

63

CHAPTER 7

Leasing

I

N

DISTRIBUTED

APPLICATIONS

,

THERE

MAY

BE

 partial failures of the network or of
components on the network. Leasing is a way for components to register that they
are alive, but to ensure that they are “timed out” if they fail or are unreachable.
Leasing is the mechanism used between applications to give access to resources
over a period of time in an agreed manner.

Leases are requested for periods of time, and these requests may be granted,
modified, or denied. The most common example of a lease is when a service is reg-
istered with lookup services. A lookup service will not want to keep a service
forever, because it may disappear. Keeping information about nonexistent ser-
vices is a waste of resources on the lookup service and also may lead to clients
wasting time trying to access services that aren’t there. As a result, a lookup service
will grant a lease saying that it will only keep information for a certain period of
time, and the service can renew the lease later if it wants to.

Requesting and Receiving Leases

Leases are requested for a period of time. In Jini, a common use of leasing is for a
service provider to request that a copy of the service be kept on a lookup service
for a certain length of time, for delivery to clients on request. The service provider
requests a time in the

ServiceRegistrar

’s

register()

 method. Two special values of
the time are

•

Lease.ANY—

the service lets the lookup service decide on the time

•

Lease.FOREVER—

the request is for a lease that never expires

The lookup service acts as the granter of the lease and decides how long it will
actually create the lease for. (The lookup service from Sun typically sets the lease
time as only five minutes.) Once it has done that, it will attempt to ensure that the
request is honored for that period of time. The lease is returned to the service and
is accessible through the

getLease()

 method of the

ServiceRegistration

 object.

Chapter 7

64

These objects are shown in Figure 7-1. The following are typical calls to register the
service and then find the lease:

ServiceRegistration reg = registrar.register();

Lease lease = reg.getLease();

The principal methods of the

Lease

 object are these:

package net.jini.core;

public interface Lease {

 void cancel() throws

 UnknownLeaseException,

 java.rmi.RemoteException;

 long getExpiration();

 void renew(long duration) throws

 LeaseDeniedException,

 UnknownLeaseException,

 java.rmi.RemoteException;

}

The expiration value returned from

getExpiration()

 is the time in milliseconds
since the beginning of the epoch (the same as in

System.currentTimeMillis()

). To
find the amount of time still remaining from the present, the current time can be
subtracted from this, as follows:

long duration = lease.getExpiration() - System.currentTimeMillis();

Figure 7-1. Objects in a leased system

Service

registration

registrar

leaseexported
service

Locator

Leasing

6565

Cancellation

A service can cancel its lease by using

cancel()

. The lease communicates back to
the lease management system on the lookup service, which cancels storage of the
service.

Expiration

When a lease expires, it does so silently. That is, the lease granter (the lookup ser-
vice) will not inform the lease holder (the service) that it has expired. While it
might seem nice to get warning of a lease expiring so that it can be renewed, this
would have to be done in advance of the expiration (“I’m just about to expire;
please renew me quickly!”) but this would complicate the leasing system and not
be completely reliable anyway (for example, how far in advance is soon enough?).

Instead, it is up to the service provider to call

renew()

 before the lease expires if
it wishes the lease to continue. The parameter for

renew()

is in milliseconds, and
represents an extra duration from now. This is in contrast to the expiration time
returned from

getExpiration()

, which is measured since the epoch.

Renewing Leases

Jini supplies a

LeaseRenewalManager

 class that looks after the process of calling

renew()

 at suitable times.

package net.jini.lease;

public class LeaseRenewalManager {

 public LeaseRenewalManager();

 public LeaseRenewalManager(Lease lease,

 long expiration,

 LeaseListener listener);

 public void renewFor(Lease lease,

 long duration,

 LeaseListener listener);

WARNING In Jini 1.0, this class was in package com.sun.jini; in Jini 1.1 it is
now in package net.jini.lease.

