

53

CHAPTER 18

CORBA and Jini

T

HERE

ARE

MANY

DIFFERENT

DISTRIBUTED

SYSTEM

ARCHITECTURES

 in addition to Jini.
Many have only limited use, but some such as DCOM and CORBA are widely used,
and there are many systems that have been built using these other distributed
frameworks. This chapter looks at the similarities and differences between Jini and
CORBA and shows how services built using one architecture can be used by another.

CORBA

Like Jini, CORBA is an infrastructure for distributed systems. CORBA was designed
out of a different background than Jini, and there are some minor and major dif-
ferences between the two.

• CORBA allows for specification of objects that can be distributed. The con-
centration is on distributed objects rather than on distributed services.

• CORBA is language-independent, using an Interface Definition Language
(IDL) for specifying interfaces.

• CORBA objects can be implemented in a number of languages, including C,
C++, SmallTalk, and Java

• Current versions of CORBA pass remote object references, rather than com-
plete object instances. Each CORBA object lives within a server, and the
object can only act within this server. This is more restricted than Jini, where
an object can have instance data and class files sent to a remote location to
execute there. This limitation in CORBA may change in future with pass-by-
value parameters to methods.

IDL is a language that allows the programmer to specify the interfaces of a dis-
tributed object system. The syntax is similar to C++ but does not include any
implementation-level constructs, so it allows definitions of data types (such as
structures and unions), constants, enumerated types, exceptions, and interfaces.
Within interfaces, it allows the declaration of attributes and operations (methods).
The complete IDL specification can be found on the Object Management Group
(OMG) Web site (

http://www.omg.org/

).

Chapter 18

54

The book

Java Programming with CORBA

 by Andreas Vogel and Keith Duddy
(

http://www.wiley.com/compbooks/vogel

) contains an example of a room-booking
service specified in CORBA IDL and implemented in Java. This defines interfaces for

Meeting

, a

MeetingFactory

 factory to produce them, and a

Room

. A room may have a
number of meetings in slots (hourly throughout the day), and there are support con-
stants, enumerations, and typedefs to support this. In addition, exceptions may be
thrown under various error conditions. The IDL that follows differs slightly from that
given in the book, in that definitions of some data types that occur within interfaces
have been “lifted” to a more global level, because the mapping from IDL to Java has
changed slightly for elements nested within interfaces since that book was written.
The following is the modified IDL for the room-booking service:

module corba {

module RoomBooking {

 interface Meeting {

 // A meeting has two read-only attributes that describe

 // the purpose and the participants of that meeting.

 readonly attribute string purpose;

 readonly attribute string participants;

 oneway void destroy();

 };

 interface MeetingFactory {

 // A meeting factory creates meeting objects.

 Meeting CreateMeeting(in string purpose, in string participants);

 };

 // Meetings can be held between the usual business hours.

 // For the sake of simplicity there are 8 slots at which meetings

 // can take place.

 enum Slot { am9, am10, am11, pm12, pm1, pm2, pm3, pm4 };

 // since IDL does not provide means to determine the cardinality

 // of an enum, a corresponding MaxSlots constant is defined.

 const short MaxSlots = 8;

CORBA and Jini

5555

 exception NoMeetingInThisSlot {};

 exception SlotAlreadyTaken {};

 interface Room {

 // A Room provides operations to view, make, and cancel bookings.

 // Making a booking means associating a meeting with a time slot

 // (for this particular room).

 // Meetings associates all meetings (of a day) with time slots

 // for a room.

 typedef Meeting Meetings[MaxSlots];

 // The attribute name names a room.

 readonly attribute string name;

 // View returns the bookings of a room.

 // For simplicity, the implementation handles only bookings

 // for one day.

 Meetings View();

 void Book(in Slot a_slot, in Meeting a_meeting)

 raises(SlotAlreadyTaken);

 void Cancel(in Slot a_slot)

 raises(NoMeetingInThisSlot);

 };

};

};

CORBA to Java Mapping

CORBA has bindings to a number of languages. That is, there is a translation from
IDL to each language, and there is a runtime environment that supports objects
written in these languages. A recent addition is Java, and this binding is still under
active development (that is, the core is basically settled, but some parts are still

Chapter 18

56

changing). This binding must cover all elements of IDL. Here is a horribly brief
summary of the CORBA translations:

•

Module—

A module is translated to a Java package. All elements within the
module becomes classes or interfaces within the package.

•

Basic types—

Most of the basic types map in a straightforward manner—a
CORBA

int

 becomes a Java

int

, a CORBA

string

 becomes a Java

java.lang.String

, and so on. Some are a little tricky, such as the unsigned
types, which have no Java equivalent.

•

Constant—

Constants within a CORBA IDL interface are mapped to con-
stants within the corresponding Java interface. Constants that are “global”
have no direct equivalent in Java, and so are mapped to Java interfaces with
a single field that is the value.

•

Enum—

Enumerated types have no direct Java equivalent, and so are
mapped into a Java interface with the enumeration as a set of integer
constants.

•

Struct—

A CORBA IDL structure is implemented as a Java class with instance
variables for all fields.

•

Interface—

A CORBA IDL interface translates into a Java interface.

•

Exception—

A CORBA IDL exception maps to a final Java class.

This mapping does not conform to naming conventions, such as those estab-
lished for Java Beans. For example, the IDL declaration

readonly string purpose

becomes the Java accessor method

String purpose()

 rather than

String getPur-

pose()

. Where Java code is generated, the generated names will be used, but in
methods that I write, I will use the more accepted naming forms.

Jini Proxies

A Jini service exports a proxy object that acts within the client on behalf of the
service. On the service provider side, there may be service backend objects, com-
pleting the service implementation. The proxy may be fat or thin, depending on
circumstances.

