

85

CHAPTER 19

User Interfaces for
Jini Services

S

OME

EARLIER

CHAPTERS

HAVE

USED

CLIENTS

 with graphical user interfaces to ser-
vices. Clients may not always know which is the most appropriate user interface,
and sometimes may not even know of any suitable user interface. Services should
be able to define their own user interfaces, and the question of how they should
best do this is explored in this chapter. We’ll also look at how clients can discover,
download, and use these user interfaces.

User Interfaces as Entries

Interaction with a service is specified by its interface, and the interaction will be
the same across all implementations of the interface. This consistency doesn’t
allow any flexibility in using the service, since a client will only know about the
methods defined in the interface. The interface is the defining level for using this
type of service.

However, services can be implemented in many different ways, and service
implementations do in fact differ. For example, one service may be offered on a
“take it or leave it” basis, while another might have a warranty attached. This does
not affect how the client calls a service, but it may affect whether or not the client
wants to use one service implementation or another. There is a need to allow for
this, and the mechanism used in Jini is to put these differences in

Entry

 objects.
Typical objects supplied by vendors may include

Name

 and

ServiceInfo

.
Clients can make use of the type interface and these additional entry items

primarily in the selection of a service. But once clients have the service, are they
just constrained to use it via the type interface? The type interface is designed to
allow a client application to use the service in a programmatic way by calling
methods. However, many services could probably benefit from some sort of user
interface (UI). For example, a printer may supply a method to print a file, but it
may have the capability to print multiple copies of the same file. Rather than rely-
ing on the client to be smart enough to figure this out, the printer vendor may
want to call attention to this option by supplying a user-interface object with a
special component for the number of copies.

Chapter 19

86

A client can only be expected to know about the type interface of a service. If it
uses this to build a user interface, then at best it could only manage a fairly generic
one that will work for all service implementations. A vendor will know much more
detail about any particular implementation of a service, and so the vendor is best
placed to supply the user interface. In some cases, the service vendor may be
unwilling or incapable of supplying user interfaces for a service, and a third party
may supply it.

When your video player becomes Jini-enabled, it would be a godsend for
someone to supply a decent user interface for it, since the video-player vendors
seem generally incapable of doing so! The

Entry

 objects are not just restricted to
providing static data; as Java objects, they are perfectly capable of running as user-
interface objects.

User interfaces are not yet part of the Jini standard, but the Jini community
(with a semi-formal organization as the “Jini Community”) is moving toward a
standard way of specifying many things, including user-interface standards and
guidelines. Guideline number one from the serviceUI group is this: user interfaces
for a service should be given in

Entry

 objects.

User Interfaces from Factory Objects

In Chapter 13, some discussion was given to the location of code, using user-inter-
face components as examples. That chapter suggested that user interfaces should
not be created on the server side but on the client side—the user interface should
be exported as a factory object that can create the user-interface on the client side.

More arguments can be given to support this approach:

• A service exported from a low-resource computer, such as an embedded
Java engine, may not have the classes on the service side needed to create
the user-interface (it may not have the Swing or even the AWT libraries).

• There may be many potential user interfaces for any particular service: Palm
handhelds (many with small grayscale screens) require a different interface
than a high-end workstation with a huge screen and enormous numbers of
colors. It is not reasonable to expect the service to create every one of these
user interfaces, but it could export factories capable of doing so.

NOTE In this chapter I talk about interfaces we have been using throughout
the book, and also about user interfaces. To avoid possible confusion, in this
chapter I will use the term type interface to refer to a Java interface as used in
the rest of this book, and user interface for any sort of interaction with the user.

User Interfaces for Jini Services

8787

• Localization of internationalized services cannot be done on the service
side, only on the client side.

The service should export zero or more user-interface factories, with methods
to create the interface, such as

getJFrame()

. The service and its user-interface fac-
tory will both be retrieved by the client. The client will then create the user inter-
face. Note that the factory will not know the service object beforehand; if the factory
was given one during its construction (on the service side), the factory would end
up with a service-side copy of the service instead of a client-side copy. Therefore,
when the factory is asked for a user-interface (on the client side), it should be
passed the service. In fact, the factory should probably be passed all of the infor-
mation about the service, as retrieved in the

ServiceItem

 from a lookup service.
A typical factory is the one that returns a

JFrame

. This is defined by the type
interface as follows:

package net.jini.lookup.ui.factory;

import javax.swing.JFrame;

public interface JFrameFactory {

 String TOOLKIT = "javax.swing";

 String TYPE_NAME = "net.jini.lookup.ui.factory.JFrameFactory";

 JFrame getJFrame(Object roleObject);

}

The factory imports the minimum number of classes needed to compile the
type interface. The

JFrameFactory

 above needs to import

javax.swing.JFrame

 because
the

getJFrame()

 method returns a

JFrame

. An implementation of this type interface
will probably use many more classes. The

roleObject

 passes any necessary infor-
mation to the UI constructor. This is usually the

ServiceItem

, as it contains all the
information (including the service) that was retrieved from a lookup service. The
factory can then create an object that acts as a user interface to the service, and can
use any additional information in the

ServiceItem

, such as entries for

ServiceInfo

 or

ServiceType

, which could be shown, say, in an “About” box.
A factory that returns a visual component, such as a

JFrame

, should not make
the component visible. This will allow the client to set the

JFrame

’s size and place-
ment before showing it. Similarly, a “playable” user interface, such as an audio file,
should not be in a “playing” state.

Chapter 19

88

Current Factories

A service may supply lots of these user interface factories, each capable of creating
a different user interface object. This allows for the differing capabilities of viewing
devices, or even for different user preferences. One user may always like a Web-
style interface, another may be content with an AWT interface, a third may want
the accessibility mechanisms possible with a Swing interface, and so on.

The set of proposed factories currently includes the following:

•

DialogFactory

, which returns an instance of

java.awt.Dialog

 (or one of its
subclasses)

•

FrameFactory

, which returns an instance of

java.awt.Frame

 (or one of its
subclasses)

•

JComponentFactory

, which returns an instance of

javax.swing.JComponent

 (or
one of its subclasses, such as a

JList

)

•

JDialogFactory

, which returns an instance of

javax.swing.JDialog

 (or one of
its subclasses)

•

JFrameFactory

, which returns an instance of

javax.swing.JFrame

 (or one of its
subclasses)

•

PanelFactory

, which returns an instance of

java.awt.Panel

 (or one of its
subclasses)

These factories are all defined as interfaces. An implementation will define a

getXXX()

 method that will return a user interface object. The current set of facto-
ries returns objects that belong to the Swing or AWT classes. Factories added in
later iterations of the specification may return objects belonging to other user
interface styles, such as speech objects. Although an interface may specify that a
method, such as

getJFrame()

, will return a

JFrame

, an implementation will in fact
return a subclass of this, which also implements a role interface.