Chapter 7

66

 public void renewUntil(Lease lease,

 long expiration,

 LeaseListener listener);

The

LeaseRenewalManager

 manages a set of leases, which may be set by a con-
structor or added later by

renewFor()

 or

renewUntil()

. The time requested in these
methods is in milliseconds. The

expiration

 time is measured since the epoch,
whereas the

duration

 time is measured from now.
Generally leases will be renewed and the manager will function quietly.

However, the lookup service may decide not to renew a lease and will cause an
exception to be thrown. This will be caught by the renewal manager and will cause
the listener’s

notify()

 method to be called with a

LeaseRenewalEvent

 as parameter,
which will allow the application to take corrective action if its lease is denied. If the
listener is

null

,

then no notification will take place.
If you are using Jini 1.0, you have to be careful about setting the

duration

 in

renewFor(

) due to a bug that has since been fixed. If you want the service to be
registered forever, it is tempting to use

Lease.FOREVER

. However, the Jini 1.0 imple-
mentation just adds this to

System.currentTimeMillis()

, which overflows to a
negative value that is not checked. As a result, it never does any renewals. You need
to check that

duration + System.currentTimeMillis() > 0

before calling

renewFor()

. This is fixed in Jini 1.1. The

renewUntil()

 method can use

Lease.FOREVER

 with no problems.

Granting and Handling Leases

The preceding discussion looked at leases from the side of the client that receives a
lease and has to manage it. The converse of this is the agent that grants leases and
has to manage things from its side. This is more advanced material that you can
skip for now if you want—it is not really needed until Chapter 14. An example of
creating a lease is also given in Chapter 13.

A lease can be granted for almost any remote service—any one where one
object wants to maintain information about another one that is not within the
same virtual machine. As with other remote services, there are the added partial
failure modes, such as network crash, remote service crash, timeouts, and so on.
An object that keeps information on a remote service will hand out a lease to the
service and will want the remote service to keep “pinging” it periodically to say
that it is still alive and that it wants the information kept. Without this periodic
assurance, the object might conclude that the remote service has vanished or is
somehow unreachable, and that it should discard the information about it.

Leasing

6767

Leases are a very general mechanism for allowing one service to have confi-
dence in the existence of the other for a limited period. Because they are general,
they allow for a great deal of flexibility in use. Because of the potential variety of
services, some parts of the Jini lease mechanism cannot be completely defined
and must be left as interfaces for applications to fill in. This generality means that
all of the details are not filled in for you, as your own requirements cannot be com-
pletely predicted in advance.

A lease is given as an interface, and any agent that wishes to grant leases must
implement this interface. Jini provides two implementations, an

AbstractLease

and a subclass of this, a

LandlordLease

.
A main issue in implementing a particular lease class lies in setting a policy for

handling the initial request for a lease period and in deciding what to do when a
renewal request comes in. A couple of simple possibilities are these:

• Always grant the requested time

• Ignore the requested time and always grant a fixed time

Of course, there are many more possibilities based on the lessor’s expected time to
live, system load, etc.

There are other issues, though. Any particular lease will need a time-out
mechanism. Also, a group of leases can be managed together, and this can reduce
the amount of overhead involved in managing individual leases.

Abstract Lease

An abstract lease gives a basic implementation of a lease that can almost be used
for simple leases.

package com.sun.jini.lease;

public abstract class AbstractLease implements Lease, java.io.Serializable {

 protected AbstractLease(long expiration);

 public long getExpiration();

 public int getSerialFormat();

WARNING This class, and those that depend on it, are still not fully specified
and may change in future versions of Jini.

Chapter 7

68

 public void setSerialFormat(int format);

 public void renew(long duration);

 protected abstract long doRenew(long duration);

}

This class supplies straightforward implementations of much of the

Lease

interface, with three provisos:

• The constructor is

protected

, so that constructing a lease with a specified
duration is devolved to a subclass. This means that a lease duration policy
must be set by this subclass.

• The

renew()

 method calls into the abstract

doRenew()

 method, again to force
a subclass to implement a renewal policy.