In Chapter 17 the proxy had to be thin: all it does is pass on requests to the
service backend, which is linked to the hardware device, and the service cannot
move, because it has to talk to a particular serial port. (The proxy may have an
extensive user interface, but the Jini community seems to feel that any user

CORBA and Jini

5757

interface should be in

Entry

 objects rather than in the proxy itself.) Proxy objects
created as RMI proxies are similarly thin, just passing on method calls to the ser-
vice backend which is implemented as remote objects.

CORBA services can be delivered to any accessible client. Each service is lim-
ited to the server on which it is running, so they are essentially immobile, but they
can be found by a variety of methods, such as a CORBA naming or trading service.
These search methods can be run by any client, anywhere. A search will return a
reference to a remote object, which is essentially a thin proxy to the CORBA ser-
vice. Similarly, if a CORBA method call creates and returns an object, then it will
return a remote reference to that object, and the object will continue to exist on
the server where it was created. (The new CORBA standards will allow objects to
be returned by value. This is not yet commonplace and will probably be restricted
to a few languages, such as C++ and Java.)

The simplest way to make a CORBA object available to a Jini federation is to
build a Jini service that is at the same time a CORBA client. The service acts as a
bridge between the two protocols. Really, this is just the same as MindStorms—
anything that talks a different protocol (hardware or software) will require a bridge
between itself and Jini clients.

Most CORBA implementations use a protocol called IIOP (Internet Inter-ORB
Protocol), which is based on TCP. The current Jini implementation is also TCP-
based, so there is a confluence of transport methods, which normally would not
occur. A bridge would usually be fixed to a particular piece of hardware, but here it
is not necessary due to this confluence.

A Jini service has a lot of flexibility in implementation and can choose to place
logic in the proxy, in the backend, or anywhere else for that matter. The combina-
tion of Jini flexibility and IIOP allows a larger variety of implementation
possibilities than is possible with fixed pieces of hardware such as MindStorms.
Here are a couple of examples:

• The Jini proxy could invoke the CORBA naming service lookup to locate the
CORBA service, and then make calls directly on the CORBA service from the
client. This is a fat proxy model in which the proxy contains all of the service
implementation. There is no need for a service backend, and the service
provider just exports the service object as proxy and then keeps the leases
for the lookup services alive.

• The Jini proxy could be an RMI stub, passing on all method calls to a back-
end service running as an RMI remote object in the service provider. This
is a thin proxy with fat backend, where all service implementation is done
on the backend. The backend uses the CORBA naming service lookup to
find the CORBA service and then makes calls on this CORBA service from
the backend.

Chapter 18

58

A Simple CORBA Example

The standard introductory example to any new system is “hello world”, and it
seems to get more complex with every advance that is made in computing tech-
nology! A CORBA version can be defined by the following IDL:

module corba {

 module HelloModule {

 interface Hello {

 string getHello();

 };

 };

};

This code can be compiled into Java using a compiler such as Sun’s

idltojava

(or another CORBA 2.2 compliant compiler). This results in a

corba.HelloModule

package containing a number of classes and interfaces.

Hello

 is an interface that is
used by a CORBA client (in Java).

package corba.HelloModule;

public interface Hello

 extends org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity {

 String getHello();

}

CORBA Server in Java

A server for the hello IDL can be written in any language with a CORBA binding,
such as C++. Rather than get diverted into other languages, though, we will stick to a
Java implementation. However, this language choice is not forced on us by CORBA.

The server must create an object that implements the

Hello

 interface. This is
done by creating a servant that inherits from the

HelloImplBase

 and then register-
ing it with the CORBA ORB (Object Request Broker—this is the CORBA

backplane

,
which acts as the runtime link between different objects in a CORBA system). The

servant

 is the CORBA term for what we have been calling the “backend service” in
Jini, and this object is created and run by the server. The server must also find a
name server and register the name and the servant implementation. The servant
implements the

Hello

 interface. The server can just sleep to continue existence
after registering the servant.

/**

 * CorbaHelloServer.java

CORBA and Jini

5959

 */

package corba;

import corba.HelloModule.*;

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

public class CorbaHelloServer {

 public CorbaHelloServer() {

 }

 public static void main(String[] args) {

 try {

 // create a Hello implementation object

 ORB orb = ORB.init(args, null);

 HelloImpl hello = new HelloImpl();

 orb.connect(hello);

 // find the name server

 org.omg.CORBA.Object objRef =

 orb.resolve_initial_references("NameService");

 NamingContext namingContext = NamingContextHelper.narrow(objRef);

 // bind the Hello service to the name server

 NameComponent nameComponent = new NameComponent("Hello", "");

 NameComponent path[] = {nameComponent};

 namingContext.rebind(path, hello);

 // sleep

 java.lang.Object sleep = new java.lang.Object();

 synchronized(sleep) {

 sleep.wait();

 }

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

} // CorbaHelloServer

class HelloImpl extends _HelloImplBase {

Chapter 18

60

 public String getHello() {

 return("hello world");

 }

}

CORBA Client in Java

A standalone client finds a proxy implementing the

Hello

 interface with methods
such as one that looks up a CORBA name server. The name server returns a

org.omg.CORBA.Object

, which is cast to the interface type by the

HelloHelper

method

narrow()

 (the Java cast method is not used). This proxy object can then
be used to call methods back in the CORBA server.

/**

 * CorbaHelloClient.java

 */

package corba;

import corba.HelloModule.*;

import org.omg.CosNaming.*;

import org.omg.CORBA.*;

public class CorbaHelloClient {

 public CorbaHelloClient() {

 }

 public static void main(String[] args) {

 try {

 ORB orb = ORB.init(args, null);

 // find the name server

 org.omg.CORBA.Object objRef =

 orb.resolve_initial_references("NameService");

 NamingContext namingContext = NamingContextHelper.narrow(objRef);

 // find the Hello proxy

 NameComponent nameComponent = new NameComponent("Hello", "");

 NameComponent path[] = {nameComponent};

 org.omg.CORBA.Object obj = namingContext.resolve(path);

 Hello hello = HelloHelper.narrow(obj);

CORBA and Jini

6161

 // now invoke methods on the CORBA proxy

 String hello = hello.getHello();

 System.out.println(hello);

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

} // CorbaHelloClient

Jini Service

In order to make the CORBA object accessible to the Jini world, it must be turned
into a Jini service. At the same time it must remain in a CORBA server, so that it can
be used by ordinary CORBA clients. So we can do nothing to the CORBA server.
Instead, we need to build a Jini service that will act as a CORBA client. This service
will then be able to deliver the CORBA service to Jini clients.