Marshalling Factories

There may be many factories for a service, and each of them will generate a differ-
ent user interface. These factories and their user interfaces will be different for
each service. The standard factory interfaces will probably be known to both clients
and services, but the actual implementations of these will only be known to ser-
vices (or maybe to third-party vendors who add a user interface to a service).

User Interfaces for Jini Services

8989

If a client receives a

ServiceItem

 containing entries with many factory imple-
mentation objects, it will need to download the class files for all of these as it
instantiates the

Entry

 objects. There is a strong chance that each factory will be
bundled into a

jar

 file that also contains the user interface objects themselves, so
if the entries directly contain the factories, then the client will need to download a
set of class files before it even goes about the business of deciding which of the
possible user interfaces it wants to select.

This downloading may take time on a slow connection, such as a wireless or
home network link. It may also cost memory, which may be scarce in small devices
such as PDAs. Therefore, it is advantageous to hide the actual factory classes until
the client has decided that it does in fact want a particular class. Then, of course, it
will have to download all of the class files needed by that factory.

In order to hide the factories, they are wrapped in a

MarshalledObject

. This
keeps a representation of the factory and also a reference to its codebase, so that
when it is unwrapped, the necessary classes can be located and downloaded. Cli-
ents should have the class files for

MarshalledObject

, because this class is part of
the Java core. By putting a factory object into entries in this form, no attempt is
made to download the actual classes required by the factory until it is
unmarshalled.

The decision as to whether or not to unmarshall a class can be made on a sep-
arate piece of information, such as a set of

String

s that hold the names of the
factory class (and all of its superclasses and interfaces). This level of indirection is
a bit of a nuisance, but not too bad:

if (typeNames.contains("net.jini.lookup.ui.factory.JFrameFactory") {

 factory = (JFrameFactory) marshalledObject.get();

}

A client that does not want to use a

JFrameFactory

 will just not perform the pre-
ceding Boolean test. It will not call the unmarshalling

get()

 method and will not
attempt the coercion to

JFrameFactory

. This will avoid downloading classes that are
not wanted. This indirection does place a responsibility on service-side program-
mers to ensure that the coercion will be correct. In effect, this is a maneuver to
circumvent the type-safe model of Java purely for optimization purposes.

There is one final wrinkle when loading the class files for a factory: a running
JVM may have many class loaders. When loading the files for a factory, you want to
make sure that the class loader is one that will actually download the class files
across the network as required. The class loader associated with the service itself
will be the most appropriate loader for this.

Chapter 19

90

UIDescriptor

An entry for a factory must contain the factory, itself, hidden in a

MarshalledObject

and some string representation of the factory’s class(es). It may also need other
descriptive information about the factory. The

UIDescriptor

 captures all this:

package net.jini.lookup.entry;

public class UIDescriptor extends AbstractEntry {

 public String role;

 public String toolkit;

 public Set attributes;

 public MarshalledObject factory;

 public UIDescriptor();

 public UIDescriptor(String role, String toolkit,

 Set attributes, MarshalledObject factory);

 public final Object getUIFactory(ClassLoader parentLoader)

 throws IOException, ClassNotFoundException;

}

There are several features in the

UIDescriptor

 that we haven’t mentioned yet,
and the factory type appears to be missing (it is one of the

attributes

).

Toolkit

A user interface will typically require a particular package to be present or it will
not function. For example, a factory that creates a

JFrame

 will require the

javax.swing

 package. These requirements can provide a quick filter for whether or
not to accept a factory—if it is based on a package the client doesn’t have, then it
can just reject this factory.

This isn’t a bulletproof means of selection. For example, the Java Media
Framework is a fixed-size package designed to handle lots of different media
types, so if your user interface is a QuickTime movie, you might specify the JMF
package. However, the media types handled by the JMF package are not fixed, and
they can depend on native code libraries. For example, the current Solaris version
of the JMF package has a native code library to handle MPEG movies, which is not
present in the Linux version. Having the package specified by the

toolkit

 does not
guarantee that the class files for this user interface will be present. It is primarily
intended to narrow lookups based on the UIs offered.

User Interfaces for Jini Services

9191

Role

There are many possible roles for a user interface. For example, a typical user may
be using the service, in which case the UI plays the “main” role. Alternatively, a sys-
tem administrator may be managing the service, and he or she might require a
different user interface, in which case the UI then plays the “admin” role.

The

role

 field in a

UIDescriptor

 is intended to describe these possible varia-
tions in the use of a user interface. The value of this field is a string, and to reduce
the possibility of spelling errors that are not discovered until runtime, the value
should be one of several constant string values. These string constants are defined
in a set of type interfaces known as

role

 interfaces. There are currently three role
interfaces:

• The

net.jini.lookup.ui.MainUI

 role is for the standard user interface used by
ordinary clients of the service:

 package net.jini.lookup.ui;

 public interface MainUI {

 String ROLE = "net.jini.lookup.ui.MainUI";

 }

• The

net.jini.lookup.ui.AdminUI

 role is for use by the service’s administrator:

 package net.jini.lookup.ui;

 public interface AdminUI {

 String ROLE = "net.jini.lookup.ui.AdminUI";

 }

• The net.jini.lookup.ui.AboutUI role is for information about the service,
which can be presented by a user interface object:

 package net.jini.lookup.ui;

 public interface AboutUI {

 String ROLE = "net.jini.lookup.ui.AboutUI";

 }

A service will specify a role for each of the user interfaces it supplies. This role
is given in a number of ways for different objects:

• The role field in the UIDescriptor must be set to the String ROLE of one of
these three role interfaces.

Chapter 19

92

• The user interface indicates that it acts a role by implementing the particu-
lar role specified.

• The factory does not explicitly know about the role, but the factory contained
in a UIDescriptor must produce a user interface implementing the role.

The service must ensure that the UIDescriptors it produces follows these
rules. How it actually does so is not specified. There are several possibilities,
including these:

• When a factory is created, the role is passed in through a constructor. It
can then use this role to cast the roleObject in the getXXX() method to the
expected class (currently this is always a ServiceItem).

• There could be different factories for different roles, and the UIDescriptor
should have the right factory for that role.

