Contents

· 
· 
· 
This chapter looks at internal structures of Jini. This is heavily based on the 1.0 implementation by Sun, and may not be valid for any future implementations either by Sun or other vendors.

Jan: This introduction should be expanded a bit, ideally by introducing the “internal structures” that you will be discussing. Andy
LookupLocator

This is a simple class. The constructors perform some simple sanity checking on their parameters. The getRegistrar() method attempts a socket connection to the host on port 4160 for a period of one minute, after which it times out if no connection has been made. If it can connect, it reads an object from the socket and coerces it to a ServiceRegistrar, which it returns.

Threads

Jini uses many threads in its internal workings. Knowledge of these is not important to using Jini, but some may find it valuable to know what is going on under the hood.

LookupDiscovery Threads
Jan: What is “this” in the second sentence below? The LookupDiscovery object or setGroups? And in the third sentence, what is the “this”?Andy
A multicast request is made by creating a new LookupDiscovery object with a non-empty set of groups, or by calling setGroups(). This must broadcast the service, looking for service locators, which is done using a thread of type Requestor. This creates a MulticastSocket, sets its time-to-live field, and sends out a number of announcements (currently eight).
A ResponseListener class is used to handle replies. This runs as its own thread, and it listens on a socket for responses and adds them to a list of service locators. If a new locator is found, then it calls each DiscoveryListener. (The implementation is slightly more complex, due to timing issues—see the source code.)

Both of these run as daemon threads, which means they run as background threads. A user thread is needed to keep the application alive—an application will terminate if there are only daemon threads alive.

LeaseRenewalManager Threads

A LeaseRenewalManager uses a thread of class RenewThread. This thread looks after all aspects of renewal.