• The

Lease

 interface does not implement the

cancel()

 method, so this must
also be left to a subclass.

Thus, this class implements the easy things, and leaves all matters of policy to con-
crete subclasses.

Landlord Lease Package

The

landlord

 is a package that allows more complex leasing systems to be built. It
is not part of the Jini specification, but is supplied as a set of classes and interfaces.
The set is not complete in itself—some parts are left as interfaces and need to have
class implementations. These will be supplied by a particular application.

A landlord looks after a set of leases. Leases are identified to the landlord by a

cookie

, which is just some object that uniquely labels each lease to its landlord. It
could be an

Integer

, for example, with a new value for each lease. A landlord does
not need to create leases itself, as it can use a landlord lease factory to do this. (But,
of course, it can create them, depending on how an implementation is done.)
When a client wishes to cancel or renew a lease, it asks the lease to perform the
renewal, and in turn the lease asks its landlord to do it. A client is unlikely to ask
the landlord directly, as it will only have been given a lease, not a landlord.

WARNING This landlord package is part of the com.sun.jini package, which
may change for Jini 1.1.

Jan Newmarch
Delete this warning - the change never occurred

Leasing

6969

The principal classes and interfaces in the

landlord

 package are shown in
Figure 7-2, where the interfaces are shown in italicized font and the classes in
normal font.

This fairly complex set of classes and interfaces is driven by a number of
factors:

• The key object in a landlord system is the landlord itself. Because there are
many ways that a landlord could manage a set of leases, the

Landlord

 is an
interface rather than a class, with many possible implementations.

• Because there are many possible landlords, there could be many possible
lease-types created, which will all be subclasses of

Lease

. A common design
pattern in such a circumstance is to use a

 factory

 object to create the leases.
These factory objects will implement the

LandlordLeaseFactory

 interface.

• A simple lease implementation was needed for a variety of situations, and
this is the

LandlordLease

 class. When a particular implementation is chosen,
the factory pattern says that a new factory is needed to create new objects.
So to create

LandlordLease

 objects, the

LandlordLease.Factory

 factory class is
used. (Note the dot (

.

) in the

LandlordLease.Factory

 class name, which dis-
tinguishes it from the

LandlordLeaseFactory

 interface.) A lease (on the client)
also requires the existence of some handler for its methods on the lease-
granting side, which is the landlord.

• To handle all policy issues, such as initial granting of lease times, and requests
for lease renewal, a policy object is used. There can be many possible policies

Figure 7-2. Class diagram of the landlord package

LandlordLease

LeasedResource

LandlordLeaseFactory

LandlordLease.Factory

Landlord

LeaseManager

LeasePolicy

LeaseDurationPolicy

Jan Newmarch
The two arrow heads in this figure need to be larger, and look like the arrowheads in Figure 8.1 (pointing to ServiceRegistrar and File Classifier

Chapter 7

70

implementing the

LeasePolicy

 interface. Each lease policy needs to make
decisions about leases, but it needs to make decisions on the lease-granting
side, so a lease policy needs to keep enough information locally to make
proper decisions. The information about leases on the granting side is kept in
leased resources, which are implementations of the LeasedResource interface.

• For each lease on the client side, there will be a leased resource on the grant-
ing side. These must be stored and managed somehow. There may be only a
few leases, but there could be many thousands. There could be relationships
between them (such as linear order), or none at all. So, to avoid decisions
about storage structures that would be wrong half of the time, lease man-
agement is just left as an interface.

Java uses interfaces as specifications without implementation details. For
individual classes this is often fine. However, using interfaces can be limiting when
you are dealing with a set of classes that are expected to interact in certain ways.
Interfaces do not show the interactions that may need to exist in order for an
implementation of the set of classes to function together. This means the interface
definitions are not complete as they stand, because they fail to show the links
between classes that must exist in any implementation. To see what these links
actually are, let us look at a simple implementation for the Foo landlord package.

If we have a landlord for a Foo resource, then we could end up with the class
structure shown in Figure 7-3.

