

CHAPTER 9

Choices for Service
Architecture

A

CLIENT

WILL

ONLY

BE

LOOKING

 for an implementation of an interface, and the
implementation can be done in many different ways, as discussed in this chapter.
In the previous chapter we discussed the roles of service proxy and service back-
end and briefly talked about how different implementations could place different
amounts of processing in the proxy or backend. This can lead to situations such as
a thin proxy communicating to a fat backend using RMI, or at the other end of the
scale, to a fat proxy and a thin backend. The last chapter showed one implementa-
tion—a fat proxy with a backend so thin that it did not exist. This chapter fills in
some of the other possibilities.

Proxy Choices

A Jini service will be implemented using a proxy on the client side and a service
backend on the service provider side. In RPC-like systems there is little choice: the
proxy must be thin and the backend must be fat. Message-based client/server sys-
tems allow choices in the distribution of processing, so that one or other side can
be fat or thin, or they can equally share. Jini allows a similar range of choices, but
does so using the object-oriented paradigm supported by Java. The following sec-
tions discuss the choices in detail, giving alternative implementations of a file-
classifier service.

Proxy Is the Service

One extreme proxy situation is where the proxy is so fat that there is nothing left to
do on the server side. The role of the server is to register the proxy with service
locators and just to stay alive (renewing leases on the service locators). The service
itself runs entirely within the client. A class diagram for the file classifier problem
using this method is given in Figure 9-1. This was the implementation discussed in
the previous chapter.

Chapter 9

110

We have already seen the full object diagram for the JVMs in Chapter 8, but just concentrating on
these classes looks like Figure 9-2.

Figure 9-2. Objects in the JVMs

The client asks for a

FileClassifier

. What is
uploaded to the service locators, and thus what the client gets, is a

FileClassifier-

Impl

. The

FileClassifierImpl

 runs entirely within the client and does not commu-
nicate back to its server at all. This can also be done for any service if the service is
purely a software one that does not need any link back to the server. It could be
something like a calendar that is independent of location, or a diary that uses files
on the client side rather than the server side.

RMI Proxy

The opposite proxy extreme is where

all

 of the processing is done on the server
side. The proxy just exists on the client to take calls from the client, invoke the
method in the service on the server, and return the result to the client. Java’s RMI

Figure 9-1. Class diagram for file classifier

Figure 9-2. Objects in the JVMs

FileClassifierImpl FileClassifierImpl

client JVM
server JVM

Jan Newmarch
I've added text to this line, and now it is too long :-(

Choices for Service Architecture

111111

does this in a fairly transparent way (once all the correct files and additional serv-
ers are set up!).

A class diagram for an implementation of the file classifier using this mecha-
nism is shown in Figure 9.3.

The objects in the JVMs are shown in Figure 9-4.

The full code for this mechanism is given later in the chapter in the “RMI
Proxy for FileClassifier” section.

The class structure for this mechanism is much more complex than the fat
proxy because of RMI requirements. The

RemoteFileClassifier

 interface has to be
defined, and the implementation class has to implement (or call suitable methods

Figure 9-3. Class diagram for RMI proxy

FileClassifier Remote

RemoteFileClassifierUnicastRemoteObject

FileClassifierImplFileClassifierImpl_Stub

Figure 9-4. JVM objects for RMI proxy

FileClassifierImpl_Stub

FileClassifierImpl_Stub

FileClassifierImpl

client JVM
server JVM

Chapter 9

112

from) the

UnicastRemoteObject

 class. The

FileClassifierImpl_Stub

 is generated
from

FileClassifierImpl

 by using the

rmic

 compiler. Implementing the

Remote

interface allows the methods of the

FileClassifierImpl

 to be called remotely.
Inheriting from

UnicastRemoteObject

 allows RMI to export the stub rather than the
service, which remains on the server.

Apart from creating the stub class by using

rmic

, the stub is essentially invisi-
ble to the programmer; the server code is written to export the implementation,
but the RMI runtime component of Java recognizes this and actually exports the
stub instead. This can cause a little confusion—the programmer writes code to
export an object of one class, but an object of a different class appears in the ser-
vice locator and in the client.

This structure is useful when the service needs to do no processing on the cli-
ent side but does need to do a lot on the server side—for example, a diary that
stores all information communally on the server rather than individually on each
client. Services that are tightly linked to a piece of hardware on the server give fur-
ther examples.

Non-RMI Proxy

If RMI is not used, and the proxy and backend service want to share processing,
then both the backend service and the proxy must be created explicitly on the ser-
vice provider side. The proxy is explicitly exported by the service provider and
must implement the interface, but on the server side this requirement does not
hold, since the proxy and backend service are not tightly linked by a class structure
any more. The class diagram for the file classifier with this organization is dis-
played in Figure 9-5.

The JVMs at runtime for this scenario are shown in Figure 9-6.

Figure 9-5. Class diagram for non-RMI proxy

FileClassifierProxy

FileClassifier

FileServerImpl

Choices for Service Architecture

113113

This doesn’t specify how the proxy and the server communicate. They could
open up a socket connection, for example, and exchange messages using a mes-
sage structure that only they understand. Or they could communicate using a
well-known protocol, such as HTTP. For example, the proxy could make HTTP
requests, and the service could act as an HTTP server handling these requests and
returning documents. A version of the file classifier using sockets to communicate
is given later in this chapter in the “Non-RMI Proxy for FileClassifier” section.

This model is good for bringing “legacy” client/server applications into the
Jini world. Client/server applications often communicate using a specialized pro-
tocol between the client and server. Copies of the client have to be distributed to
all machines, and if there is a bug in the client, they all have to be updated, which
is often impossible. Worse, if there is a change to the protocol, the server must be
rebuilt to handle old and new versions while attempts are made to update all the
clients. This is a tremendous problem with Web browsers, for example, that have
varying degrees of support for HTML 3.2 and HTML 4.0 features, let alone new
protocol extensions such as style sheets and XML. CGI scripts that attempt to
deliver the “right” version of documents to various browsers are clumsy, but nec-
essary, hacks.

What can be done instead is to distribute a “shell” client that just contacts the
server and uploads a proxy. The Jini proxy is the real “heart” of the client, whereas
the Jini backend service is the server part of the original client/server system.
When changes occur, the backend service and its proxy can be updated together,
and there is no need to make changes to the shell out on all the various machines.