The factory could perform some sanity checking if desired; since all roleOb-
jects are (presently) the service items, it could search through these items for the
UIDescriptor, and then check that its role matches what the factory expects.

There has been much discussion about “flavors” of roles, such as an “expert”
role or a “learner” role. This has been deferred because it is too complicated, at
least for the first version of the specification.

Attributes

The attributes section of a UIDescriptor can carry any other information about
the user interface object that the service thinks might be useful to clients trying to
decide which user interface to choose. Currently this includes the following:

• A UIFactoryTypes object, which contains a set of Strings for the fully quali-
fied class names of the factory that this entry contains. The current factory
hierarchy is very shallow, so this may be just a singleton set, like this:

 Set attribs = new HashSet();

 Set typeNames = new HashSet();

 typeNames.add(JFrameFactory.TYPE_NAME);

 attribs.add(new UIFactoryTypes(typeNames));

Note that a client is not usually interested in the actual type of the factory,
but rather in the interface it implements. This is just like Jini services them-
selves, where we only need to know the methods that can be called and are
not concerned with the implementation details.

Jan Newmarch
move these 3 lines left to start in the same column as "Set attribs..."

User Interfaces for Jini Services

9393

• An AccessibleUI object. Inclusion of this object indicates that the user inter-
face implements javax.accessibility.Accessible and that the user interface
would work well with assistive technologies.

• A Locales object, which specifies the locales supported by the user interface.

• A RequiredPackages object, which contains information about all of the pack-
ages that the user interface needs to run. This is not a guarantee that the
user interface will actually run, nor a guarantee that it will be a usable inter-
face, but it may help a client decide whether or not to use a particular user
interface.

File Classifier UI Example

The file classifier has been used throughout this book as a simple example of a ser-
vice to illustrate various features of Jini. We can use it here too, by supplying simple
user interfaces to the service. Such a user interface would consist of a text field for
entering a filename, and a display to show the MIME type of the filename. There is
only a “main” role for this service, as no administration needs to be performed.

Figure 19-1 shows what a user interface for a file classifier could look like.

After the service has been invoked, it could pop up a dialog box, as shown in
Figure 19-2.

Figure 19-1. FileClassifier user interface

Figure 19-2. FileClassifier return dialog box

Chapter 19

94

A factory for the “main” role that will produce an AWT Frame is shown next:

/**

 * FileClassifierFrameFactory.java

 */

package ui;

import net.jini.lookup.ui.factory.FrameFactory;

import net.jini.lookup.entry.UIDescriptor;

import java.awt.Frame;

import net.jini.core.entry.Entry;

import net.jini.core.lookup.ServiceItem;

public class FileClassifierFrameFactory implements FrameFactory {

 /**

 * Return a new FileClassifierFrame that implements the

 * MainUI role

 */

 public Frame getFrame(Object roleObject) {

 // we should check to see what role we have to return

 if (! (roleObject instanceof ServiceItem)) {

 // unknown role type object

 // can we return null?

 return null;

 }

 ServiceItem item = (ServiceItem) roleObject;

 // Do sanity checking that the UIDescriptor has a MainUI role

 Entry[] entries = item.attributeSets;

 for (int n = 0; n < entries.length; n++) {

 if (entries[n] instanceof UIDescriptor) {

 UIDescriptor desc = (UIDescriptor) entries[n];

 if (desc.role.equals(net.jini.lookup.ui.MainUI.ROLE)) {

 // Ok, we are in the MainUI role, so return a UI for that

 Frame frame = new FileClassifierFrame(item, "File Classifier");

 return frame;

 }

 }

 }

 // couldn't find a role the factory can create

 return null;

 }

User Interfaces for Jini Services

9595

} // FileClassifierFrameFactory

The user interface object that performs this role is as follows:

/**

 * FileClassifierFrame.java

 */

package ui;

import java.awt.*;

import java.awt.event.*;

import net.jini.lookup.ui.MainUI;

import net.jini.core.lookup.ServiceItem;

import common.MIMEType;

import common.FileClassifier;

import java.rmi.RemoteException;

/**

 * Object implementing MainUI for FileClassifier.

 */

public class FileClassifierFrame extends Frame implements MainUI {

 ServiceItem item;

 TextField text;

 public FileClassifierFrame(ServiceItem item, String name) {

 super(name);

 Panel top = new Panel();

 Panel bottom = new Panel();

 add(top, BorderLayout.CENTER);

 add(bottom, BorderLayout.SOUTH);

 top.setLayout(new BorderLayout());

 top.add(new Label("Filename"), BorderLayout.WEST);

 text = new TextField(20);

 top.add(text, BorderLayout.CENTER);

 bottom.setLayout(new FlowLayout());

 Button classify = new Button("Classify");

 Button quit = new Button("Quit");

 bottom.add(classify);

 bottom.add(quit);

Chapter 19

96

 // listeners

 quit.addActionListener(new QuitListener());

 classify.addActionListener(new ClassifyListener());

 // We pack, but don't make it visible

 pack();

 }

 class QuitListener implements ActionListener {

 public void actionPerformed(ActionEvent evt) {

 System.exit(0);

 }

 }

 class ClassifyListener implements ActionListener {

 public void actionPerformed(ActionEvent evt) {

 String fileName = text.getText();

 final Dialog dlg = new Dialog((Frame) text.getParent().getParent());

 dlg.setLayout(new BorderLayout());

 TextArea response = new TextArea(3, 20);

 // invoke service

 FileClassifier classifier = (FileClassifier) item.service;

 MIMEType type = null;

 try {

 type = classifier.getMIMEType(fileName);

 if (type == null) {

 response.setText("The type of file " + fileName +

 " is unknown");

 } else {

 response.setText("The type of file " + fileName +

 " is " + type.toString());

 }

 } catch(RemoteException e) {

 response.setText(e.toString());

 }

 Button ok = new Button("ok");

 ok.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dlg.setVisible(false);

 }

 });

User Interfaces for Jini Services

9797

 dlg.add(response, BorderLayout.CENTER);

 dlg.add(ok, BorderLayout.SOUTH);

 dlg.setSize(300, 100);

 dlg.setVisible(true);

 }

 }

} // FileClassifierFrame

The server that delivers both the service and the user interface has to prepare
a UIDescriptor. In this case, it only creates one such object for a single user inter-
face, but if the server exported more interfaces, it would simply create more
descriptors. Here is the server code:

