

57

CHAPTER 6

Client Search

T

HIS

CHAPTER

LOOKS

AT

WHAT

THE

CLIENT

 has to do once it has found a service loca-
tor and wishes to find a service. From the service locator, the client will get a

ServiceRegistrar

 object. To find a service from the locator, the client needs to pre-
pare a description of the service, which it does using a

ServiceTemplate

 object. The
client will then call one of two methods on the

ServiceRegistrar

 to return either a
single matching service or a set of matching services.

Searching for Services with the ServiceRegistrar

A client gets a

ServiceRegistrar

 object from the lookup service, and it uses the

lookup()

 method to search for a service stored on that lookup service. Here is
the

lookup()

 method:

public Class ServiceRegistrar {

 public java.lang.Object lookup(ServiceTemplate tmpl)

 throws java.rmi.RemoteException;

 public ServiceMatches lookup(ServiceTemplate tmpl,

 int maxMatches)

 throws java.rmi.RemoteException;

}

The first of these methods just finds a service that matches the request. The sec-
ond finds a set (as many as

maxMatches

).

The lookup methods use a class of type

ServiceTemplate

 to specify the service
looked for:

package net.jini.core.lookup;

public Class ServiceTemplate {

 public ServiceID serviceID;

 public java.lang.Class[] serviceTypes;

 public Entry[] attributeSetTemplates;

Chapter 6

58

 ServiceTemplate(ServiceID serviceID,

 java.lang.Class[] serviceTypes,

 Entry[] attrSetTemplates);

}

Although each service should have been assigned a

serviceID

 by a lookup ser-
vice, a client might not know the

serviceID

 (it could be the first time the client has
looked for this service, for example). In this case, the

serviceID

 is set to

null

. If the
client does know the

serviceID

, then it can set the value to find the service. The

attributeSetTemplates

 is a set of

Entry

 elements used to match attributes, and it
will be discussed in the “Matching Services” section, later in this chapter.

The major parameter of the

lookup()

 methods is a

ServiceTemplate

, which con-
tains a list of

serviceTypes

. We know that services export instances of a class, but
how does the client ask so that it gets a suitable instance delivered from the lookup
locator?

Although the lookup services keep instances of objects for the service, the
client will only know about a service from its specification (unless it already has a

serviceID

 for the service), and the specification will almost certainly be a Java
interface. Therefore, the client needs to ask using this interface. An interface can
have a class object just like ordinary classes, so the list of

serviceTypes

 will typically
be a list of class objects for service interfaces. Thus, the client will usually request
an interface object.

To be more concrete, suppose a toaster is defined by this interface:

public interface Toaster extends java.io.Serializable {

 public void setDarkness(int dark);

 public void startToasting();

}

A Breville “Extra Lift” toaster would implement this interface in one particular
way, as would other toasters:

public class BrevilleExtraLiftToaster implements Toaster {

 public void setDarkness(int dark) {

 ...

 }

 public void startToasting() {

 ...

 }

}

Client Search

5959

When the

Toaster

 service starts, it exports an object of class

BrevilleExtra-

LiftToaster

 to the lookup service. However, the client does not know what type of
toaster is out there, so it will make a request like this:

System.setSecurityManager(new RMISecurityManager());

 // specify the interface object

 Class[] toasterClasses = new Class[1];

 toasterClasses[0] = Toaster.class;

 // prepare a search template of serviceID, classes and entries

 ServiceTemplate template = new ServiceTemplate(null,

 toasterClasses,

 null);

 // now find a toaster

 Toaster toaster = null;

 try {

 toaster = (Toaster) registrar.lookup(template);

 } catch(java.rmi.RemoteException e) {

 System.exit(2);

 }

Notice that

lookup()

 can throw an exception. This can occur if, for example, the
service requested cannot be de-serialized.