Figure 9-6. JVM objects for a non-RMI proxy

FileClassifierProxy

FileClassifierProxy

FileServerImpl

client JVM

server JVM

Chapter 9

114

RMI and Non-RMI Proxies

The last variation is to have a backend service, an explicit proxy, and an RMI proxy.
Both of the proxies are exported: the explicit proxy has to be exported by register-
ing it with lookup services, while the RMI proxy is exported by the RMI runtime
mechanisms. The RMI proxy can be used as an intermediary for RPC-like commu-
nication between the explicit proxy and the backend service. This is just like the
last case, but instead of requiring the proxy and service to implement their own
communication protocol, it uses RMI instead. The proxy and service can be of any
relative size, just like in the last case. What this does is simplify the task of the
programmer.

Later in the chapter, in the “RMI and Non-RMI Proxies for FileClassifier”
section, there is a non-RMI proxy,

FileClassifierProxy

, implementing the

File-

Classifier

 interface. This communicates with an object that implements the

ExtendedFileClassifier

 interface. There is an object on the server of type

Extended-

FileClassifierImpl

 and an RMI proxy for this on the client side of type

ExtendedFileClassifierImpl_Stub

 The class diagram is shown in Figure 9-7.

While this looks complex, it is really just a combination of the last two cases.
The proxy makes local calls on the RMI stub, which makes remote calls on the ser-
vice. The JVMs are displayed in Figure 9-8.

Figure 9-7. Class diagram for RMI and non-RMI proxies

FileClassifier
Proxy

FileClassifier

UnicastRemote
Object

RemoteExtended
FileClassifier

FileClassifier
Extended

Remote

ClassifierImpl_Stub
ExtendedFile

ClassifierImpl
ExtendedFile

Jan Newmarch
Something has gone wrong with the figure here - there should be a large arrowhead at this point, just like the other arrowheads

Choices for Service Architecture

115115

RMI Proxy for FileClassifier

An RMI proxy can be used when all of the work done by the service is done on the
server side. In that case, the server exports a thin proxy that simply channels
method calls from the client across the network to the “real” service in the server,
and returns the result back to the client. The programming for this is relatively
simple. The service has to do two major things in its class structure:

1. Implement

Remote

. This is because methods will be called on the service
from the proxy, and these will be remote calls on the service.

2. Inherit from

UnicastRemoteObject

 (or

Activatable

). This means that it’s the
backend service’s constructor that will create and export a proxy or stub
object without the programmer having to do anything more. (An alterna-
tive to inheritance is for the object to call the

UnicastRemoteObject.exportObject()

 method.)

What Doesn’t Change

In Chapter 8, we discussed a file-classifier application built from a client and a ser-
vice, and in this chapter we have shown a different implementation of the service.
A new file-classifier application can be built using this new implementation of the
service. Clearly, some things must change in this new version, but because of the Jini
architecture, the changes are basically localized to the service implementation. That

Figure 9-8. JVM objects for RMI and non-RMI proxies

FileClassifierProxy FileClassifierProxy

ClassifierImpl_Stub
ExtendedFile

ExtendedFile
ClassifierImpl

ClassifierImpl_Stub
ExtendedFile

client JVM server JVM

Chapter 9

116

is, most of the file-classifier application doesn’t change at all, even if the service
implementation changes.

The client is not concerned about the implementation of the service at all, and
so the client doesn’t change. The

FileClassifier

 interface doesn’t change either,
since this is fixed and used by any client and any service implementation. We have
already declared its methods to throw

RemoteException

, so a proxy is able to call its
methods remotely. The

MIMEType

 doesn’t change either, since we have already
declared it to implement

Serializable—

it is passed back across the network from
the service to its proxy.

RemoteFileClassifier

An implementation of the service using an RMI proxy will need to implement both
the

FileClassifier

 and the

Remote

 interfaces. It is convenient to define another
interface, called

RemoteFileClassifier

, just to do this. This interface will be used
fairly frequently in the rest of this book.

package rmi;

import common.FileClassifier;

import java.rmi.Remote;

/**

 * RemoteFileClassifier.java

 */

public interface RemoteFileClassifier extends FileClassifier, Remote {

} // RemoteFileClasssifier

FileClassifierImpl

The service provider will run the backend service. When the backend service
exports an RMI proxy, it will look like this:

package rmi;

import java.rmi.server.UnicastRemoteObject;

import common.MIMEType;

import common.FileClassifier;

Choices for Service Architecture

117117

/**

 * FileClassifierImpl.java

 */

public class FileClassifierImpl extends UnicastRemoteObject

 implements RemoteFileClassifier {

 public MIMEType getMIMEType(String fileName)

 throws java.rmi.RemoteException {

 System.out.println("Called with " + fileName);

 if (fileName.endsWith(".gif")) {

 return new MIMEType("image", "gif");

 } else if (fileName.endsWith(".jpeg")) {

 return new MIMEType("image", "jpeg");

 } else if (fileName.endsWith(".mpg")) {

 return new MIMEType("video", "mpeg");

 } else if (fileName.endsWith(".txt")) {

 return new MIMEType("text", "plain");

 } else if (fileName.endsWith(".html")) {

 return new MIMEType("text", "html");

 } else

 // fill in lots of other types,

 // but eventually give up and

 return new MIMEType(null, null);

 }

 public FileClassifierImpl() throws java.rmi.RemoteException {

 // empty constructor required by RMI

 }

} // FileClassifierImpl

FileClassifierServer

The service provider changes very little from the version in Chapter 8, which
exported a complete service. Both this server and the earlier one export a service
object with

register()

, but at this point the RMI runtime intervenes and substi-
tutes an RMI stub object. The other major change is that the server no longer
needs to explicitly stay alive. While the RMI system keeps a reference to the RMI
stub object, it keeps alive the JVM that contains the stub object. This means that
the daemon threads that are looking after the discovery process will continue to

Chapter 9

118

run, and in turn, since they have a reference to the service provider as listener, the
service provider will continue to exist.