/**

 * FileClassifierServer.java

 */

package ui;

import complete.FileClassifierImpl;

import net.jini.lookup.JoinManager;

import net.jini.core.lookup.ServiceID;

import net.jini.discovery.LookupDiscovery;

import net.jini.core.lookup.ServiceRegistrar;

import java.rmi.RemoteException;

import net.jini.lookup.ServiceIDListener;

import net.jini.lease.LeaseRenewalManager;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.discovery.DiscoveryEvent;

import net.jini.discovery.DiscoveryListener;

import net.jini.core.entry.Entry;

import net.jini.lookup.ui.MainUI;

import net.jini.lookup.ui.factory.FrameFactory;

import net.jini.lookup.entry.UIDescriptor;

import net.jini.lookup.ui.attribute.UIFactoryTypes;

import java.rmi.MarshalledObject;

import java.io.IOException;

import java.util.Set;

import java.util.HashSet;

Chapter 19

98

public class FileClassifierServer

 implements ServiceIDListener {

 public static void main(String argv[]) {

 new FileClassifierServer();

 // stay around forever

 Object keepAlive = new Object();

 synchronized(keepAlive) {

 try {

 keepAlive.wait();

 } catch(InterruptedException e) {

 // do nothing

 }

 }

 }

 public FileClassifierServer() {

 JoinManager joinMgr = null;

 // The typenames for the factory

 Set typeNames = new HashSet();

 typeNames.add(FrameFactory.TYPE_NAME);

 // The attributes set

 Set attribs = new HashSet();

 attribs.add(new UIFactoryTypes(typeNames));

 // The factory

 MarshalledObject factory = null;

 try {

 factory = new MarshalledObject(new FileClassifierFrameFactory());

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(2);

 }

 UIDescriptor desc = new UIDescriptor(MainUI.ROLE,

 FileClassifierFrameFactory.TOOLKIT,

 attribs,

 factory);

 Entry[] entries = {desc};

User Interfaces for Jini Services

9999

 try {

 LookupDiscoveryManager mgr =

 new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

 null /* unicast locators */,

 null /* DiscoveryListener */);

 joinMgr = new JoinManager(new FileClassifierImpl(), /* service */

 entries /* attr sets */,

 this /* ServiceIDListener*/,

 mgr /* DiscoveryManagement */,

 new LeaseRenewalManager());

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 }

 public void serviceIDNotify(ServiceID serviceID) {

 // called as a ServiceIDListener

 // Should save the ID to permanent storage

 System.out.println("got service ID " + serviceID.toString());

 }

} // FileClassifierServer

Finally, a client needs to look for and use this user interface. The client finds a
service as usual and then does a search through the Entry objects, looking for a
UIDescriptor. Once it has a descriptor, it can check whether the descriptor meets
the requirements of the client. Here we shall check whether it plays a MainUI role
and can generate an AWT Frame:

package client;

import common.FileClassifier;

import common.MIMEType;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.lookup.ClientLookupManager;

import net.jini.core.lookup.ServiceItem;

import net.jini.lease.LeaseRenewalManager;

import net.jini.core.entry.Entry;

Chapter 19

100

import net.jini.lookup.ui.MainUI;

import net.jini.lookup.ui.factory.FrameFactory;

import net.jini.lookup.entry.UIDescriptor;

import net.jini.lookup.ui.attribute.UIFactoryTypes;

import java.awt.*;

import javax.swing.*;

import java.util.Set;

import java.util.Iterator;

import java.net.URL;

/**

 * TestFrameUI.java

 */

public class TestFrameUI {

 private static final long WAITFOR = 100000L;

 public static void main(String argv[]) {

 new TestFrameUI();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(2*WAITFOR);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

 public TestFrameUI() {

 ClientLookupManager clientMgr = null;

 System.setSecurityManager(new RMISecurityManager());

 try {

 LookupDiscoveryManager mgr =

 new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

 null /* unicast locators */,

 null /* DiscoveryListener */);

 clientMgr = new ClientLookupManager(mgr,

 new LeaseRenewalManager());

User Interfaces for Jini Services

101101

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 Class [] classes = new Class[] {FileClassifier.class};

 UIDescriptor desc = new UIDescriptor(MainUI.ROLE,

 FrameFactory.TOOLKIT,

 null, null);

 Entry [] entries = {desc};

 ServiceTemplate template = new ServiceTemplate(null, classes,

 entries);

 ServiceItem item = null;

 try {

 item = clientMgr.lookup(template,

 null, /* no filter */

 WAITFOR /* timeout */);

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 if (item == null) {

 // couldn't find a service in time

 System.out.println("no service");

 System.exit(1);

 }

 // We now have a service that plays the MainUI role and

 // uses the FrameFactory toolkit of "java.awt".

 // We now have to find if there is a UIDescriptor

 // with a Factory generating an AWT Frame

 checkUI(item);

 }

 private void checkUI(ServiceItem item) {

 // Find and check the UIDescriptors

 Entry[] attributes = item.attributeSets;

 for (int m = 0; m < attributes.length; m++) {

 Entry attr = attributes[m];

 if (attr instanceof UIDescriptor) {

 // does it deliver an AWT Frame?

Chapter 19

102

 checkForAWTFrame(item, (UIDescriptor) attr);

 }

 }

 }

 private void checkForAWTFrame(ServiceItem item, UIDescriptor desc) {

 Set attributes = desc.attributes;

 Iterator iter = attributes.iterator();

 while (iter.hasNext()) {

 // search through the attributes, to find a UIFactoryTypes

 Object obj = iter.next();

 if (obj instanceof UIFactoryTypes) {

 UIFactoryTypes types = (UIFactoryTypes) obj;

 // see if it produces an AWT Frame Factory

 if (types.isAssignableTo(FrameFactory.class)) {

 FrameFactory factory = null;

 try {

 factory = (FrameFactory) desc.getUIFactory(this.getClass().

 getClassLoader());

 } catch(Exception e) {

 e.printStackTrace();

 continue;

 }

 Frame frame = factory.getFrame(item);

 frame.setVisible(true);

 }

 }

 }

 }

} // TestFrameUI

Images

User interfaces often contain images. They may be used as icons in toolbars, as
general images on the screen, or as the icon image when the application is iconi-
fied. When a user interface is created on the client, these images will also need to
be created and installed in the relevant part of the application. Images are not seri-
alizable, so they cannot be created on the server and exported as live objects in
some manner. They need to be created from scratch on the client.

