

153

CHAPTER 10

Discovery Management

C

LIENTS

AND

SERVICES

BOTH

NEED

 to find lookup services. In Chapter 3, we looked at
the code that was common to both clients and services in both unicast and broad-
cast discovery. Parts of that code has been used in many examples since. This
chapter discusses some utility classes that make it easier to deal with lookup ser-
vices by encapsulating this type of code into common utility classes and providing
a good interface to them. This chapter only applies to Jini 1.1, since these classes
were only brought into Jini with version 1.1.

Finding Lookup Locators

Both services and clients need to find lookup locators. Services will register with
these locators, and clients will query them for suitable services. Finding these
lookup locators involves three components:

• A list of lookup locators for unicast discovery

• A list of groups for lookup locators using multicast discovery

• Listeners whose methods are invoked when a service locator is found

Chapter 3 considered the cases of a single unicast lookup service and a set of
multicast lookup services. This was all that was available in Jini 1.0. Jini 1.1 has
been extended to handle a set of unicast lookup services

and

 a

set

 of multicast
lookup services. The Jini 1.1 Helper Utilities document (part of the Jini 1.1 specifi-
cation) defines three interfaces:

•

DiscoveryManagement

, which looks after discovery events

•

DiscoveryGroupManagement

, which looks after groups and multicast searches

•

DiscoveryLocatorManagement

, which looks after unicast discovery

Different classes may implement different combinations of these three interfaces.
The

LookupDiscovery

 class was changed in Jini 1.1 to use

DiscoveryGroupManagement

and

DiscoveryManagement

. The

LookupDiscovery

 class performs multicast searches,

Chapter 10

154

informing its listeners when lookup services are discovered. The

LookupLocator-

Discovery

 class is new in Jini 1.1 and is discussed later in this chapter. It performs a
similar task for unicast discovery and implements the two interfaces

Discovery-

LocatorManagement

 and

DiscoveryManagement

. Another class discussed later is

LookupDiscoveryManager

, which handles both unicast and broadcast discovery, and
so implements all three interfaces. With these three cases covered, it is unlikely
that you will need to implement these interfaces yourself.

The

DiscoveryManagement

 interface is as follows:

package net.jini.discovery;

public interface DiscoveryManagement {

 public void addDiscoveryListener(DiscoveryListener l);

 public void removeDiscoveryListener(DiscoveryListener l);

 public ServiceRegistrar[] getRegistrars();

 public void discard(ServiceRegistrar proxy);

 public void terminate();

}

The

addDiscoveryListener()

 method is the most important method, as it
allows a listener object to be informed whenever a new lookup service is
discovered.

The

DiscoveryGroupManagement

 interface is shown next:

package net.jini.discovery;

public interface DiscoveryGroupManagement {

 public static final String[] ALL_GROUPS = null;

 public static final String[] NO_GROUPS = new String[0];

 public String[] getGroups();

 public void addGroups(String[] groups) throws IOException;

 public void setGroups(String[] groups) throws IOException;

 public void removeGroups(String[] groups);

}

The most important of these methods is

setGroups()

. If the groups have ini-
tially been set to

NO_GROUPS

, no multicast search is performed. If it is later changed
by

setGroups()

, then this initiates a search. Similarly,

addGroups()

 will also initiate a
search. (This is why they may throw remote exceptions.)

Discovery Management

155155

The third interface is

DiscoveryLocatorManagement

:

package net.jini.discovery;

public interface DiscoveryLocatorManagement {

 public LookupLocator[] getLocators();

 public void addLocators(LookupLocator[] locators);

 public void setLocators(LookupLocator[] locators);

 public void removeLocators(LookupLocator[] locators);

}

A client or service will generally set the locators in its own constructor, so
these methods will probably only be useful if you need to change the set of unicast
addresses for the lookup services.

LookupLocatorDiscovery

In Chapter 3, the section on finding a lookup service at a known address only
looked at a single address. If lookup services at multiple addresses are required,
then a naive solution would be to put the code from Chapter 3 into a loop. The

LookupLocatorDiscovery

 class provides a more satisfactory solution by providing
the same event handling method as in the multicast case; that is, you supply a list
of addresses, and when a lookup service is found at one of these addresses, a lis-
tener object is informed.