The following server creates and manages the RMI service:

package rmi;

import rmi.FileClassifierImpl;

import rmi.RemoteFileClassifier;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lease.Lease;

// import com.sun.jini.lease.LeaseRenewalManager;

// import com.sun.jini.lease.LeaseListener;

// import com.sun.jini.lease.LeaseRenewalEvent;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseListener;

import net.jini.lease.LeaseRenewalEvent;

import java.rmi.RMISecurityManager;

/**

 * FileClassifierServer.java

 */

public class FileClassifierServerRMI implements DiscoveryListener, LeaseListener {

 protected FileClassifierImpl impl;

 protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();

 public static void main(String argv[]) {

 new FileClassifierServerRMI();

 // no need to keep server alive, RMI will do that

 }

 public FileClassifierServerRMI() {

 try {

 impl = new FileClassifierImpl();

 } catch(Exception e) {

 System.err.println("New impl: " + e.toString());

Choices for Service Architecture

119119

 System.exit(1);

 }

 // install suitable security manager

 System.setSecurityManager(new RMISecurityManager());

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 RemoteFileClassifier service;

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

 // export the proxy service

 ServiceItem item = new ServiceItem(null,

 impl,

 null);

 ServiceRegistration reg = null;

 try {

 reg = registrar.register(item, Lease.FOREVER);

 } catch(java.rmi.RemoteException e) {

 System.err.print("Register exception: ");

 e.printStackTrace();

 // System.exit(2);

 continue;

 }

 try {

 System.out.println("service registered at " +

 registrar.getLocator().getHost());

 } catch(Exception e) {

 }

 leaseManager.renewUntil(reg.getLease(), Lease.FOREVER, this);

Chapter 9

120

 }

 }

 public void discarded(DiscoveryEvent evt) {

 }

 public void notify(LeaseRenewalEvent evt) {

 System.out.println("Lease expired " + evt.toString());

 }

} // FileClassifierServerRMI

What Classes Need to Be Where?

This chapter deals with a number of different implementations of the file-classifier
service. Each implementation introduces some new classes, but also depends on
some of the classes we have developed in earlier chapters. In deploying the ser-
vice, we need to pay attention to this set of classes and determine which classes
need to be known to the different parts of the Jini system. This “What Classes Need
to Be Where?” section is repeated for each of the different service implementa-
tions, and it describes the configuration issues for each of these different
implementation choices.

For the RMI proxy implementation, we need to consider these classes:

• common.MIMEType

• common.FileClassifier

• rmi.RemoteFileClassifier

• rmi.FileClassifierImpl

• rmi.FileClassifierImpl_Stub

• rmi.FileClassifierServer

• client.TestFileClassifier

(The

FileClassifierImpl_Stub

 class is added to our classes by

rmic

 as discussed in
the next section.)

Choices for Service Architecture

121121

These classes could be running on up to four different machines:

• The server machine for

FileClassifierServer

• The HTTP server, which may be on a different machine

• The machine for the lookup service

• The machine running the

TestFileClassifier

 client

So, which classes need to be known to which machines?
The server running

FileClassifierServer

 needs to know the following classes
and interfaces:

• The

common.FileClassifier

 interface

• The

rmi.RemoteFileClassifier

 interface

• The

common.MIMEType

 class

• The

rmi.FileClassifierServer

 class

• The

rmi.FileClassifierImpl class

The lookup service does not need to know any of these classes. It just deals
with them in the form of a java.rmi.MarshalledObject.

The client needs to know the following:

• The common.FileClassifier interface

• The common.MIMEType class

In addition, the HTTP server needs to be able to load and store classes. It
needs to be able to access the following:

• The rmi.FileClassifierImpl_Stub interface

• The rmi.RemoteFileClassifier interface

• The common.FileClassifier interface

• The common.MIMEType class

Chapter 9

122

The reason for all of these is slightly complex. In the FileClassifierProxy con-
structor, the FileClassifierImpl class is passed in. The RMI runtime converts this
to FileClassifierImpl_Stub. This class implements the same interfaces as File-
ClassifierImpl, that is, RemoteFileClassifier and hence FileClassifier, so these
also need to be available. In the implementation, FileClassifierImpl references
the MIMEType class, so this must also be available.

So, what does the phrase “available” mean in the last sentence? The HTTP
server will look for files based on the java.rmi.server.codebase property of the
application server. The value of this property is a URL. Often, URLs can be file ref-
erences such as file://home/jan/index.html or HTTP references such as http://
host/index.html. But for this case, clients running anywhere will use the URL, so it
cannot be a file reference specific to a particular machine. For the same reason, it
cannot be just localhost, unless you are running every part of a Jini federation on a
single computer!

If java.rmi.server.codebase is an HTTP reference, then the preceding class
files must be accessible from that reference. For example, suppose the property is
set to

java.rmi.server.codebase=http://myWebHost/classes

(where myWebHost is the name of the HTTP server’s host) and this Web server has its
DocumentRoot set to /home/webdocs. In that case, these files must exist:

/home/webdocs/classes/rmi/FileClassifierImpl_Stub.class

/home/webdocs/classes/rmi/RemoteFileClassifier.class

/home/webdocs/classes/common/FileClassifier.class

/home/webdocs/classes/common/MIMEType.class

Running the RMI Proxy FileClassifier

As with the file classifier developed in Chapter 8, we again have a server and a
client to run. The client does not depend on how the service is implemented, and
it does not even find out about the service until it has been started and has per-
formed a search for the service. That means the client is started in exactly the same
way as it was started in Chapter 8:

java -Djava.security.policy=policy.all client.TestFileClassifier

The server in this situation is more complex than the one in Chapter 8,
because the RMI runtime is manipulating RMI stubs, and these have additional
requirements. Firstly, RMI stubs must be generated during compilation. Secondly,
security rights must be set, because an RMISecurityManager is used.

Choices for Service Architecture

123123

Although the FileClassifierImpl is created explicitly by the server, it is not this
class file that is moved around. The FileClassifierImpl object continues to exist
on the server machine. Rather, a stub object is moved around and will run on the
client machine. This stub is responsible for sending the method requests back to
the implementation class on the server. The client machine must be able to access
the class file for the stub. This class file has to be generated from the implementa-
tion class by the stub compiler rmic with the following command:

rmic -v1.2 -d /home/webdocs/classes rmi.FileClassifierImpl

Here, the -v1.2 option says to generate JDK 1.2 stubs only, and the -d option says
where to place the resultant stub class files so that they can be located by the HTTP
server (in this case, in the local file system). If the -v1.2 option is omitted, rmic will
also generate Java 1.1 skeleton files, which are not needed. In Java 1.3, it may not
be necessary to even run rmic. Note that the pathnames for directories here and
later do not include the package name of the class files. The class files (here
FileClassifierImpl_Stub.class) will be placed in and looked for in the appropriate
subdirectories.

The value of java.rmi.server.codebase must specify the protocol used by the
HTTP server to find the class files. This could be the file protocol or the http pro-
tocol. For example, if the class files are stored on my Web server’s pages under
classes/rmi/FileClassifierImpl_Stub.class. the codebase would be specified as

java.rmi.server.codebase=http://myWebHost/classes/

(where myWebHost is the name of the HTTP server).