User Interfaces for Jini Services

103103

The Swing package contains a convenience class called ImageIcon. This class
can be instantiated from a byte array, a filename, or most interestingly here, from a
URL. So, if an image is stored where an HTTP server can find it, the ImageIcon con-
structor can use this version directly. There may be failures in this approach: the
URL may be incorrect or malformed or the image may not exist on the HTTP
server. Suitable code to create an image from a URL is as follows:

ImageIcon icon = null;

 try {

 icon = new ImageIcon(new URL("http://localhost/images/mindstorms.ps"));

 switch (icon.getImageLoadStatus()) {

 case MediaTracker.ABORTED:

 case MediaTracker.ERRORED:

 System.out.println("Error");

 icon = null;

 break;

 case MediaTracker.COMPLETE:

 System.out.println("Complete");

 break;

 case MediaTracker.LOADING:

 System.out.println("Loading");

 break;

 }

 } catch(java.net.MalformedURLException e) {

 e.printStackTrace();

 }

 // icon is null or is a valid image

ServiceType

A user interface may use code like that in the previous section directly to include
images. The service may also supply useful images and other human-oriented infor-
mation in a ServiceType entry object. The ServiceType class is defined as follows:

package net.jini.lookup.entry;

public class ServiceType {

 public String getDisplayName(); // Return the localized display

 // name of this service.

 public Image getIcon(int iconKind) // Get an icon for this service.

 public String getShortDescription() // Return a localized short

 // description of this service.

}

Chapter 19

104

The class is supplied with empty implementations, returning null for each
method. A service will need to supply a subclass with useful implementations of
the methods. This is a useful class that could be used to supply images and infor-
mation that may be common to a number of different user interfaces for a service,
such as a minimized image.

MindStorms UI Example

In Chapter 17, an example was given, in the “Getting It Running” section, of a cli-
ent supplying a user interface to a MindStorms service. This client not only knew
that the service was a MindStorms robot, but that it was a particular robot for
which it could use a customized UI. In this section, we’ll give two user interfaces
for the MindStorms “RoverBot,” one of which is fairly general and could be used
for any robot, and another that is customized to the RoverBot. The service is
responsible for creating and exporting both of these user interfaces to a client.

RCXLoaderFrame

A MindStorms robot is primarily defined by the RCXPort interface. The Jini version
is defined by the RCXPortImplementation interface:

/**

 * RCXPortInterface.java

 */

package rcx.jini;

import net.jini.core.event.RemoteEventListener;

public interface RCXPortInterface extends java.io.Serializable {

 /**

 * constants to distinguish message types

 */

 public final long ERROR_EVENT = 1;

 public final long MESSAGE_EVENT = 2;

 /**

 * Write an array of bytes that are RCX commands

 * to the remote RCX.

 */

User Interfaces for Jini Services

105105

 public boolean write(byte[] byteCommand) throws java.rmi.RemoteException;

 /**

 * Parse a string into a set of RCX command bytes

 */

 public byte[] parseString(String command) throws java.rmi.RemoteException;

 /**

 * Add a RemoteEvent listener to the RCX for messages and errors

 */

 public void addListener(RemoteEventListener listener)

 throws java.rmi.RemoteException;

 /**

 * The last message from the RCX

 */

 public byte[] getMessage(long seqNo)

 throws java.rmi.RemoteException;

 /**

 * The error message from the RCX

 */

 public String getError(long seqNo)

 throws java.rmi.RemoteException;

} // RCXPortInterface

This type interface allows programs to be downloaded and run and instruc-
tions to be sent for direct execution. As it stands, the client needs to call these
interface methods directly. To make it more useable for the human trying to drive a
robot, some sort of user interface would be useful.

There can be several general purpose user interfaces for the RCX robot,
including these:

• Enter machine code (somehow) and download that.

• Enter RCX assembler code in the form of strings, and then assemble and
download them.

• Enter NQC (Not Quite C) code, and then compile and download it.

The set of RCX classes by Laverde at http://www.escape.com/~dario/java/rcx
includes a standalone application called RCXLoader, which does the second of these

Chapter 19

106

options. We can steal code from RCXLoader and some of his other classes to define
an RCXLoaderFrame class:

package rcx.jini;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.util.*;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.UnknownEventException;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import rcx.*;

/*

 * RCXLoaderFrame

 * @author Dario Laverde

 * @author Jan Newmarch

 * @version 1.1

 * Copyright 1999 Dario Laverde, under terms of GNU LGPL

 */

public class RCXLoaderFrame extends Frame

 implements ActionListener, WindowListener, RemoteEventListener

{

 private String portName;

 private RCXPortInterface rcxPort;

 private Panel textPanel;

 private Panel topPanel;

 private TextArea textArea;

 private TextField textField;

 private Button tableButton;

 private Properties parameters;

 private int inByte;

 private int charPerLine = 48;

 private int lenCount;

 private StringBuffer sbuffer;

 private byte[] byteArray;

 private Frame opcodeFrame;

 private TextArea opcodeTextArea;

 public static Hashtable Opcodes=new Hashtable(55);

User Interfaces for Jini Services

107107

 static {

 Opcodes.put(new Byte((byte)0x10),"PING ,void, void,P");

 Opcodes.put(new Byte((byte)0x12),"GETVAL ,byte src byte arg, short

val,P");

 Opcodes.put(new Byte((byte)0x13),"SETMOTORPOWER ,byte motors byte src

byte arg, void,CP");

 Opcodes.put(new Byte((byte)0x14),"SETVAL ,byte index byte src byte

arg, void,CP");

 // Opcodes truncated to save space in listing

 }

 // added port interface parameter to Dario's code

 public RCXLoaderFrame(RCXPortInterface port) {

 super("RCX Loader");

 // changed from Dario's code

 rcxPort = port;

 addWindowListener(this);

 topPanel = new Panel();

 topPanel.setLayout(new BorderLayout());

 tableButton = new Button("table");

 tableButton.addActionListener(this);

 textField = new TextField();

 // textField.setEditable(false);

 // textField.setEnabled(false);

 // tableButton.setEnabled(false);

 textField.addActionListener(this);

 textPanel = new Panel();

 textPanel.setLayout(new BorderLayout(5,5));

 topPanel.add(textField,"Center");

 topPanel.add(tableButton,"East");

 textPanel.add(topPanel,"North");

 textArea = new TextArea();

 // textArea.setEditable(false);

 textArea.setFont(new Font("Courier",Font.PLAIN,12));

 textPanel.add(textArea,"Center");

Jan Newmarch
break this line (and the next ones) at the first comma "," and align under the "new"
Opcodes.put(new....,
 "GETVAL....