This diagram uses a UML class diagram annotated with arrows and multiplic-
ities. An association with an arrow means that the object at the source of the arrow
will know about the object at the other end of the arrow. For example, each Land-
lordLease knows about (has a reference to) a FooLandlord, but the landlord does not
know about any leases. At each end of each association between classes, the multi-
plicity of that end of the link is also shown. A “*” is a wildcard pattern, meaning
“zero to many.” So for example, any number of LandlordLeases (from zero upwards)
may know about a single FooLandlord.

Some comments are appropriate about the directions and multiplicities:

• A landlord can be managing many leases, but it doesn’t know what the
leases are—the leases know their landlord, and they call its methods using
the lease cookie. So many LandlordLease objects contain a reference to a
FooLandlord.

• Certain requests need to be forwarded through the system. For example, a
renew() request from a lease will get passed to a landlord. The landlord can-
not handle it directly, since the renewal is a matter requiring policy
decisions. It must be passed to a lease policy object. One way of doing this
(as shown in Figure 7-3) is for the landlord to have a reference to a lease

Leasing

7171

manager, which has a reference to a lease policy. Similarly, a newLease()
request from the landlord will need to invoke a newLease() method on the
factory, and this can be done by ensuring that the lease policy also has a ref-
erence to the factory.

• A factory may be used by many lease policies, a policy may be used by many
lease managers, and a lease manager may be used by many landlords.

LandlordLease Class

The LandlordLease class extends AbstractLease. This class has the private fields
cookie and landlord, as shown in Figure 7-4.

Figure 7-3. Class diagram of a landlord implementation

Foo
Landlord

cancel(cookie)
renew(cookie, duration)
newLease(foo, duration)

newLease(landlord,
duration, cookie)

LandlordLease.
Factory

Foo
LeaseManager

register(leasedResource,
duration)

renew(leasedResource,
duration)

leaseFor(leaseResource,
duration)

Lease
DurationPolicy

LandlordLease

cookie

cancel()
renew(duration)

LeasedResource
Foo

cookie
foo

1

1

1

1 1

1

*

*

*

*

*

*

Chapter 7

72

Implementation of the methods cancel()and doRenew() in the LandlordLease is
deferred to its landlord. The implementation of these methods in the LandlordLe-
ase simply passes the requests on to the landlord:

 public void cancel() {

 landlord.cancel(cookie);

 }

 protected long doRenew(long renewDuration) {

 return landlord.renew(cookie, renewDuration);

 }

The LandlordLease class can be used as is, with no subclassing needed. Note
that the landlord system produces these leases but does not actually keep them
anywhere—they are passed on to clients, which then use the lease to call the land-
lord and hence interact with the landlord lease system. Within the landlord
system, on the lessor side, the cookie is used as an identifier for the lease.

Figure 7-4. The class diagram for LandlordLease

Lease

cancel()
renew(duration)

LandlordLease

Object cookie
Landlord landlord

cancel()
doRenew(duration)

AbstractLease

renew(duration)

doRenew(duration)

Jan Newmarch
The arrow heads here need to be larger too, as in Figure 8.1

Leasing

7373

LeasedResource Interface

A LeasedResource is a convenience wrapper around a resource that includes extra
information about a lease and methods for use by landlords. It defines an interface
as follows:

public interface LeasedResource {

 public void setExpiration(long newExpiration);

 public long getExpiration();

 public Object getCookie();

}

This interface includes the cookie, a unique identifier for a lease within a
landlord system, as well as expiration information for the lease. This is all the
information maintained about the lease that has been given out to a client.