The server also sets a security manager. This is a restrictive one, so it needs to
be told to allow access. This can be done by setting the java.security.policy prop-
erty to point to a security policy file, such as policy.all.

Combining all these points leads to startups such as this:

java -Djava.rmi.server.codebase=http://myWebHost/classes/ \

 -Djava.security.policy=policy.all \

 rmi.FileClassifierServer

Non-RMI Proxy for FileClassifier

Many client-server programs communicate by message passing, often using a TCP
socket. The two sides need to have an agreed-upon protocol; that is, they must
have a standard set of message formats and know what messages to receive and
what replies to send at any time. Jini can be used in this sort of case by providing a
wrapper around the client and server, and making them available as a Jini service.

Chapter 9

124

The original client then becomes a proxy agent for the server and is distributed to
Jini clients for execution. The original server runs within the Jini server and per-
forms the real work of the service, just as in the thin proxy model. What differs is
the class structure and how the components communicate.

The proxy and the service do not need to belong to the same class, or even
share common superclasses. Unlike the RMI case, the proxy is not derived from
the service, so they do not have a shared class structure. The proxy and the service
are written independently, using their own appropriate class hierarchies. However,
the proxy still has to implement the FileClassifier interface, since that is what the
client is asking for and the proxy is delivering.

If RMI is not used, then any other distributed communication mechanism can
be employed. Typically client-server systems will use something like reliable TCP
ports—this is not the only choice, but it is the one used in this example. Thus, the
service listens on an agreed-upon port, the client connects to this port, and they
exchange messages.

The message format adopted for this solution is really simple:

• The proxy sends a message giving the file extension that it wants classified.
This can be sent as a newline-terminated string (terminated by the '\n'
character).

• The service will either succeed or fail in the classification. If it fails, it sends a
single line of the empty string "" followed by a newline. If it succeeds, it
sends two lines, the first being the content type, the second the subtype.

The proxy will then use this reply to either return null or a new MIMEType object.

FileClassifierProxy

The proxy object will be exported completely to a Jini client, such as TestFileClas-
sifier. When this client calls the getMIMEType() method, the proxy opens up a
connection to the service on an agreed-upon TCP port and exchanges messages
on this port. It then returns a suitable result. The code looks like this:

package socket;

import common.FileClassifier;

import common.MIMEType;

import java.net.Socket;

import java.io.Serializable;

import java.io.IOException;

Choices for Service Architecture

125125

import java.rmi.Naming;

import java.io.*;

/**

 * FileClassifierProxy

 */

public class FileClassifierProxy implements FileClassifier, Serializable {

 static public final int PORT = 2981;

 protected String host;

 public FileClassifierProxy(String host) {

 this.host = host;

 }

 public MIMEType getMIMEType(String fileName)

 throws java.rmi.RemoteException {

 // open a connection to the service on port XXX

 int dotIndex = fileName.lastIndexOf('.');

 if (dotIndex == -1 || dotIndex + 1 == fileName.length()) {

 // can't find suitable index

 return null;

 }

 String fileExtension = fileName.substring(dotIndex + 1);

 // open a client socket connection

 Socket socket = null;

 try {

 socket = new Socket(host, PORT);

 } catch(Exception e) {

 return null;

 }

 String type = null;

 String subType = null;

 /*

 * protocol:

 * Write: file extension

 * Read: "null" + '\n'

 * type + '\n' + subtype + '\n'

 */

Chapter 9

126

 try {

 InputStreamReader inputReader =

 new InputStreamReader(socket.getInputStream());

 BufferedReader reader = new BufferedReader(inputReader);

 OutputStreamWriter outputWriter =

 new OutputStreamWriter(socket.getOutputStream());

 BufferedWriter writer = new BufferedWriter(outputWriter);

 writer.write(fileExtension);

 writer.newLine();

 writer.flush();

 type = reader.readLine();

 if (type.equals("null")) {

 return null;

 }

 subType = reader.readLine();

 } catch(IOException e) {

 return null;

 }

 // and finally

 return new MIMEType(type, subType);

 }

} // FileClassifierProxy

FileServerImpl

The FileServerImpl service will be running on the server side. It will run in its own
thread (inheriting from Thread) and will listen for connections. When one is
received, it will create a new Connection object in its own thread, to handle the
message exchange. (This creation of another thread is probably overkill here
where the entire message exchange is very short, but it is good practice for more
complex situations.)

/**

 * FileServerImpl.java

 */

package socket;

import java.net.*;

import java.io.*;

Choices for Service Architecture

127127

public class FileServerImpl extends Thread {

 protected ServerSocket listenSocket;

 public FileServerImpl() {

 try {

 listenSocket = new ServerSocket(FileClassifierProxy.PORT);

 } catch(IOException e) {

 e.printStackTrace();

 }

 }

 public void run() {

 try {

 while(true) {

 Socket clientSocket = listenSocket.accept();

 new Connection(clientSocket).start();

 }

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

} // FileServerImpl

class Connection extends Thread {

 protected Socket client;

 public Connection(Socket clientSocket) {

 client = clientSocket;

 }

 public void run() {

 String contentType = null;

 String subType = null;

 try {

 InputStreamReader inputReader =

 new InputStreamReader(client.getInputStream());

 BufferedReader reader = new BufferedReader(inputReader);

 OutputStreamWriter outputWriter =

 new OutputStreamWriter(client.getOutputStream());

 BufferedWriter writer = new BufferedWriter(outputWriter);

Chapter 9

128

 String fileExtension = reader.readLine();

 if (fileExtension.equals("gif")) {

 contentType = "image";

 subType = "gif";

 } else if (fileExtension.equals("txt")) {

 contentType = "text";

 subType = "plain";

 } // etc

 if (contentType == null) {

 writer.write("null");

 } else {

 writer.write(contentType);

 writer.newLine();

 writer.write(subType);

 }

 writer.newLine();

 writer.close();

 } catch(IOException e) {

 e.printStackTrace();

 }

 }

}

Service Provider

The Jini service provider must start a FileServerImpl to listen for later connections.
Then it can register a FileClassifierProxy proxy object with each lookup service,
which will send them on to interested clients. The proxy object must know where
the service backend object (the FileServerImpl) is listening in order to attempt a
connection to it, and this information is given by first making a query for the local
host and then passing the hostname to the proxy in its constructor.

package socket;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lease.Lease;