Chapter 19

108

 add(textPanel, "Center");

 textArea.setText("initializing...\n");

 Dimension screen = Toolkit.getDefaultToolkit().getScreenSize();

 setBounds(screen.width/2-370/2,screen.height/2-370/2,370,370);

 // setVisible(true);

 // changed listener type from Dario's code

 try {

 // We are remote to the object we are listening to

 // (the RCXPort), so the RCXPort must get a stub object

 // for us. We have subclassed from Frame, not from

 // UnicastRemoteObject. So we must export ourselves

 // for the remote references to work

 UnicastRemoteObject.exportObject(this);

 rcxPort.addListener(this);

 } catch(Exception e) {

 textArea.append(e.toString());

 }

 tableButton.setEnabled(true);

 /*

 if(rcxPort.isOpen()) {

 textArea.append("RCXPort initialized.\n");

 String lasterror = rcxPort.getLastError();

 if(lasterror!=null)

 textArea.append(lasterror+"\n");

 textField.setEditable(true);

 textField.setEnabled(true);

 textField.requestFocus();

 }

 else {

 if(portName!=null) {

 textArea.append("Failed to create RCXPort with "+portName+"\n");

 textArea.append("Port "+portName+" is invalid or may be ");

 textArea.append("currently used.\nTry another port.\n");

 textArea.append("Edit or create a file named parameters.txt ");

 textArea.append("that has:\nport=COM1\n(replace COM1 with ");

 textArea.append("the correct port name)\n");

 }

 else

 textArea.append("Please specify a port in parameters.txt\n");

Jan Newmarch
delete code from here... to next page

User Interfaces for Jini Services

109109

 textArea.append("Create a file that has:\nport=COM1\n");

 textArea.append("(replace COM1 with the correct port name)\n");

 }

 */

 }

 /*

 public void receivedMessage(byte[] responseArray) {

 if(responseArray==null)

 return;

 for(int loop=0;loop<responseArray.length;loop++) {

 int newbyte = (int)responseArray[loop];

 if(newbyte<0) newbyte=256+newbyte;

 sbuffer = new StringBuffer(Integer.toHexString(newbyte));

 if(sbuffer.length()<2)

 sbuffer.insert(0,'0');

 textArea.append(sbuffer+" ");

 lenCount+=3;

 if(lenCount==charPerLine) {

 lenCount=0;

 textArea.append("\n");

 }

 }

 if(lenCount!=charPerLine)

 textArea.append("\n");

 }

 */

 /*

 public void receivedError(String error) {

 textArea.append(error+"\n");

 }

 */

 public void actionPerformed(ActionEvent evt) {

 Object obj = evt.getSource();

 if(obj==textField) {

 String strInput = textField.getText();

 textField.setText("");

 textArea.append("> "+strInput+"\n");

 try {

 byteArray = rcxPort.parseString(strInput);

 } catch(RemoteException e) {

 textArea.append(e.toString());

Jan Newmarch
end of delete code.
 /* ... */ is all commented out removed stuff

Jan Newmarch
delete this too from /* to */

Jan Newmarch
end of delete

Jan Newmarch
delete to */ as well

Jan Newmarch
delete to here

Chapter 19

110

 }

 // byteArray = RCXOpcode.parseString(strInput);

 if(byteArray==null) {

 textArea.append("Error: illegal hex character or length\n");

 return;

 }

 if(rcxPort!=null) {

 try {

 if(!rcxPort.write(byteArray)) {

 textArea.append("Error: writing data to port

"+portName+"\n");

 }

 } catch(Exception e) {

 textArea.append(e.toString());

 }

 }

 }

 else if(obj==tableButton) {

 // make this all in the ui side

 showTable();

 setLocation(0,getLocation().y);

 }

 }

 public void windowActivated(WindowEvent e) { }

 public void windowClosed(WindowEvent e) { }

 public void windowDeactivated(WindowEvent e) { }

 public void windowDeiconified(WindowEvent e) { }

 public void windowIconified(WindowEvent e) { }

 public void windowOpened(WindowEvent e) { }

 public void windowClosing(WindowEvent e) {

 /*

 if(rcxPort!=null)

 rcxPort.close();

 */

 System.exit(0);

 }

 public void notify(RemoteEvent evt) throws UnknownEventException,

 java.rmi.RemoteException {

 long id = evt.getID();

 long seqNo = evt.getSequenceNumber();

 if (id == RCXPortInterface.MESSAGE_EVENT) {

Jan Newmarch
Spread over 2 lines:
"Error; Writing data to port" +
 portName + "\n"

User Interfaces for Jini Services

111111

 byte[] message = rcxPort.getMessage(seqNo);

 StringBuffer sbuffer = new StringBuffer();

 for(int n = 0; n < message.length; n++) {

 int newbyte = (int) message[n];

 if (newbyte < 0) {

 newbyte += 256;

 }

 sbuffer.append(Integer.toHexString(newbyte) + " ");

 }

 textArea.append(sbuffer.toString());

 System.out.println("MESSAGE: " + sbuffer.toString());

 } else if (id == RCXPortInterface.ERROR_EVENT) {

 textArea.append(rcxPort.getError(seqNo));

 } else {

 throw new UnknownEventException("Unknown message " + evt.getID());

 }

 }

 public void showTable()

 {

 if(opcodeFrame!=null)

 {

 opcodeFrame.dispose();

 opcodeFrame=null;

 return;

 }

 opcodeFrame = new Frame("RCX Opcodes Table");

 Dimension screen = Toolkit.getDefaultToolkit().getScreenSize();

 opcodeFrame.setBounds(screen.width/2-70,0,screen.width/2+70,screen.height-

25);

 opcodeTextArea = new TextArea(" Opcode ,parameters, response,

C=program command P=remote command\n",60,100);

 opcodeTextArea.setFont(new Font("Courier",Font.PLAIN,10));

 opcodeFrame.add(opcodeTextArea);

 Enumeration k = Opcodes.keys();

 for (Enumeration e = Opcodes.elements(); e.hasMoreElements();) {

 String tmp = Integer.toHexString(((Byte)k.nextElement()).intValue());

 tmp = tmp.substring(tmp.length()-2)+" "+(String)e.nextElement()+"\n";

 opcodeTextArea.append(tmp);

 }

 opcodeTextArea.setEditable(false);

 opcodeFrame.setVisible(true);

 }

}

Jan Newmarch
break previous line at "0," and indent to "screen.width..."

Jan Newmarch
Break by splitting into 2 strings:
...response," +
"C=program...