The Jini service can be implemented as a fat proxy delivered to a Jini client.
The Jini service implementation is moved from the Jini server to a Jini client as the
service object. Once in the client, the service implementation is responsible for
locating the CORBA service by using the CORBA naming service, and it then trans-
lates client calls on the Jini service directly into calls on the CORBA service. The
processes that run in this, with their associated Jini and CORBA objects, are shown
in Figure 18-1.

The Java interface for this service is quite simple and basically just copies the
interface for the CORBA service:

/**

 * JiniHello.java

 */

package corba;

import java.io.Serializable;

public interface JiniHello extends Serializable {

 public String getHello();

} // JiniHello

The

getHello()

 method for the CORBA IDL returns a

string

. In the Java bind-
ing this becomes an ordinary Java

String

, and the Jini service can just use this type.
The next example (in the “Room-Booking Example” section) will show a more

Chapter 18

62

complex case where CORBA objects may be returned. Note that because this is a
fat service, any implementation will get moved across to a Jini client and will run
there, so the service only needs to implement

Serializable

, and its methods do not
need to throw

Remote

 exceptions, since they will run locally in the client.
The implementation of this Jini interface will basically act as a CORBA client.

Its

getHello()

 method will contact the CORBA naming service, find a reference to
the CORBA

Hello

 object, and call its

getHello()

 method. The Jini service can just
return the string it gets from the CORBA service.

/**

 * JiniHelloImpl.java

 */

package corba;

import org.omg.CosNaming.*;

import org.omg.CORBA.*;

import corba.HelloModule.*;

public class JiniHelloImpl implements JiniHello {

 protected Hello hello = null;

 protected String[] argv;

Figure 18-1. CORBA and Jini services

Hello
Impl

server
Jini

Hello
Impl

Jini
client

Hello
Impl

service
Jini lookup

HelloServant
CORBA

CORBA
server

CORBA
hello

reference name server
CORBA

"hello"

sayHello()

Jan Newmarch
I have sent a replacement figure for this

CORBA and Jini

6363

 public JiniHelloImpl(String[] argv) {

 this.argv = argv;

 }

 public String getHello() {

 // Hello hello = null;

 if (hello == null) {

 hello = getHello();

 }

 // now invoke methods on the CORBA proxy

 String hello = hello.getHello();

 return hello;

 }

 protected Hello getHello() {

 ORB orb = null;

 // Act like a CORBA client

 try {

 orb = ORB.init(argv, null);

 // find the CORBA name server

 org.omg.CORBA.Object objRef =

 orb.resolve_initial_references("NameService");

 NamingContext namingContext = NamingContextHelper.narrow(objRef);

 // find the CORBA Hello proxy

 NameComponent nameComponent = new NameComponent("Hello", "");

 NameComponent path[] = {nameComponent};

 org.omg.CORBA.Object obj = namingContext.resolve(path);

 Hello hello = HelloHelper.narrow(obj);

 return hello;

 } catch(Exception e) {

 e.printStackTrace();

 return null;

 }

 }

} // JiniHelloImpl

Jan Newmarch
delete this line

Chapter 18

64

Jini Server and Client

The Jini server that exports the service doesn’t contain anything new compared to
the other service providers we have discussed. It creates a new

JiniHelloImpl

object and exports it using a

JoinManager

:

joinMgr = new JoinManager(new JiniHelloImpl(argv), ...)

Similarly, the Jini client doesn’t contain anything new, except that it catches
CORBA exceptions. After lookup discovery, the code is as follows:

try {

 hello = (JiniHello) registrar.lookup(template);

 } catch(java.rmi.RemoteException e) {

 e.printStackTrace();

 System.exit(2);

 }

 if (hello == null) {

 System.out.println("hello null");

 return;

 }

 String msg;

 try {

 msg = hello.getHello();

 System.out.println(msg);

 } catch(Exception e) {

 // we may get a CORBA runtime error

 System.err.println(e.toString());

 }

Building the Simple CORBA Example

Compared to the Jini-only examples that have been looked at so far, the major
additional step in this CORBA example is to build the Java classes from the IDL
specification. There are a number of CORBA IDL-to-Java compilers. One of these is
the Sun compiler

idltojava

, which is available from

java.sun.com

. This (or another
compiler) needs to be run on the IDL file to produce the Java files in the

corba.Hel-

loModule

 package. The files that are produced are standard Java files, and they can
be compiled using your normal Java compiler. They may need some CORBA files
in the

CLASSPATH

 if required by your vendor’s implementation of CORBA. Files pro-
duced by

idltojava do not need any extra classes.
The Jini server, service, and client are also normal Java files, and they can be

compiled like earlier Jini files, with the CLASSPATH set to include the Jini libraries.

Jan Newmarch
indent "try" to start above the "}" 2 lines below. Really, all of the 2nd line onwards needs to be moved left so that code on lines 3, 6, 7, 10, etc is in column one under "try"

CORBA and Jini

6565

Running the Simple CORBA Example

There are a large number of elements and processes that must be set running to
get this example working satisfactorily:

1. A CORBA name server must be set running. In the JDK 1.2 distribution is a
server, tnameserv. By default, this runs on TCP port 900. Under Unix,
access to this port is restricted to system supervisors. It can be set running
on this port by a supervisor, or it can be started during boot time. An ordi-
nary user will need to use the option -ORBInitialPort port to run it on a
port above 1024:

 tnameserv -ORBInitialPort 1055

All CORBA services and clients should also use this port number.