Choices for Service Architecture

129129

// import com.sun.jini.lease.LeaseRenewalManager; // Jini 1.0

// import com.sun.jini.lease.LeaseListener; // Jini 1.0

// import com.sun.jini.lease.LeaseRenewalEvent; // Jini 1.0

import net.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseListener;

import net.jini.lease.LeaseRenewalEvent;

import java.rmi.RMISecurityManager;

import java.net.*;

/**

 * FileClassifierServer.java

 */

public class FileClassifierServer implements DiscoveryListener, LeaseListener {

 protected FileClassifierProxy proxy;

 protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();

 public static void main(String argv[]) {

 new FileClassifierServer();

 try {

 Thread.sleep(1000000L);

 } catch(Exception e) {

 }

 }

 public FileClassifierServer() {

 try {

 new FileServerImpl().start();

 } catch(Exception e) {

 System.err.println("New impl: " + e.toString());

 System.exit(1);

 }

 // set RMI scurity manager

 System.setSecurityManager(new RMISecurityManager());

 // proxy primed with address

 String host = null;

 try {

 host = InetAddress.getLocalHost().getHostName();

 } catch(UnknownHostException e) {

 e.printStackTrace();

 System.exit(1);

Chapter 9

130

 }

 proxy = new FileClassifierProxy(host);

 // now continue as before

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 for (int n = 0; n < registrars.length; n++) {

System.out.println("found registrars");

 ServiceRegistrar registrar = registrars[n];

 // export the proxy service

 ServiceItem item = new ServiceItem(null,

 proxy,

 null);

 ServiceRegistration reg = null;

 try {

 reg = registrar.register(item, Lease.FOREVER);

 } catch(java.rmi.RemoteException e) {

 System.err.print("Register exception: ");

 e.printStackTrace();

 // System.exit(2);

 continue;

 }

 try {

 System.out.println("service registered at " +

 registrar.getLocator().getHost());

 } catch(Exception e) {

 }

 leaseManager.renewUntil(reg.getLease(), Lease.FOREVER, this);

 }

 }

Jan Newmarch
delete this line "System.out.println(...)" - it was debugging code that I forgot to remove

Choices for Service Architecture

131131

 public void discarded(DiscoveryEvent evt) {

 }

 public void notify(LeaseRenewalEvent evt) {

 System.out.println("Lease expired " + evt.toString());

 }

} // FileClassifierServer

What Classes Need to Be Where?

This section has considered a non-RMI proxy implementation. An application that
uses this service implementation will need to deal with these classes:

• common.MIMEType

• common.FileClassifier

• socket.FileClassifierProxy

• socket.FileServerImpl

• socket.FileClassifierServer

• client.TestFileClassifier

Objects in these classes could be running on up to four different machines:

• The server machine for FileClassifierServer

• The HTTP server, which may be on a different machine

• The machine for the lookup service

• The machine running the TestFileClassifier client

So, what classes need to be known to which machines?
The server running FileClassifierServer needs to know the following classes

and interfaces:

• The common.FileClassifier interface

Chapter 9

132

• The common.MIMEType class

• The socket.FileClassifierServer class

• The socket.FileClassifierProxy class

• The socket.FileServerImpl class

The lookup service does not need to know any of these classes. It just deals
with them in the form of a java.rmi.MarshalledObject.

The client needs to know the following:

• The common.FileClassifier interface

• The common.MIMEType class

In addition, the HTTP server needs to be able to load and store classes. It
needs to be able to access the following:

• The socket.FileClassifierProxy interface

• The common.FileClassifier interface

• The common.MIMEType class

Running the RMI Proxy FileClassifier

A file classification application will have to run a server and a client, as in the ear-
lier standalone implementation in Chapter 8 and the RMI implementation just a
few pages earlier. The client is unchanged, as it does not care which server imple-
mentation is used:

java -Djava.security.policy=policy.all client.TestFileClassifier

The value of java.rmi.server.codebase must specify the protocol used by the HTTP
server to find the class files. This could be the file protocol or the http protocol.
For example, if the class files are stored on my Web server’s pages under classes/
socket/FileClassifierProxy.class, the codebase would be specified as

java.rmi.server.codebase=http://myWebHost/classes/

(where myWebHost is the name of the HTTP server host).

Choices for Service Architecture

133133

The server also sets a security manager. This is a restrictive one, so it needs to
be told to allow access. This can be done by setting the java.security.policy prop-
erty to point to a security policy file, such as policy.all.

Combining all these points leads to startups such as this:

java -Djava.rmi.server.codebase=http://myWebHost/classes/ \

 -Djava.security.policy=policy.all \

 FileClassifierServer

RMI and non-RMI Proxies for FileClassifier

An alternative that is often used for client/server systems instead of message pass-
ing is remote procedure calls (RPC). This involves a client that does some local
processing and makes some RPC calls to the server. We can also bring this into the
Jini world by using a proxy that does some processing on the client side, and that
makes use of an RMI proxy/stub when it needs to make calls back to the service.
The RPC mechanism would most naturally be done using RMI in Java.

Some file types are more common than others: GIF, DOC, and HTML files
abound, but there are many more types, ranging from less common ones, such as
FrameMaker MIF files, to downright obscure ones, such as PDP11 overlay files. An
implementation of a file classifier might place the common types in a proxy object
that makes them quickly available to clients, and the less common ones back on
the server, accessible through a (slower) RMI call.

FileClassifierProxy

The proxy object will implement FileClassifier so that clients can find it. The
implementation will handle some file types locally, but others it will pass on to
another object that implements the ExtendedFileClassifier interface. The Extended-
FileClassifier has one method: getExtraMIMEType(). The proxy is told about this
other object at constructor time. The FileClassifierProxy class is as follows:

/**

 * FileClassifierProxy.java

 */

package extended;

import common.FileClassifier;

import common.ExtendedFileClassifier;

import common.MIMEType;

Chapter 9

134

import java.rmi.RemoteException;

public class FileClassifierProxy implements FileClassifier {

 /**

 * The service object that knows lots more MIME types

 */

 protected ExtendedFileClassifier extension;

 public FileClassifierProxy(ExtendedFileClassifier ext) {

 this.extension = ext;

 }

 public MIMEType getMIMEType(String fileName)

 throws RemoteException {

 if (fileName.endsWith(".gif")) {

 return new MIMEType("image", "gif");

 } else if (fileName.endsWith(".jpeg")) {

 return new MIMEType("image", "jpeg");

 } else if (fileName.endsWith(".mpg")) {

 return new MIMEType("video", "mpeg");

 } else if (fileName.endsWith(".txt")) {

 return new MIMEType("text", "plain");