Chapter 19

112

RCXLoaderFrameFactory

The factory object for the RCX is now easy to define—it just returns a RCXLoader-
Frame in the getUI() method:

/**

 * RCXLoaderFrameFactory.java

 */

package rcx.jini;

import net.jini.lookup.ui.factory.FrameFactory;

import net.jini.core.lookup.ServiceItem;

import java.awt.Frame;

public class RCXLoaderFrameFactory implements FrameFactory {

 public Frame getFrame(Object roleObj) {

 ServiceItem item= (ServiceItem) roleObj;

 RCXPortInterface port = (RCXPortInterface) item.service;

 return new RCXLoaderFrame(port);

 }

} // RCXLoaderFrameFactory

Exporting the FrameFactory

The factory object is exported by making it a part of a UIDescriptor entry object
with a role, toolkit, and attributes:

Set typeNames = new HashSet();

typeNames.add(FrameFactory.TYPE_NAME);

Set attribs = new HashSet();

attribs.add(new UIFactoryTypes(typeNames));

// add other attributes as desired

MarshalledObject factory = null;

try {

 factory = new MarshalledObject(new

 RCXLoaderFrameFactory());

} catch(Exception e) {

 e.printStackTrace();

User Interfaces for Jini Services

113113

 System.exit(2);

}

UIDescriptor desc = new UIDescriptor(MainUI.ROLE,

 FrameFactory.TOOLKIT,

 attribs,

 factory);

Entry[] entries = {desc};

JoinManager joinMgr = new JoinManager(impl,

 entries,

 this,

 new LeaseRenewalManager());

Customized User Interfaces

The RCXLoaderFrame is a general interface to any RCX robot. Of course, there could
be many other such interfaces, differing in the classes used, the amount of inter-
national support, the appearance, etc. All the variations, however, will just use the
standard RCXPortInterface, because that is all they know about.

The Lego pieces can be combined in a huge variety of ways, and the RCX itself
is programmable, so you can build an RCX car, an RCX crane, an RCX maze-runner,
and so on. Each different robot can be driven by the general interface, but most
could benefit from a custom-built interface for that type of robot. This is typical:
for example, every blender could be driven from a general blender user interface
(using the possibly forthcoming standard blender interface :-). But the blenders
from individual vendors would have their own customized user interface for their
brand of blender.

I have been using an RCX car. While it can do lots of things, it has been conve-
nient to use five commands for demonstrations: forward, stop, back, left, and
right, with a user interface as shown in Figure 19-3.

Figure 19-3. User interface for MindStorms car

Chapter 19

114

In Chapter 17, this appearance was hard-coded into the client. Since the client
was just searching for any MindStorms robot, it really shouldn’t know about this
sort of detail and should get this user interface from the robot service.

CarJFrame

The CarJFrame class produces the user interface as a Swing JFrame, with the buttons
generating specific RCX code for this model.

package rcx.jini;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.UnknownEventException;

import java.net.URL;

import java.rmi.RemoteException;

class CarJFrame extends JFrame

 implements RemoteEventListener, ActionListener {

 public static final int STOPPED = 1;

 public static final int FORWARDS = 2;

 public static final int BACKWARDS = 4;

 protected int state = STOPPED;

 protected RCXPortInterface port = null;

 JFrame frame;

 JTextArea text;

 public CarJFrame(RCXPortInterface port) {

 super() ;

 this.port = port;

 frame = new JFrame("Lego MindStorms");

 Container content = frame.getContentPane();

 JLabel label = null;

 ImageIcon icon = null;

 try {

User Interfaces for Jini Services

115115

 icon = new ImageIcon(new

 URL("http://www.legomindstorms.com/images/home_logo.ps"));

 switch (icon.getImageLoadStatus()) {

 case MediaTracker.ABORTED:

 case MediaTracker.ERRORED:

 System.out.println("Error");

 icon = null;

 break;

 case MediaTracker.COMPLETE:

 System.out.println("Complete");

 break;

 case MediaTracker.LOADING:

 System.out.println("Loading");

 break;

 }

 } catch(java.net.MalformedURLException e) {

 e.printStackTrace();

 }

 if (icon != null) {

 label = new JLabel(icon);

 } else {

 label = new JLabel("MINDSTORMS");

 }

 JPanel pane = new JPanel();

 pane.setLayout(new GridLayout(2, 3));

 content.add(label, "North");

 content.add(pane, "Center");

 JButton btn = new JButton("Forward");

 pane.add(btn);

 btn.addActionListener(this);

 btn = new JButton("Stop");

 pane.add(btn);

 btn.addActionListener(this);

 btn = new JButton("Back");

 pane.add(btn);

 btn.addActionListener(this);

 btn = new JButton("Left");

 pane.add(btn);

Chapter 19

116

 btn.addActionListener(this);

 label = new JLabel("");

 pane.add(label);

 btn = new JButton("Right");

 pane.add(btn);

 btn.addActionListener(this);

 frame.pack();

 frame.setVisible(true);

 }

 public void sendCommand(String comm) {

 byte[] command;

 try {

 command = port.parseString(comm);

 if (! port.write(command)) {

 System.err.println("command failed");

 }

 } catch(RemoteException e) {

 e.printStackTrace();

 }

 }

 public void forwards() {

 sendCommand("e1 85");

 sendCommand("21 85");

 state = FORWARDS;

 }

 public void backwards() {

 sendCommand("e1 45");

 sendCommand("21 85");

 state = BACKWARDS;

 }

 public void stop() {

 sendCommand("21 45");

 state = STOPPED;

 }

 public void restoreState() {

 if (state == FORWARDS)

User Interfaces for Jini Services

117117

 forwards();

 else if (state == BACKWARDS)

 backwards();

 else

 stop();

 }

 public void actionPerformed(ActionEvent evt) {

 String name = evt.getActionCommand();

 byte[] command;

 if (name.equals("Forward")) {

 forwards();

 } else if (name.equals("Stop")) {

 stop();

 } else if (name.equals("Back")) {

 backwards();

 } else if (name.equals("Left")) {

 sendCommand("e1 84");

 sendCommand("21 84");

 sendCommand("21 41");

 try {

 Thread.sleep(100);

 } catch(InterruptedException e) {

 }

 restoreState();

 } else if (name.equals("Right")) {

 sendCommand("e1 81");

 sendCommand("21 81");

 sendCommand("21 44");

 try {

 Thread.sleep(100);

 } catch(InterruptedException e) {

 }

 restoreState();

 }

 }

 public void notify(RemoteEvent evt) throws UnknownEventException,

 java.rmi.RemoteException {

 // System.out.println(evt.toString());

 long id = evt.getID();