An implementation of LeasedResource will typically include the resource that is
leased, plus a method of setting the cookie. The following code shows an example:

/**

 * FooLeasedResource.java

 */

package foolandlord;

import com.sun.jini.lease.landlord.LeasedResource;

public class FooLeasedResource implements LeasedResource {

 static protected int cookie = 0;

 protected int thisCookie;

 protected Foo foo;

 protected long expiration = 0;

 public FooLeasedResource(Foo foo) {

 this.foo = foo;

 thisCookie = cookie++;

 }

 public void setExpiration(long newExpiration) {

 this.expiration = newExpiration;

 }

 public long getExpiration() {

 return expiration;

 }

Chapter 7

74

 public Object getCookie() {

 return new Integer(thisCookie);

 }

 public Foo getFoo() {

 return foo;

 }

} // FooLeasedResource

LeasePolicy Interface

A lease policy is used when a lease is first granted and when it tries to renew itself.
The time requested may be granted, modified, or denied. A lease policy is speci-
fied by the LeasePolicy interface.

package com.sun.jini.lease.landlord;

public interface LeasePolicy {

 public Lease leaseFor(LeasedResource resource, long requestedDuration)

 throws LeaseDeniedException;

 public long renew(LeasedResource resource, long requestedDuration)

 throws LeaseDeniedException, UnknownLeaseException;

 public boolean ensureCurrent(LeasedResource resource);

}

This interface includes a factory method, leaseFor(), that returns a lease based on
the policy and request.

LeaseDurationPolicy Class

An implementation of the LeasePolicy interface is given by the LeaseDurationPol-
icy class. This class grants and renews leases based on constant values for
maximum and default lease durations, as shown here:

package com.sun.jini.lease.landlord;

public class LeaseDurationPolicy implements LeasePolicy {

 public LeaseDurationPolicy(long maximum, long defaultLength,

Leasing

7575

 Landlord landlord, LeaseManager mgr, LandlordLeaseFactory factory);

 public Lease leaseFor(LeasedResource resource, long requestedDuration)

 throws LeaseDeniedException;

 public long renew(LeasedResource resource, long requestedDuration);

 public boolean ensureCurrent(LeasedResource resource);

}

In addition to implementing the interface methods, the constructor also
passes in the factory to be used (which will probably be a LandlordLease.Factory)
and maximum and default lengths for leases. The maximum duration is to set a
hard upper limit (which could be, say, Lease.FOREVER), while the default is what is
granted if the client asks for a duration of Lease.ANY.

LeaseManager Interface

The operations that can be carried out on a lease are creation, renewal, and can-
cellation. The first two are subject to the lease policy and must be handled by the
leaseFor() and renew() methods of the policy. These set or alter the properties of a
single lease. There may be many leases for a resource, or even many resources with
one or more leases. Some level of management for a group of leases may be
needed, and this is done by a LeaseManager.

The LeaseManager interface is defined as follows:

package com.sun.jini.lease.landlord;

public interface LeaseManager {

 public void register(LeasedResource resource, long duration);

 public void renewed(LeasedResource resource, long duration,

 long oldExpiration);

}

This LeaseManager doesn’t actually manage the leases, since they have been
given to the client. Rather, it handles the lease resource, which has the cookie
identifier and the expiration time for the lease.

An implementation of LeaseManager will look after a set of leases (really, their
resources) by adding a new lease resource to its set for each lease, and by updating
information about renewals. The interface does not include a method for inform-
ing the manager of cancelled leases, though—that is done to the Landlord instead,
by the lease when the lease’s cancel() method is called.

This split responsibility between LeaseManager and Landlord is a little awkward
and can possibly lead to memory leaks, with the manager holding a reference to a

Chapter 7

76

lease (resource) that the landlord has cancelled. Either the list of lease resources
must be shared between the two, or the landlord must ensure that it passes on
cancellations to the manager.

There is also the question of how the lease manager is informed of changes
to individual leases by the lease policy. The LeaseDurationPolicy will pass on this
information in its leaseFor() and renew() methods, but other implementations
of LeasePolicy need not. As we only use the LeasePolicy implementation, we are
okay here.