 } else if (fileName.endsWith(".html")) {

 return new MIMEType("text", "html");

 } else {

 // we don't know it, pass it on to the service

 return extension.getExtraMIMEType(fileName);

 }

 }

} // FileClassifierProxy

ExtendedFileClassifier

The ExtendedFileClassifier interface will be the top-level interface for the service
and an RMI proxy for the service. It will be publicly available for all clients to use.
An immediate subinterface, RemoteExtendedFileClassifier, will add the Remote
interface:

/**

 * ExtendedFileClassifier.java

 */

Choices for Service Architecture

135135

package common;

import java.io.Serializable;

import java.rmi.RemoteException;

public interface ExtendedFileClassifier extends Serializable {

 public MIMEType getExtraMIMEType(String fileName)

 throws RemoteException;

} // ExtendedFileClassifier

and

/**

 * RemoteExtendedFileClassifier.java

 */

package extended;

import java.rmi.Remote;

interface RemoteExtendedFileClassifier extends common.ExtendedFileClassifier,

Remote {

} // RemoteExtendedFileClassifier

ExtendedFileClassifierImpl

The implementation of the ExtendedFileClassifier interface is done by an Extend-
edFileClassifierImpl object. This will also need to extend UnicastRemoteObject so
that the RMI runtime can create an RMI proxy for it. Since this object may handle
requests from many proxies, an alternative implementation of searching for MIME
types using a hash table is given. This is more efficient for repeated searches:

/**

 * ExtendedFileClassifierImpl.java

 */

package extended;

import java.rmi.server.UnicastRemoteObject;

import common.MIMEType;

Chapter 9

136

import java.util.HashMap;

import java.util.Map;

public class ExtendedFileClassifierImpl extends UnicastRemoteObject

 implements RemoteExtendedFileClassifier {

 /**

 * Map of String extensions to MIME types

 */

 protected Map map = new HashMap();

 public ExtendedFileClassifierImpl() throws java.rmi.RemoteException {

 /* This object will handle all classification attempts

 * that fail in client-side classifiers. It will be around

 * a long time, and may be called frequently, so it is worth

 * optimizing the implementation by using a hash map

 */

 map.put("rtf", new MIMEType("application", "rtf"));

 map.put("dvi", new MIMEType("application", "x-dvi"));

 map.put("png", new MIMEType("image", "png"));

 // etc

 }

 public MIMEType getExtraMIMEType(String fileName)

 throws java.rmi.RemoteException {

 MIMEType type;

 String fileExtension;

 int dotIndex = fileName.lastIndexOf('.');

 if (dotIndex == -1 || dotIndex + 1 == fileName.length()) {

 // can't find suitable suffix

 return null;

 }

 fileExtension= fileName.substring(dotIndex + 1);

 type = (MIMEType) map.get(fileExtension);

 return type;

 }

} // ExtendedFileClassifierImpl

Choices for Service Architecture

137137

FileClassifierServer

The final piece in this jigsaw puzzle is the server that creates the service (and
implicitly the RMI proxy for the service) and also the proxy primed with knowl-
edge of the service:

package extended;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lease.Lease;

// import com.sun.jini.lease.LeaseRenewalManager;

// import com.sun.jini.lease.LeaseListener;

// import com.sun.jini.lease.LeaseRenewalEvent;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseListener;

import net.jini.lease.LeaseRenewalEvent;

import java.rmi.RMISecurityManager;

/**

 * FileClassifierServer.java

 */

public class FileClassifierServer implements DiscoveryListener, LeaseListener {

 protected FileClassifierProxy proxy;

 protected ExtendedFileClassifierImpl impl;

 protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();

 public static void main(String argv[]) {

 new FileClassifierServer();

 // RMI keeps this alive

 }

 public FileClassifierServer() {

 try {

 impl = new ExtendedFileClassifierImpl();

 } catch(Exception e) {

 System.err.println("New impl: " + e.toString());

 System.exit(1);

Chapter 9

138

 }

 // set RMI scurity manager

 System.setSecurityManager(new RMISecurityManager());

 // proxy primed with impl

 proxy = new FileClassifierProxy(impl);

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 for (int n = 0; n < registrars.length; n++) {

System.out.println("found registrars");

 ServiceRegistrar registrar = registrars[n];

 // export the proxy service

 ServiceItem item = new ServiceItem(null,

 proxy,

 null);

 ServiceRegistration reg = null;

 try {

 reg = registrar.register(item, Lease.FOREVER);

 } catch(java.rmi.RemoteException e) {

 System.err.print("Register exception: ");

 e.printStackTrace();

 continue;

 }

 try {

 System.out.println("service registered at " +

 registrar.getLocator().getHost());

 } catch(Exception e) {

 }

Jan Newmarch
Delete this line - it was debugging code that should have been removed

Choices for Service Architecture

139139

 leaseManager.renewUntil(reg.getLease(), Lease.FOREVER, this);

 }

 }

 public void discarded(DiscoveryEvent evt) {

 }

 public void notify(LeaseRenewalEvent evt) {

 System.out.println("Lease expired " + evt.toString());

 }

} // FileClassifierServer

What Classes Need to Be Where?

The implementation of the file classifier in this section uses both RMI and non-
RMI proxies. As in other implementations, there is a set of classes involved that
need to be known to different parts of an application. We have these classes:

• common.MIMEType

• common.FileClassifier

• common.ExtendedFileClassifier

• extended.FileClassifierProxy

• extended.RemoteExtendedFileClassifier

• extended.ExtendedFileServerImpl

• extended.FileClassifierServer

• client.TestFileClassifier

The server running FileClassifierServer needs to know the following classes
and interfaces:

• The common.FileClassifier interface

• The common.MIMEType class

• The common.ExtendedFileClassifier class

Chapter 9

140

• The extended.FileClassifierServer class

• The extended.FileClassifierProxy class

• The extended.RemoteExtendedFileClassifier class

• The extended.ExtendedFileServerImpl class

The lookup service does not need to know any of these classes. It just deals
with them in the form of a java.rmi.MarshalledObject.

The client needs to know the following:

• The common.FileClassifier interface

• The common.MIMEType class

In addition, the HTTP server needs to be able to load and store classes. It
needs to be able to access the following:

• The extended.FileClassifierProxy interface

• The extended.RemoteExtendedFileClassifier class

• The extended.ExtendedFileServerImpl_Stub class

• The common.FileClassifier interface

• The common.MIMEType class

Using Other Services

In all the examples so far, a proxy has been created in a server and registered with a
lookup service. Meanwhile, a service backend has usually been left behind in the
server to handle calls from the proxy. However, there may be no need for the ser-
vice to exist on the server, and the proxy could make use of other services
elsewhere. This may be subject to security restrictions imposed by the client,
which may disallow connections to some hosts.