2. The Java version of the CORBA service can then be started with this
command:

 java corba.CorbaHelloServer -ORBInitialPort 1055

3. Typical Jini support services will need to be running, such as a Jini lookup
service, the RMI daemon rmid, and HTTP servers to move class definitions
around.

4. The Jini service can be started with this command:

 java corba.JiniHelloServer -ORBInitialPort 1055

5. Finally, the Jini client can be run with this command:

 java client.TestCorbaHello -ORBInitialPort 1055

CORBA Implementations

There are interesting considerations about what is needed in Java to support
CORBA. The example discussed previously uses the CORBA APIs that are part of
the standard OMG binding of CORBA to Java. The packages rooted in org.omg are
in major distributions of JDK 1.2, such as the Sun SDK. This example should com-
pile properly with most Java 1.2 compilers using these OMG classes.

Sun’s JDK 1.2 runtime includes a CORBA ORB, and the example will run as is,
using this ORB. However, there are many implementations of CORBA ORBs, and
they do not always behave in quite the same way. This can affect compilation and

Chapter 18

66

runtime results. Which CORBA ORB is used is determined at runtime, based on
properties. If a particular ORB is not specified, then it defaults to the Sun-supplied
ORB (using Sun’s SDK). To use another ORB, such as the Orbacus ORB, the follow-
ing code needs to be inserted before the call to ORB.init():

java.util.Properties props = System.getProperties();

 props.put("org.omg.CORBA.ORBClass", "com.ooc.CORBA.ORB");

 props.put("org.omg.CORBA.ORBSingletonClass",

 "com.ooc.CORBA.ORBSingleton");

 System.setProperties(props);

Similar code is required for the ORBS from IONA and other vendors.

Variations in CORBA implementations could affect the runtime behavior of
the client: if the proxy expects to use a particular ORB other than the default, then
the class files for that ORB must be available to the client or be downloadable
across the network. Alternatively, the proxy could be written to use the default Sun
ORB, and then may need to make inter-ORB calls between the Sun ORB and the
actual ORB used by the CORBA service. Such issues take us beyond the scope of
this chapter, though. Vendor documentation for each CORBA implementation
should give more information on any additional requirements.

Room-Booking Example

The IDL for a room-booking problem was briefly discussed in the introductory
“CORBA” section in this chapter. This room-booking example has a few more com-
plexities than the previous example. The problem here is to have a set of rooms, and
for each room have a set of bookings that can be made for that room. The bookings
may be made on the hour, from 9 a.m. until 4 p.m. (this only covers the bookings for
one day). Bookings may be cancelled after they are made. A room can be queried for
the set of bookings it has: it returns an array of meetings, which are null if no booking
has been made, or non-null including the details of the participants and the purpose
of the meeting.

There are other things to consider in this example:

• Each room is implemented as a separate CORBA object. There is also a
“meeting factory” that produces more objects. This is a system with multiple
CORBA objects residing on many CORBA servers. There are several possibil-
ities for implementing a system with multiple objects.

• Some of the methods return CORBA objects, and these may need to be
exposed to clients. This is not a problem if the client is a CORBA client, but
here we will have Jini clients.

Jan Newmarch
Limes 1, 2, 3, 5 should all align vertically - they should all start in column one. Line 4 should start under "org.omg..."

CORBA and Jini

6767

• Some of the methods throw user-defined exceptions, in addition to CORBA-
defined exceptions. Both of these need to be handled appropriately.

CORBA Objects

CORBA defines a set of “primitive” types in the IDL, such as integers of various sizes,
chars, etc. The language bindings specify the primitive types in each language that
they are converted into. For example, the CORBA wide character (wchar) becomes a
Java Unicode char. Things are different for non-primitive objects, which depend on
the target language. For example, an IDL object turns into a Java interface.

The room-booking IDL defines CORBA interfaces for Meeting, MeetingFactory,
and Room. These can be implemented in any suitable language and need not be in
Java—the Java binding will convert these into Java interfaces. A CORBA client writ-
ten in Java will get objects that implement these interfaces, but these objects will
essentially be references to remote CORBA objects. Two things are certain about
these references:

• CORBA interfaces generate Java interfaces, such as Hello. These inherit from
org.omg.CORBA.portable.IDLEntity, which implements Serializable. As a
result, the references can be moved around like Jini objects, but they lose
their link to the CORBA ORB that created them and may end up in a differ-
ent namespace, where the reference makes no sense. Therefore, CORBA
references cannot be usefully moved around. At present, the best way to
move them around is to convert them to “stringified” form and move that
around, though this may change when CORBA pass-by-value objects
become common. Note that the serialization method that gives a string rep-
resentation of a CORBA object is not the same as the Java one: the CORBA
method serializes the remote reference, whereas the Java method serializes
the object’s instance data.

• The references do not subclass from UnicastRemoteObject or Activatable. The
Java runtime will not use an RMI stub for them.

If a Jini client gets local references to these objects and keeps them local, then
it can use them via their Java interfaces. If they need to be moved around the net-
work, then appropriate “mobile” classes will need to be defined and the infor-
mation copied across to them from the local objects. For example, the CORBA
Meeting interface generates the following Java interface:

/*

 * File: ./corba/RoomBooking/Meeting.java

 * From: RoomBooking.idl

Chapter 18

68

 * Date: Wed Aug 25 11:30:25 1999

 * By: idltojava Java IDL 1.2 Aug 11 1998 02:00:18

 */

package corba.RoomBooking;

public interface Meeting

 extends org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity {

 String purpose();

 String participants();

 void destroy()

;

}

To make the information from a CORBA Meeting available as a mobile Jini
object, we would need an interface like this:

/**

 * JavaMeeting.java

 */

package corba.common;

import java.io.Serializable;

import org.omg.CORBA.*;

import corba.RoomBooking.*;

import java.rmi.RemoteException;

public interface JavaMeeting extends Serializable {

 String getPurpose();

 String getParticipants();

 Meeting getMeeting(ORB orb);

} // JavaMeeting

The first two methods in the preceding interface allow information about a
meeting to be accessible to applications that do not want to contact the CORBA
service. The third allows a CORBA object reference to be reconstructed within a
new ORB. A suitable implementation is as follows:

/**

 * JavaMeetingImpl.java

 */

package corba.RoomBookingImpl;

import corba.RoomBooking.*;

import org.omg.CORBA.*;

CORBA and Jini

6969

import corba.common.*;

/**

 * A portable Java object representing a CORBA object.