Chapter 19

118

 long seqNo = evt.getSequenceNumber();

 if (id == RCXPortInterface.MESSAGE_EVENT) {

 byte[] message = port.getMessage(seqNo);

 StringBuffer sbuffer = new StringBuffer();

 for(int n = 0; n < message.length; n++) {

 int newbyte = (int) message[n];

 if (newbyte < 0) {

 newbyte += 256;

 }

 sbuffer.append(Integer.toHexString(newbyte) + " ");

 }

 System.out.println("MESSAGE: " + sbuffer.toString());

 } else if (id == RCXPortInterface.ERROR_EVENT) {

 System.out.println("ERROR: " + port.getError(seqNo));

 } else {

 throw new UnknownEventException("Unknown message " + evt.getID());

 }

 }

}

CarJFrameFactory

The factory generates a CarJFrame object, like this:

/**

 * CarJFrameFactory.java

 */

package rcx.jini;

import net.jini.lookup.ui.factory.JFrameFactory;

import net.jini.core.lookup.ServiceItem;

import javax.swing.JFrame;

public class CarJFrameFactory implements JFrameFactory {

 public JFrame getJFrame(Object roleObj) {

 ServiceItem item = (ServiceItem) roleObj;

 RCXPortInterface port = (RCXPortInterface) item.service;

 return new CarJFrame(port);

 }

} // CarJFrameFactory

User Interfaces for Jini Services

119119

Exporting the FrameFactory

Both of the user interfaces discussed—the RCXLoaderFrame and the CarJFrame—can
be exported by expanding the set of Entry objects.

// generic UI

Set genericAttribs = new HashSet();

Set typeNames = new HashSet();

typeNames.add(FrameFactory.TYPE_NAME);

genericAttribs.add(new UIFactoryTypes(typeNames));

MarshalledObject genericFactory = null;

try {

 genericFactory = new MarshalledObject(new

 RCXLoaderFrameFactory());

} catch(Exception e) {

 e.printStackTrace();

 System.exit(2);

}

UIDescriptor genericDesc = new UIDescriptor(MainUI.ROLE,

 FrameFactory.TOOLKIT,

 genericAttribs,

 genericFactory);

// car UI

Set carAttribs = new HashSet();

typeNames = new HashSet();

typeNames.add(JFrameFactory.TYPE_NAME);

carAttribs.add(new UIFactoryTypes(typeNames));

MarshalledObject carFactory = null;

try {

 carFactory = new MarshalledObject(new CarJFrameFactory());

} catch(Exception e) {

 e.printStackTrace();

 System.exit(2);

}

UIDescriptor carDesc = new UIDescriptor(MainUI.ROLE,

 JFrameFactory.TOOLKIT,

 carAttribs,

 carFactory);

Entry[] entries = {genericDesc, carDesc};

JoinManager joinMgr = new JoinManager(impl,

 entries,

Chapter 19

120

 this,

 new LeaseRenewalManager());

The RCX Client

The following client will start up all user interfaces that implement the main UI
role and that use a Frame or JFrame:

package client;

import rcx.jini.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.UnknownEventException;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import net.jini.core.entry.Entry;

import net.jini.core.lookup.ServiceMatches;

import net.jini.core.lookup.ServiceItem;

import net.jini.lookup.entry.UIDescriptor;

import net.jini.lookup.ui.MainUI;

import net.jini.lookup.ui.attribute.UIFactoryTypes;

import net.jini.lookup.ui.factory.FrameFactory;

import net.jini.lookup.ui.factory.JFrameFactory;

import java.util.Set;

import java.util.Iterator;

/**

 * TestRCX2.java

 */

User Interfaces for Jini Services

121121

public class TestRCX2 implements DiscoveryListener {

 public static void main(String argv[]) {

 new TestRCX2();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(1000000L);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

 public TestRCX2() {

 System.setSecurityManager(new RMISecurityManager());

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 Class [] classes = new Class[] {RCXPortInterface.class};

 RCXPortInterface port = null;

 UIDescriptor desc = new UIDescriptor(MainUI.ROLE, null, null, null);

 Entry[] entries = {desc};

 ServiceTemplate template = new ServiceTemplate(null, classes,

 entries);

 for (int n = 0; n < registrars.length; n++) {

 System.out.println("Service found");

 ServiceRegistrar registrar = registrars[n];

 ServiceMatches matches = null;

Chapter 19

122

 try {

 matches = registrar.lookup(template, 10);

 } catch(java.rmi.RemoteException e) {

 e.printStackTrace();

 System.exit(2);

 }

 for (int nn = 0; nn < matches.items.length; nn++) {

 ServiceItem item = matches.items[nn];

 port = (RCXPortInterface) item.service;

 if (port == null) {

 System.out.println("port null");

 continue;

 }

 Entry[] attributes = item.attributeSets;

 for (int m = 0; m < attributes.length; m++) {

 Entry attr = attributes[m];

 if (attr instanceof UIDescriptor) {

 showUI(port, item, (UIDescriptor) attr);

 }

 }

 }

 }

 }

 public void discarded(DiscoveryEvent evt) {

 // empty

 }

 private void showUI(RCXPortInterface port,

 ServiceItem item,

 UIDescriptor desc) {

 Set attribs = desc.attributes;

 Iterator iter = attribs.iterator();

 while (iter.hasNext()) {

 Object obj = iter.next();

 if (obj instanceof UIFactoryTypes) {

 UIFactoryTypes types = (UIFactoryTypes) obj;

 Set typeNames = types.getTypeNames();

 if (typeNames.contains(FrameFactory.TYPE_NAME)) {

 FrameFactory factory = null;

User Interfaces for Jini Services

123123

 try {

 factory = (FrameFactory) desc.getUIFactory(this.getClass().

 getClassLoader());

 } catch(Exception e) {

 e.printStackTrace();

 continue;

 }

 Frame frame = factory.getFrame(item);

 frame.setVisible(true);

 } else if (typeNames.contains(JFrameFactory.TYPE_NAME)) {

 JFrameFactory factory = null;

 try {

 factory = (JFrameFactory) desc.getUIFactory(this.getClass().

 getClassLoader());

 } catch(Exception e) {

 e.printStackTrace();

 continue;

 }

 JFrame frame = factory.getJFrame(item);

 frame.setVisible(true);

 }

 } else {

 System.out.println("non-gui entry");

 }

 }

 }

} // TestRCX

Summary

The serviceUI group is evolving a standard mechanism for services to distribute
user interfaces for Jini services. The preference is to do this by Entry objects that
contain factories for producing user interfaces.