In this section, we shall give an example of using a non-Jini service on another
host. Recently an Australian, Pat Farmer, attempted to set a world record for jog-
ging the longest distance. While he was running around, I became involved in a
small project to broadcast his heartbeat live to the Web; a heart monitor was
attached to him, which talked via an RS232 link to a mobile phone he was carrying.

Choices for Service Architecture

141141

This did a data transfer to a program running at http://www.micromed.com.au
located at the Gold Coast, which forwarded the data to a machine at the Distrib-
uted Systems Technology Centre (DSTC) in Brisbane. This ran a Web server deliv-
ering an applet, and the applet talked back to a server on the DSTC machine,
which sent out the data to each applet as it was received from the heart monitor.

Now that the experiment is over, the broadcast data is sitting as a file at http:/
/www.micromed.com.au/patfarmer/v2/patfhr.ecg, and it can be viewed on the applet
from http://www.micromed.com.au/patfarmer/v2/heart.html. We can make it into a
Jini service as follows:

1. Create a service that we can locate using the service type (“display a heart
monitor trace”) and information about it, such as whose heart trace it is
showing.

2. Have the service connect to an HTTP address encoded into the service by
its constructor (or other means), and read from this and display the con-
tents, assuming it is heart cardiograph data.

3. The information about whose trace it is can be given by a Name entry.

The client shows what you see in Figure 9-9. The break towards the right-hand
side shows where the current trace is being written (it scans from left to right, over-
writing as it goes). Cardiologists do not seem to be concerned about the lack of
horizontal or vertical scales, as long as the trace is physically the right size!

The heart monitor service can be regarded in a couple of ways:

• It is a full-blown service uploaded to the client that just happens to use an
external data source supplied from an HTTP server.

Figure 9-9. Heart monitor trace service

Jan Newmarch
Breaking the URL in // doesn't look so good. Should the entire URL be placed on the next line?

Jan Newmarch
This figure doesn't look too good - I'll send a replacement

Chapter 9

142

• It is a “fat” proxy to the HTTP service, and it acts as a client to this service by
displaying the data.

Many other non-RMI services can be built that act in this “fat proxy” style.

Heart Interface

The Heart interface only has one method, and that is to show() the heart trace in
some manner:

/**

 * Heart.java

 */

package heart;

public interface Heart extends java.io.Serializable {

 public void show();

} // Heart

Heart Server

The HeartServer is similar to the method discussed in Chapter 8, of uploading a
complete implementation of the service. This service, of type HeartImpl, is primed
with a URL identifying where the heart data is stored. An HTTP server will later
deliver this data.

This implementation is enough to locate the service. However, rather than just
getting anyone’s heart data, a client may wish to search for a particular person’s
data. This can be done by adding a Name entry as additional information about the
service. A server that exports the complete service, plus the entry information, is
as follows:

package heart;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

Choices for Service Architecture

143143

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lease.Lease;

// import com.sun.jini.lease.LeaseRenewalManager;

// import com.sun.jini.lease.LeaseListener;

// import com.sun.jini.lease.LeaseRenewalEvent;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseListener;

import net.jini.lease.LeaseRenewalEvent;

import net.jini.core.entry.Entry;

import net.jini.lookup.entry.Name;

/**

 * HeartServer.java

 */

public class HeartServer implements DiscoveryListener,

 LeaseListener {

 protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();

 public static void main(String argv[]) {

 new HeartServer();

 // keep server running forever to

 // - allow time for locator discovery and

 // - keep re-registering the lease

 Object keepAlive = new Object();

 synchronized(keepAlive) {

 try {

 keepAlive.wait();

 } catch(InterruptedException e) {

 // do nothing

 }

 }

 }

 public HeartServer() {

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 System.exit(1);

Chapter 9

144

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

 ServiceItem item = new ServiceItem(null,

 // new HeartImpl("file:/home/jan/

projects/jini/doc/heart/TECG3.ecg"),

 new HeartImpl("http://

www.micromed.com.au/patfarmer/v2/patfhr.ecg"),

 new Entry[] {new Name("Pat Farmer")});

 ServiceRegistration reg = null;

 try {

 reg = registrar.register(item, Lease.FOREVER);

 } catch(java.rmi.RemoteException e) {

 System.err.println("Register exception: " + e.toString());

 continue;

 }

 System.out.println("service registered");

 // set lease renewal in place

 leaseManager.renewUntil(reg.getLease(), Lease.FOREVER, this);

 }

 }

 public void discarded(DiscoveryEvent evt) {

 }

 public void notify(LeaseRenewalEvent evt) {

 System.out.println("Lease expired " + evt.toString());

 }

} // HeartServer

Jan Newmarch
delete this line beginning with //

Jan Newmarch
continuation mark needed here. Alternatively, add this line before "ServiceItem item =..."

String url = "http://www.micromed.com.au/patfarmer/v2/patfhr.ecg";

and then change the text to be

new HeartImpl(url),

Choices for Service Architecture

145145

Heart Client

The client searches for a service implementing the Heart interface, with the addi-
tional requirement that it be for a particular person. Once it has this, the client just
calls the show() method on the service to display this in some manner:

package heart;

import heart.Heart;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.entry.Entry;

import net.jini.lookup.entry.Name;

/**

 * HeartClient.java

 */

public class HeartClient implements DiscoveryListener {

 public static void main(String argv[]) {

 new HeartClient();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(1000000L);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

 public HeartClient() {

 System.setSecurityManager(new RMISecurityManager());

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

Chapter 9

146

 System.err.println(e.toString());

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 Class [] classes = new Class[] {Heart.class};

 Entry [] entries = new Entry[] {new Name("Pat Farmer")};

 Heart heart = null;

 ServiceTemplate template = new ServiceTemplate(null, classes,

 entries);

 for (int n = 0; n < registrars.length; n++) {

 System.out.println("Service found");

 ServiceRegistrar registrar = registrars[n];

 try {

 heart = (Heart) registrar.lookup(template);

 } catch(java.rmi.RemoteException e) {

 e.printStackTrace();

 continue;

 }

 if (heart == null) {

 System.out.println("Heart null");

 continue;

 }

 heart.show();

 System.exit(0);

 }

 }

 public void discarded(DiscoveryEvent evt) {

 // empty

 }

} // HeartClient

Choices for Service Architecture

147147

Heart Implementation

The HeartImpl class opens a connection to an HTTP server and requests delivery of
a file. Heart data needs to be displayed at a reasonable rate, so it reads, draws, and
sleeps, in a loop. It acts as a fat client to the HTTP server, displaying the data in a
suitable format (in this case, it uses HTTP as a transport mechanism for data deliv-
ery). As a “client-aware” service, it customizes this delivery to the characteristics of
the client platform, just occupying a “reasonable” amount of screen space and
using local colors and fonts.