The

LookupLocatorDiscovery

 class is specified as follows:

package net.jini.discovery;

public class LookupLocatorDiscovery implements DiscoveryManagement,

 DiscoveryLocatorManagement {

 public LookupLocatorDiscovery(LookupLocator[] locators);

 public LookupLocator[] getDiscoveredLocators();

 public LookupLocator[] getUndiscoveredLocators();

}

Rewriting the unicast example from Chapter 3 using this utility class makes it
look much like the example on multicast discovery from the same chapter. The
similarity is that it now uses the same event model for lookup service discovery; the
difference is that it uses a set of

LookupLocator

 objects rather than a set of groups.

package discoverymgt;

Chapter 10

156

import net.jini.discovery.LookupLocatorDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.discovery.LookupLocator;

import java.net.MalformedURLException;

/**

 * UniicastRegister.java

 */

public class UnicastRegister implements DiscoveryListener {

 static public void main(String argv[]) {

 new UnicastRegister();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(10000L);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

 public UnicastRegister() {

 LookupLocatorDiscovery discover = null;

 LookupLocator[] locators = null;

 try {

 locators = new LookupLocator[] {new LookupLocator("jini://localhost")};

 } catch(MalformedURLException e) {

 e.printStackTrace();

 System.exit(1);

 }

 try {

 discover = new LookupLocatorDiscovery(locators);

 } catch(Exception e) {

 System.err.println(e.toString());

 e.printStackTrace();

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

Jan Newmarch
Change Uniicast... to Unicast.. i.e. delete one of the i's

Discovery Management

157157

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

 // the code takes separate routes from here for client or service

 System.out.println("found a service locator");

 }

 }

 public void discarded(DiscoveryEvent evt) {

 }

} // UnicastRegister

LookupDiscoveryManager

An application (client or service) that wants to use a set of lookup services at fixed,
known addresses, and also to use whatever lookup services it can find by multi-
cast, can use the

LookupDiscoveryManager

 utility class. Most of the methods of this
class come from its interfaces:

package net.jini.discovery;

public class LookupDiscoveryManager implements DiscoveryManagement,

 DiscoveryGroupManagement,

 DiscoveryLocatorManagement {

 public LookupDiscoveryManager(String[] groups,

 LookupLocator[] locators,

 DiscoveryListener listener)

 throws IOException;

}

This class differs from

LookupDiscovery

 and

LookupLocatorDiscovery

 in that it
insists on a

DiscoveryListener

 in its constructor. Programs using this class can fol-
low the same event model as the last example:

package discoverymgt;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.discovery.DiscoveryGroupManagement;

Chapter 10

158

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.discovery.LookupLocator;

import java.net.MalformedURLException;

import java.io.IOException;

import java.rmi.RemoteException;

/**

 * AllcastRegister.java

 */

public class AllcastRegister implements DiscoveryListener {

 static public void main(String argv[]) {

 new AllcastRegister();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(10000L);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

 public AllcastRegister() {

 LookupDiscoveryManager discover = null;

 LookupLocator[] locators = null;

 try {

 locators = new LookupLocator[] {new LookupLocator("jini://localhost")};

 } catch(MalformedURLException e) {

 e.printStackTrace();

 System.exit(1);

 }

 try {

 discover = new

LookupDiscoveryManager(DiscoveryGroupManagement.ALL_GROUPS,

 locators,

 this);

 } catch(IOException e) {

 System.err.println(e.toString());

 e.printStackTrace();

 System.exit(1);

 }

Jan Newmarch
Continuation character needed here. Alternatively, DiscoveryGroup... can be on a newline:discover = new LookupDiscoveryManager(DiscoveryGroupManagement.ALL_GROUPS, locators, this);

Discovery Management

159159

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

 try {

 System.out.println("found a service locator at " +

 registrar.getLocator().getHost());

 } catch(RemoteException e) {

 e.printStackTrace();

 continue;

 }

 // the code takes separate routes from here for client or service

 }

 }

 public void discarded(DiscoveryEvent evt) {

 }

} // AllcastRegister

Summary

The

LookupLocatorDiscovery

 and

LookupDiscoveryManager

 utility classes add to the

LookupDiscovery

 class by making it easier to find lookup services using both unicast
and broadcast searches.