 */

public class JavaMeetingImpl implements JavaMeeting {

 protected String purpose;

 protected String participants;

 protected String corbaObj;

 /**

 * get the purpose of a meeting for a Java client

 * unaware of CORBA

 */

 public String getPurpose() {

 return purpose;

 }

 /**

 * get the participants of a meeting for a Java client

 * unaware of CORBA

 */

 public String getParticipants() {

 return participants;

 }

 /**

 * reconstruct a meeting using a CORBA orb in the target JVM

 */

 public Meeting getMeeting(ORB orb) {

 org.omg.CORBA.Object obj = orb.string_to_object(corbaObj);

 Meeting m = MeetingHelper.narrow(obj);

 return m;

 }

 /**

 * construct a portable Java representation of the CORBA

 * Meeting using the CORBA orb on the source JVM

 */

 public JavaMeetingImpl(Meeting m, ORB orb) {

 purpose = m.purpose();

 participants = m.participants();

 corbaObj = orb.object_to_string(m);

 }

Chapter 18

70

} // JavaMeetingImpl

Multiple Objects

The implementation of the room-booking problem in the Vogel and Duddy book
(Java Programming with CORBA, http://www.wiley.com/compbooks/vogel) runs
each room as a separate CORBA object, each with its own server. A meeting factory
creates meeting objects that are kept within the factory server and passed around
by reference. So, for a distributed application with ten rooms, there will be eleven
CORBA servers running.

There are several possible ways of bringing this set of objects into the Jini
world so that they are accessible to a Jini client:

1. A Jini server may exist for each CORBA server.

• Each Jini server may export fat proxies, which build CORBA refer-
ences in the same Jini client.

• Each Jini server may export a thin proxy, with a CORBA reference held
in each of these servers.

2. A single Jini server may be built for the federation of all the CORBA
objects.

• The single Jini server exports a fat proxy, which builds CORBA refer-
ences in the Jini client.

• The single Jini server exports a thin proxy, with all CORBA references
within this single server.

The first of these pairs of options essentially isolates each CORBA service into
its own Jini service. This may be appropriate in an open-ended system where there
may be a large set of CORBA services, only some of which are needed by any
application.

The second pair of options deals with the case where services come logically
grouped together, such that one cannot exist without the other, even though they
may be distributed geographically.

Intermediate schemes exist, where some CORBA services have their own Jini
service, while others are grouped into a single Jini service. For example, rooms
may be grouped into buildings and cannot exist without these buildings, whereas
a client may only want to know about a subset of buildings, say those in New York.

CORBA and Jini

7171

Many Fat Proxies

We can have one Jini server for each of the CORBA servers. The Jini servers can be
running on the same machines as the CORBA ones, but there is no necessity from
either Jini or CORBA for this to be so. On the other hand, if a client is running as an
applet, then applet security restrictions may force all the Jini servers to run on a
single machine, the same one as an applet’s HTTP server.

The Jini proxy objects exported by each Jini server may be fat ones, which con-
nect directly to the CORBA server. Thus, each proxy becomes a CORBA client, as
was the case in the “hello world” example. Within the Jini client, we do not just
have one proxy, but many proxies. Because they are all running within the same
address space, they can share CORBA references—there is no need to package a
CORBA reference as a portable Jini object. In addition, the Jini client can just use
all of these CORBA references directly, as instance objects of interfaces. This situa-
tion is shown in Figure 18-2.

Figure 12-1. TryJetAuth setting

CORBA room

room server
CORBA

CORBA room

room server
CORBA

CORBA meeting
factory

factory server
CORBA meeting

Jini meeting
factory

factory server
Jini meeting

Jini room

Jini room
server

Jini room

server
Jini room

CORBA room
reference

CORBA room
reference

CORBA factory
reference

fat factory proxyfat room proxy fat room proxy

Jini client

Jan Newmarch
This should be "Figure 18.2 CORBA and Jini services for fat proxies"

Chapter 18

72

The CORBA servers are all accessed from within the Jini client. This arrange-
ment may be ruled out if the client is an applet and the servers are on different
machines.

Many Thin Proxies

The proxies exported can be thin, such as RMI stubs. In this case, each Jini server is
acting as a CORBA client. This situation is shown in Figure 18-3.

If all the Jini servers are collocated on the same machine, then this becomes a
possible architecture suitable for applets. The downside of this approach is that all
the CORBA references are within different JVMs. In order to move the reference for
a meeting from the Jini meeting factory to one of the Jini rooms, it may be neces-
sary to wrap it in a portable Jini object, as discussed previously. The Jini client will
also need to get information about the CORBA objects, which can be gained from
these portable Jini objects.

Figure 18-3. CORBA and Jini services for thin proxies

CORBA room

room server
CORBA

CORBA meeting
factory

factory server
CORBA meeting

CORBA room

room server
CORBA

Jini room Jini room Jini meeting
factory

CORBA room
reference

CORBA room
reference CORBA factory

reference

thin room proxy thin room proxy thin factory proxy

Jini client

server
Jini room Jini room

server factory server
Jini meeting

CORBA and Jini

7373

Single Fat Proxy

An alternative to Jini servers for each CORBA server is to have a single Jini bridge
server into the CORBA federation. This can be a feasible alternative when the set of
CORBA objects form a complete system or module, and it makes sense to treat
them as a unit. Then you have the choices again of where to locate the CORBA ref-
erences—either in the Jini server or in a proxy. Placing them in a fat proxy is shown
in Figure 18-4.