/**

 * HeartImpl.java

 */

package heart;

import java.io.*;

import java.net.*;

import java.awt.*;

public class HeartImpl implements Heart {

 protected String url;

 /*

 * If we want to run it standalone we can use this

 */

 public static void main(String argv[]) {

 HeartImpl impl =

 new HeartImpl("file:/home/jan/projects/jini/doc/heart/TECG3.ecg");

 impl.show();

 }

 public HeartImpl(String u) {

 url = u;

 }

 double[] points = null;

 Painter painter = null;

 String heartRate = "--";

Chapter 9

148

 public void setHeartRate(int rate) {

 if (rate > 20 && rate <= 250) {

 heartRate = "Heart Rate: " + rate;

 } else {

 heartRate = "Heart Rate: --";

 }

 // ? ask for repaint?

 }

 public void quit(Exception e, String s) {

 System.err.println(s);

 e.printStackTrace();

 System.exit(1);

 }

 public void show() {

 int SAMPLE_SIZE = 300 / Toolkit.getDefaultToolkit().

 getScreenResolution();

 Dimension size = Toolkit.getDefaultToolkit().

 getScreenSize();

 int width = (int) size.getWidth();

 // capture points in an array, for redrawing in app if needed

 points = new double[width * SAMPLE_SIZE];

 for (int n = 0; n < width; n++) {

 points[n] = -1;

 }

 URL dataUrl = null;

 InputStream in = null;

 try {

 dataUrl = new URL(url);

 in = dataUrl.openStream();

 } catch (Exception ex) {

 quit(ex, "connecting to ECG server");

 return;

 }

 Frame frame = new Frame("Heart monitor");

 frame.setSize((int) size.getWidth()/2, (int) size.getHeight()/2);

 try {

 painter = new Painter(this, frame, in);

 painter.start();

Jan Newmarch
delete this line beginning with //

Choices for Service Architecture

149149

 } catch (Exception ex) {

 quit(ex, "fetching data from ECG server");

 return;

 }

 frame.setVisible(true);

 }

} // HeartImpl

class Painter extends Thread {

 static final int DEFAULT_SLEEP_TIME = 25; // milliseconds

 static final int CLEAR_AHEAD = 15;

 static final int MAX = 255;

 static final int MIN = 0;

 final int READ_SIZE = 10;

 protected HeartImpl app;

 protected Frame frame;

 protected InputStream in;

 protected final int RESOLUTION = Toolkit.getDefaultToolkit().

 getScreenResolution();

 protected final int UNITS_PER_INCH = 125;

 protected final int SAMPLE_SIZE = 300 / RESOLUTION;

 protected int sleepTime = DEFAULT_SLEEP_TIME;

 public Painter(HeartImpl app, Frame frame, InputStream in) throws Exception {

 this.app = app;

 this.frame = frame;

 this.in = in;

 }

 public void run() {

 while (!frame.isVisible()) {

 try {

 Thread.sleep(1000);

 } catch(Exception e) {

 // ignore

 }

 }

 int height = frame.getSize().height;

 int width = frame.getSize().width;

Chapter 9

150

 int x = 1; // start at 1 rather than 0 to avoid drawing initial line

 // from -128 .. 127

 int magnitude;

 int nread;

 int max = MIN; // top bound of magnitude

 int min = MAX; // bottom bound of magnitude

 int oldMax = MAX + 1;

 byte[] data = new byte[READ_SIZE];

 Graphics g = frame.getGraphics();

 g.setColor(Color.red);

 try {

 Font f = new Font("Serif", Font.BOLD, 20);

 g.setFont(f);

 } catch (Exception ex) {

 //

 }

 try {

 boolean expectHR = false; // true ==> next byte is heartrate

 while ((nread = in.read(data)) != -1) {

 for (int n = 0; n < nread; n++) {

 int thisByte = data[n] & 0xFF;

 if (expectHR) {

 expectHR = false;

 app.setHeartRate(thisByte);

 continue;

 } else if (thisByte == 255) {

 expectHR = true;

 continue;

 }

 // we are reading bytes, from -127..128

 // convert to unsigned

 magnitude = thisByte;

 // then convert to correct scale

 magnitude -= 128;

 // scale and convert to window coord from the top downwards

 int y = ((128 - magnitude) * RESOLUTION) / UNITS_PER_INCH;

 app.points[x] = y;

Choices for Service Architecture

151151

 // draw only on multiples of sample size

 if (x % SAMPLE_SIZE == 0) {

 // delay to draw at a reasonable rate

 Thread.sleep(sleepTime);

 int x0 = x / SAMPLE_SIZE;

 g.clearRect(x0, 0, CLEAR_AHEAD, height);

 if (oldMax != MAX + 1) {

 g.drawLine(x0-1, oldMax, x0, min);

 }

 g.drawLine(x0, min, x0, max);

 oldMax = max;

 min = 1000;

 max = -1000;

 if (app.heartRate != null) {

 g.setColor(Color.black);

 g.clearRect(0, 180, 200, 100);

 g.drawString(app.heartRate, 0, 220);

 g.setColor(Color.red);

 }

 } else {

 if (y > max) max = y;

 if (y < min) min = y;

 }

 if (++x >= width * SAMPLE_SIZE) {

 x = 0;

 }

 }

 }

 } catch(Exception ex) {

 if (! (ex instanceof SocketException)) {

 System.out.println("Applet quit -- got " + ex);

 }

 } finally {

 try {

 if (in != null) {

 in.close();

 in = null;

 }

 } catch (Exception ex) {

 // hide it

 }

 }

 }

}

Chapter 9

152

Summary

Clients are built to make use of the services they find, but they do not need to be
concerned with how the services are implemented. On the other hand, service
implementers need to be aware of the choices they have in building services, and
they need to choose the architecture that best suits the needs of the service. This
chapter has looked at a number of possibilities and has used a simple running
example to illustrate some of the possible design patterns.