A third question is who looks after leases expiring, and how this can be done.
No part of the landlord specifications talk about this or give a suitable method.
This suggests that it, too, is subject to some sort of policy, but it is not one with
landlord support. It is left to implementations of one of the landlord interfaces, or
to a subclass. A convenient place to locate this checking is in the lease manager,
because it has knowledge of all the leases and their duration. Possible ways of
doing this include the following:

• A thread per lease, which will sleep and time out when the lease should
expire. This will need to sleep again if the lease has been renewed in the
meantime.

• A single sleeper thread sleeping for the minimum period of all leases. This
may need to be interrupted if a new lease is created with a shorter expiration
period.

• A polling mechanism in which a thread sleeps for a fixed time and then
cleans up all leases that have expired in the meantime.

• A lazy method, in which no active thread looks for lease expiries but just
cleans them up if it comes across expired leases while doing something else.
(This lazy approach is taken by the JavaSpaces Outrigger service, which
grants leases for Entry objects).

The FooLeaseManager implements this third polling mechanism method:

/**

 * FooLeaseManager.java

 */

package foolandlord;

import java.util.*;

import net.jini.core.lease.Lease;

import com.sun.jini.lease.landlord.LeaseManager;

import com.sun.jini.lease.landlord.LeasedResource;

import com.sun.jini.lease.landlord.LeaseDurationPolicy;

Leasing

7777

import com.sun.jini.lease.landlord.Landlord;

import com.sun.jini.lease.landlord.LandlordLease;

import com.sun.jini.lease.landlord.LeasePolicy;

public class FooLeaseManager implements LeaseManager {

 protected static long DEFAULT_TIME = 30*1000L;

 protected Vector fooResources = new Vector();

 protected LeaseDurationPolicy policy;

 public FooLeaseManager(Landlord landlord) {

 policy = new LeaseDurationPolicy(Lease.FOREVER,

 DEFAULT_TIME,

 landlord,

 this,

 new LandlordLease.Factory());

 new LeaseReaper().run();

 }

 public void register(LeasedResource r,long duration) {

 fooResources.add(r);

 }

 public void renewed(LeasedResource r, long duration, long olddur) {

 // no smarts in the scheduling, so do nothing

 }

 public void cancelAll(Object[] cookies) {

 for (int n = cookies.length; --n >= 0;) {

 cancel(cookies[n]);

 }

 }

 public void cancel(Object cookie) {

 for (int n = fooResources.size(); --n >= 0;) {

 FooLeasedResource r = (FooLeasedResource) fooResources.elementAt(n);

 if (r.getCookie().equals(cookie)) {

 fooResources.removeElementAt(n);

 }

 }

 }

 public LeasePolicy getPolicy() {

Chapter 7

78

 return policy;

 }

 public LeasedResource getResource(Object cookie) {

 for (int n = fooResources.size(); --n >= 0;) {

 FooLeasedResource r = (FooLeasedResource) fooResources.elementAt(n);

 if (r.getCookie().equals(cookie)) {

 return r;

 }

 }

 return null;

 }

 class LeaseReaper extends Thread {

 public void run() {

 while (true) {

 try {

 Thread.sleep(DEFAULT_TIME) ;

 }

 catch (InterruptedException e) {

 }

 for (int n = fooResources.size()-1; n >= 0; n--) {

 FooLeasedResource r = (FooLeasedResource)

 fooResources.elementAt(n)

 ;

 if (!policy.ensureCurrent(r)) {

 System.out.println("Lease expired for cookie = " +

 r.getCookie()) ;

 fooResources.removeElementAt(n);

 // replace this landlord.cancel(r.getCookie()) ;

 }

 }

 }

 }

 }

} // FooLeaseManager

Jan Newmarch
Delete this line starting with //

Leasing

7979

Landlord Interface

The Landlord is the final interface in the package that we need for a basic landlord
system. Other classes and interfaces, such as LeaseMap are for handling leases in
batches, and will not be dealt with here. The Landlord interface is as follows:

package com.sun.jini.lease.landlord;

public interface Landlord extends Remote {

 public long renew(Object cookie, long extension)

 throws LeaseDeniedException, UnknownLeaseException, RemoteException;

 public void cancel(Object cookie)

 throws UnknownLeaseException, RemoteException;

 public RenewResults renewAll(Object[] cookie, long[] extension)

 throws RemoteException;

 public void cancelAll(Object[] cookie)

 throws LeaseMapException, RemoteException;