Single Thin Proxy

Placing all the CORBA references on the server side of a Jini service means that a
Jini client only needs to make one network connection to the service. This sce-
nario is shown in Figure 18-5. This is probably the best option from a security
viewpoint of a Jini client.

CORBA room

room server
CORBA

CORBA meeting
factory

factory server
CORBA meeting

CORBA room

room server
CORBA

Jini bridge

Jini bridge server

CORBA room
reference

CORBA room
reference

CORBA factory
reference

Jini client

fat bridge proxy

Figure 18-4. CORBA and Jini services for single fat proxy

Chapter 18

74

Exceptions

CORBA methods can throw exceptions of two types: system exceptions and user
exceptions. System exceptions subclass from RuntimeException and so are
unchecked. They do not need to have explicit try...catch clauses around them. If
an exception is thrown, it will be caught by the Java runtime and will generally halt
the process with an error message. This would result in a CORBA client dying,
which would generally be undesirable. Many of these system exceptions will be
caused by the distributed nature of CORBA objects, and probably should be
caught explicitly. If they cannot be handled directly, then to bring them into line
with the Jini world, they can be wrapped as “nested exceptions” within a Remote
exception and thrown again.

User exceptions are declared in the IDL for the CORBA interfaces and meth-
ods. These exceptions are checked, and need to be explicitly caught (or re-thrown)
by Java methods. If a user exception is thrown, this will be because of some seman-
tic error within one of the objects and will be unrelated to any networking or

CORBA room

room server
CORBA

CORBA meeting
factory

factory server
CORBA meeting

CORBA room

room server
CORBA

Jini bridge

CORBA room
reference

CORBA room
reference

CORBA factory
reference

thin bridge proxy

Jini client

Jini bridge server

Figure 18-5. CORBA and Jini services for single thin proxy

CORBA and Jini

7575

remote issues. User exceptions should be treated as they are, without wrapping
them in Remote exceptions.

Interfaces for Single Thin Proxy

This and the following sections build a single thin proxy for a federation of CORBA
objects. The Vogel and Duddy book gives a CORBA client to interact with the
CORBA federation, and this is used as the basis for the Jini services and clients.

Using a thin proxy means that all CORBA-related calls will be placed in the
service object, and will be made available to Jini clients only by means of portable
Jini versions of the CORBA objects. These portable objects are defined by two
interfaces, the JavaRoom interface

/**

 * JavaRoom.java

 */

package corba.common;

import corba.RoomBooking.*;

import java.io.Serializable;

import org.omg.CORBA.*;

import java.rmi.RemoteException;

public interface JavaRoom extends Serializable {

 String getName();

 Room getRoom(ORB orb);

} // JavaRoom

and the JavaMeeting interface

/**

 * JavaMeeting.java

 */

package corba.common;

import java.io.Serializable;

import org.omg.CORBA.*;

import corba.RoomBooking.*;

import java.rmi.RemoteException;

public interface JavaMeeting extends Serializable {

 String getPurpose();

 String getParticipants();

Chapter 18

76

 Meeting getMeeting(ORB orb);

} // JavaMeeting

The bridge interface between the CORBA federation and the Jini clients has to
provide methods for making changes to objects within the CORBA federation and
for obtaining information from them. For the room-booking system, this requires
the ability to book and cancel meetings within rooms, and also the ability to view the
current state of the system. Viewing is accomplished by three methods: updating the
current state, getting a list of rooms, and getting a list of bookings for a room.

/**

 * RoomBookingBridge.java

 */

package corba.common;

import java.rmi.RemoteException;

import corba.RoomBooking.*;

import org.omg.CORBA.*;

public interface RoomBookingBridge extends java.io.Serializable {

 public void cancel(int selected_room, int selected_slot)

 throws RemoteException, NoMeetingInThisSlot;

 public void book(String purpose, String participants,

 int selected_room, int selected_slot)

 throws RemoteException, SlotAlreadyTaken;

 public void update()

 throws RemoteException, UserException;

 public JavaRoom[] getRooms()

 throws RemoteException;

 public JavaMeeting[] getMeetings(int room_index)

 throws RemoteException;

} // RoomBookingBridge

There is a slight legacy in this interface that comes from the original “mono-
block” CORBA client by Vogel and Duddy. In that client, because the GUI interface
elements and the CORBA references were all in the one client, simple shareable
structures, such as arrays of rooms and arrays of meetings, were used. Meetings
and rooms could be identified simply by their index in the appropriate array. In
splitting the client apart into multiple (and remote) classes, this is not really a good
idea anymore because it assumes a commonality of implementation across
objects, which may not occur. It doesn’t seem worthwhile being too fussy about
that here, though.

CORBA and Jini

7777

RoomBookingBridge Implementation

The room-booking Jini bridge has to perform all CORBA activities and to wrap
these up as portable Jini objects. A major part of this is locating the CORBA ser-
vices, which here are the meeting factory and the rooms. We do not want to get too
involved in these issues here. The meeting factory can be found in essentially the
same way as the hello server was earlier, by looking up its name. Finding the
rooms is harder, as these are not known in advance. Essentially, the equivalent of a
directory has to be set up on the name server, which is known as a “naming con-
text.” Rooms are registered within this naming context by their servers, and the
client gets this context and then does a search for its contents.

The Jini component of this object is that it subclasses from UnicastRemoteOb-
ject and implements a RemoteRoomBookingBridge, which is a remote version of
RoomBookingBridge. It is also worthwhile noting how CORBA exceptions are caught
and wrapped in Remote exceptions.

/**

 * RoomBookingBridgeImpl.java

 */

package corba.RoomBookingImpl;

import org.omg.CORBA.*;

import org.omg.CosNaming.*;

import corba.RoomBooking.*;

import corba.common.*;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import java.util.Vector;

public class RoomBookingBridgeImpl extends UnicastRemoteObject implements Remote-

RoomBookingBridge {

 private MeetingFactory meeting_factory;

 private Room[] rooms;

 private Meeting[] meetings;

 private ORB orb;

 private NamingContext room_context;

 public RoomBookingBridgeImpl(String[] args)

 throws RemoteException, UserException {

 try {

 // initialize the ORB

 orb = ORB.init(args, null);

Chapter 18

78

 }

 catch(SystemException system_exception) {

 throw new RemoteException("constructor RoomBookingBridge: ",

 system_exception);

 }

 init_from_ns();

 update();

 }

 public void init_from_ns()

 throws RemoteException, UserException {

 // initialize from Naming Service

 try {

 // get room context

 String str_name = "/BuildingApplications/Rooms/";

 org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");

 NamingContext namingContext = NamingContextHelper.narrow(objRef);

 NameComponent nc = new NameComponent(str_name, " ");

 NameComponent path[] = {nc};

 org.omg.CORBA.Object roomRef = namingContext.resolve(path);

 room_context = NamingContextHelper.narrow(roomRef);

 if(room_context == null) {

 System.err.println("Room context is null,");

 System.err.println("exiting ...");

 System.exit(1);

 }

 // get MeetingFactory from Naming Service

 str_name = "/BuildingApplications/MeetingFactories/MeetingFactory";

 nc = new NameComponent(str_name, " ");

 path[0] = nc;

 meeting_factory =

MeetingFactoryHelper.narrow(namingContext.resolve(path));

 if(meeting_factory == null) {

 System.err.println(

 "No Meeting Factory registered at Naming Service");

 System.err.println("exiting ...");

 System.exit(1);

 }

 }

 catch(SystemException system_exception) {

Jan Newmarch
indent this line by at least 4 spaces after the previous line's "omg.org..."

Jan Newmarch
indent this line by at least 4 spaces after the previous line start

CORBA and Jini

7979

 throw new RemoteException("Initialize ORB", system_exception);

 }

 }

 public void update()

 throws RemoteException, UserException {

 try {

 // list rooms

 // initialize binding list and binding iterator

 // Holder objects for out parameter

 BindingListHolder blHolder = new BindingListHolder();

 BindingIteratorHolder biHolder = new BindingIteratorHolder();

 BindingHolder bHolder = new BindingHolder();

 Vector roomVector = new Vector();

 Room aRoom;

 // we are 2 rooms via the room list

 // more rooms are available from the binding iterator

 room_context.list(2, blHolder, biHolder);

 // get rooms from Room context of the Naming Service

 // and put them into the roomVector

 for(int i = 0; i < blHolder.value.length; i++) {

 aRoom = RoomHelper.narrow(

 room_context.resolve(blHolder.value[i].binding_name));

 roomVector.addElement(aRoom);

 }

 // get remaining rooms from the iterator

 if(biHolder.value != null) {

 while(biHolder.value.next_one(bHolder)) {

 aRoom = RoomHelper.narrow(

 room_context.resolve(bHolder.value.binding_name));

 if(aRoom != null) {

 roomVector.addElement(aRoom);

 }

 }

 }

 // convert the roomVector into a room array

 rooms = new Room[roomVector.size()];

 roomVector.copyInto(rooms);

Chapter 18

80

 // be friendly with system resources

 if(biHolder.value != null)

 biHolder.value.destroy();

 }

 catch(SystemException system_exception) {

 throw new RemoteException("View", system_exception);

 // System.err.println("View: " + system_exception);

 }

 }

 public void cancel(int selected_room, int selected_slot)

 throws RemoteException, NoMeetingInThisSlot {

 try {

 rooms[selected_room].Cancel(

 Slot.from_int(selected_slot));

 System.out.println("Cancel called");

 }

 catch(SystemException system_exception) {

 throw new RemoteException("Cancel", system_exception);

 }

 }

 public void book(String purpose, String participants,

 int selected_room, int selected_slot)

 throws RemoteException, SlotAlreadyTaken {

 try {

 Meeting meeting =

 meeting_factory.CreateMeeting(purpose, participants);

 System.out.println("meeting created");

 String p = meeting.purpose();

 System.out.println("Purpose: "+p);

 rooms[selected_room].Book(

 Slot.from_int(selected_slot), meeting);

 System.out.println("room is booked");

 }

 catch(SystemException system_exception) {

 throw new RemoteException("Booking system exception", system_exception);

 }

 }

 /**

 * return a list of the rooms as portable JavaRooms

 */

CORBA and Jini

8181

 public JavaRoom[] getRooms() {

 int len = rooms.length;

 JavaRoom[] jrooms = new JavaRoom[len];

 for (int n = 0; n < len; n++) {

 jrooms[n] = new JavaRoomImpl(rooms[n]);

 }

 return jrooms;

 }

 public JavaMeeting[] getMeetings(int room_index) {

 Meeting[] meetings = rooms[room_index].View();

 int len = meetings.length;

 JavaMeeting[] jmeetings = new JavaMeeting[len];

 for (int n = 0; n < len; n++) {

 if (meetings[n] == null) {

 jmeetings[n] = null;

 } else {

 jmeetings[n] = new JavaMeetingImpl(meetings[n], orb);

 }

 }

 return jmeetings;

 }

} // RoomBookingBridgeImpl

Other Classes

The Java classes and servers implementing the CORBA objects are mainly
unchanged from the implementations given in the Vogel and Duddy book. They can
continue to act as CORBA servers to the original clients. I replaced the “easy nam-
ing” naming service in their book with a later one with the slightly more complex
standard mechanism for creating contexts and placing names within this context.
This mechanism can use the tnameserv CORBA naming server, for example.