}

The renew() and cancel() methods are usually called from the renew() and can-
cel() methods of a particular lease. The renew() method needs to use a policy
object to ask for renewal, and in the FooLandlord implementation, it gets this policy
from the FooLeaseManager. The cancel() method needs to modify the list of leases,
and in the FooLandlord implementation, it passes this on to the FooLeaseManager,
since that is the only object that maintains a list of resources.

There must be a method to ask for a new lease for a resource, and this is not
specified by the landlord package. This request will probably be made on the
lease-granting side, and this should have access to the landlord object, which
forms a central point for lease management. So, an implementation of this inter-
face will quite likely have a method such as

public Lease newFooLease(Foo foo, long duration);

which will give a lease for a resource.

The lease used in the landlord package is a LandlordLease. This contains a pri-
vate field, which is a reference to the landlord itself. The lease is given to a client as
a result of newFooLease(), and this client will usually be a remote object. This will
involve serializing the lease and sending it to this remote client. While serializing
it, the landlord field will also be serialized and sent to the client.

Chapter 7

80

When the client methods such as renew() are called, the implementation of
the LandlordLease will make a call to the landlord. The lease is on the client, which
by then will be remote from its origin where the landlord lives. That means the
landlord object invoked by the lease will need to be a remote object making a
remote call. The Landlord interface already extends Remote, but if it is to run as a
remote object, then the easiest way is for FooLandlord to extend the UnicastRemo-
teObject class.

Putting all this together for the FooLandlord class gives us this:

/**

 * FooLandlord.java

 */

package foolandlord;

import com.sun.jini.lease.landlord.*;

import net.jini.core.lease.LeaseDeniedException;

import net.jini.core.lease.Lease;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.Remote;

public class FooLandlord extends UnicastRemoteObject

 implements Landlord {

 FooLeaseManager manager;

 public FooLandlord() throws java.rmi.RemoteException {

 manager = new FooLeaseManager(this);

 }

 public void cancel(Object cookie) {

 manager.cancel(cookie);

 }

 public void cancelAll(Object[] cookies) {

 manager.cancelAll(cookies);

 }

 public long renew(java.lang.Object cookie,

 long extension)

 throws net.jini.core.lease.LeaseDeniedException,

 net.jini.core.lease.UnknownLeaseException {

 LeasedResource resource = manager.getResource(cookie);

 if (resource != null) {

Leasing

8181

 return manager.getPolicy().renew(resource, extension);

 }

 return -1;

 }

 public Lease newFooLease(Foo foo, long duration)

 throws LeaseDeniedException {

 FooLeasedResource r = new FooLeasedResource(foo);

 return manager.getPolicy().leaseFor(r, duration);

 }

 public Landlord.RenewResults renewAll(java.lang.Object[] cookies,

 long[] extensions) {

 long[] granted = new long[cookies.length];

 Exception[] denied = new Exception[cookies.length];

 for (int n = cookies.length; --n >= 0;) {

 try {

 granted[n] = renew(cookies[n], extensions[n]);

 denied[n] = null;

 } catch(Exception e) {

 granted[n] = -1;

 denied[n] = e;

 }

 }

 return new Landlord.RenewResults(granted, denied);

 }

} // FooLandlord

Building an implementation of the landlord package, such as the Foo package,
means providing implementations of the Landlord, LeasedResource, and LeaseMan-
ager interfaces. This has been done using the FooLandlord, FooLeasedResource, and
FooLeaseManager classes.

Summary

Leasing allows resources to be managed without complex garbage-collection
mechanisms. Leases received from services can be dealt with easily, using LeaseRe-
newalManager. Entities that need to hand out leases can use a system, such as the
landlord system, to handle these leases.