I have modified the Vogel and Duddy room-booking client a little bit, but its
essential structure remains unchanged. The GUI elements, for example, were not
altered. All CORBA-related code was removed from the client and placed into the
bridge classes.

The Vogel and Duddy code samples can all be downloaded from a public Web
site (http://www.wiley.com/compbooks/vogel) and come with no author attribution
or copyright claim. The client is also quite lengthy since it has plenty of GUI inside,
so I won’t complete the code listing here. The code for all my classes, and the mod-
ified code of the Vogel and Duddy classes, is given in the subdirectory corba of the
programs.zip file that can be found at http://www.apress.com.

Jan Newmarch
Check this URL with Grace. Last I heard, it was going to refer to my Web site which is http://pandonia.canberra.edu.au/java/jini/tutorial/programs.zip

Chapter 18

82

Building the Room-Booking Example

The RoomBooking.idl IDL interface needs to be compiled to Java by a suitable IDL-
to-Java compiler, such as Sun’s idltojava. This produces classes in the corba.Room-
Booking package. These can then all be compiled using the standard Java classes
and any CORBA classes needed.

The Jini server, service, and client are also normal Java files and can be com-
piled like earlier Jini files, with the CLASSPATH set to include the Jini libraries.

Running the Room-Booking Example

There are a large number of elements and processes that must be set running to
get this example working satisfactorily:

1. A CORBA name server must be set running, as in the earlier example. For
example, you could use the following command:

 tnameserv -ORBInitialPort 1055

All CORBA services and clients should also use this port number.

2. A CORBA server should be started for each room, with the first parameter
being the “name” of the room:

 java corba.RoomBookingImpl.RoomServer "freds room" -ORBInitialPort 1055

3. A CORBA server should be started for the meeting factory:

 java corba.RoomBookingImpl.MeetingFactoryServer -ORBInitialPort 1055

4. Typical Jini support services will need to be running, such as a lookup ser-
vice, the RMI daemon rmid, and HTTP servers to move class definitions
around.

5. The Jini service can be started with this command:

 java corba.RoomBookingImpl.RoomBookingBridgeServer -ORBInitialPort 1055

6. Finally, the Jini client can be run with this command:

 java corba.RoomBookingImpl.RoomBookingClientApplication -ORBInitialPort
 1055

CORBA and Jini

8383

Migrating a CORBA Client to Jini

Both of the examples in this chapter started life as pure CORBA systems written by
other authors, with CORBA objects delivered by servers to a CORBA client. The cli-
ents were both migrated in a series of steps to Jini clients of a Jini service acting as a
front-end to CORBA objects. For those in a similar situation, it may be worthwhile to
spell out the steps I went through in doing this for the room-booking problem:

1. The original client was a single client, mixing GUI elements, CORBA calls,
and glue to hold it all together. This had a number of objects playing dif-
ferent roles all together, without a clear distinction about roles in some
cases. The first step was to decide on the architectural constraint: one Jini
service, or many.

2. A single Jini service was chosen (for no other reason than it looked to offer
more complexities). This implied that all CORBA-related calls had to be
collected into a single object, the RoomBookingBridgeImpl. At this stage, the
RoomBookingBridge interface was not defined—that came after the imple-
mentation was completed (okay, I hang my head in shame, but I was
trying to adapt existing code rather than starting from scratch). At this
time, the client was still running as a pure CORBA client—no Jini mecha-
nisms had been introduced.

3. Once all the CORBA related code was isolated into one class, another
architectural decision had to be made: whether this was to function as a
fat or thin proxy. The decision to make it thin in this case was again based
on interest rather than functional reasons.

4. The GUI elements left behind in the client needed to access information
from the CORBA objects. In the thin proxy model, this meant that porta-
ble Jini objects had to be built to carry information out of the CORBA
world. This led to interfaces such as JavaRoom and implementations such
as JavaRoomImpl. The GUI code in the client had no need to directly modify
fields in these objects, so they ended up as read-only versions of their
CORBA sources. (If a fat proxy had been used, this step of creating porta-
ble Jini objects would not have been necessary.)

5. The client was modified to use these portable Jini objects, and the Room-
BookingBridgeImpl was changed to return these objects from its methods.
Again, this was all still done within the CORBA world, and no Jini services
were yet involved. This looked like a good time to define the RoomBooking-
Bridge interface, when everything had settled down.

Chapter 18

84

6. Finally, the RoomBookingBridgeImpl was turned into a UnicastRemoteObject
and placed into a Jini server. The client was changed to look up a Room-
BookingBridge service rather than create a RoomBookingBridgeImpl object.

At the end of this, I had an implementation of a Jini service with a thin RMI
proxy. The CORBA objects and servers had not been changed at all. The original
CORBA client had been split into two, with the Jini service implementing all of
the CORBA lookups. These were exposed to the client through a set of facades
that gave it the information it needed.

The client was still responsible for all of the GUI aspects, and so was acting as
a “knowledgeable” client. If needed, these GUI elements could be placed into
Entry objects, and also could be exported as part of the service.

Jini Service as a CORBA Service

We have looked at making CORBA objects into Jini services. Is it possible to go the
other way, and make a Jini service appear as a CORBA object in a CORBA federa-
tion? Well, it should be. Just as there is a mapping from CORBA IDL to Java, there is
also a mapping of a suitable subset of Java into CORBA IDL. Therefore, a Jini ser-
vice interface can be written as a CORBA interface. A Jini client could then be
written as the implementation of a CORBA server to this IDL.

At present, with a paucity of Jini services, it does not seem worthwhile to
explore this in detail. This may change in the future, though.

Summary

CORBA is a separate distributed system from Jini. However, it is quite straightfor-
ward to build bridges between the two systems, and there are a number of
different possible architectures. This makes it possible for CORBA services to be
used by Jini clients.