As a result of calling the

lookup()

 method, an object (an instance of a class
implementing the

Toaster

 interface) has been transported across to the client,
and the object has been coerced to be of this

Toaster

 type. This object has two
methods:

setDarkness()

 and

startToasting()

. No other information is available
about the toaster’s capabilities because the interface does not specify any more,
and in this case the set of attribute values was

null

. So the client can call either of
the two methods:

toaster.setDarkness(1);

toaster.startToasting();

Before leaving this discussion, you might wonder what the role of

System.set-

SecurityManager(new RMISecurityManager())

 is. A serialized object has been
transported across the network and is reconstituted and coerced to an object
implementing

Toaster

. We know that here it will, in fact, be an object of class

BrevilleExtraLiftToaster

, but the client doesn’t need to know that. Or does it? Cer-
tainly the client will not have a class definition for this class on its side. But when

Chapter 6

60

the toaster object begins to run, then it must run using its

BrevilleExtraLift-

Toaster

 code! Where does it get it from?
From the server—most likely by an HTTP request on the server. This means

that the

Toaster

 object is

loading a class definition

 across the network, and this
requires security access. So a security manager capable of granting this access
must be installed before the load request is made.

Note the difference between loading a serialized instance and loading a class
definition: the first does not require access rights; only the second does. So if the
client had the class definitions of all possible toasters, then it would never need to
load a class and would not need a security manager that allows classes to be
loaded across the network. This is not likely, but may perhaps be needed in a high-
security environment.

Receiving the ServiceMatches Object

If a client wishes to search for more than one match to a service request from a
particular lookup service, then it specifies the maximum number of matches it
would like returned by using the

maxMatches

 parameter of the second

lookup()

method. The client gets back a

ServiceMatches

 object that looks like this:

package net.jini.core.lookup;

public Class ServiceMatches {

 public ServiceItem[] items;

 public int totalMatches ;

}

The number of elements in

items

 need not be the same as

totalMatches

. Sup-
pose there are five matching services stored on the locator. In that case,

totalMatches

 will be set to 5 after a lookup. However, if you used

maxMatches

 to limit
the search to at most two matches, then

items

 will be set to be an array with only
two elements.

In addition, not all elements of this array need be non-null! Note that in

lookup(tmpl)

 when asking for only one match, an exception can be returned, such
as when the service is not serializable. No exception is thrown here, because
although one match might be bad, the others might still be okay. So a value of

null

as the array element value is used to signify this. The following code shows how to
properly handle the

ServiceMatches

 object:

ServiceMatches matches = registrar.lookup(template, 10);

 // NB: matches.totalMatches may be greater than matches.items.length

 for (int n = 0; n < matches.items.length; n++) {

Client Search

6161

 Toaster toaster = (Toaster) matches.items[n].service;

 if (toaster != null) {

 toaster.setDarkness(1);

 toaster.startToasting();

 }

 }

This code will start up to ten toasters cooking at once!

Matching Services

As mentioned previously, a client attempts to find one or more services that satisfy
its requirements by creating a

ServiceTemplate

 object and using this in a registrar’s

lookup()

 call. A

ServiceTemplate

 object has three fields:

ServiceID serviceID;

java.lang.Class[] serviceTypes;

Entry[] attributeSetTemplates;

If the client is repeating a request, then it may have recorded the

serviceID

from an earlier request. The

serviceID

 is a globally unique identifier, so it can be
used to identify a service unambiguously. This

serviceID

 can be used by the ser-
vice locator as a filter to quickly discard other services.

Alternatively, a client may want to find a service satisfying several interface
requirements at once. For example, a client may look for a service that implements
both

Toaster

 and

FireAlarm

 (so that it can properly handle burnt toast). The client
will fill the

serviceTypes

 array with all of the interface classes that the service has to
implement.

And finally, the client will specify a set of attributes in the

attrSetTemplates

field that must be satisfied by each service. Each attribute required by the client is
taken in turn and matched against the set offered by the service. For example, in
addition to requesting a

Toaster

 with a

FireAlarm

, a client entry may specify a loca-
tion in GP South Building. This will be tried against all the variations of location
offered by the service. A single match is good enough. An additional client require-
ment of, say, manufacturer would also have to be matched by the service.

The following more formal description comes from the

ServiceTemplate

 API
documentation:

1. A service item (

item

) matches a service template (

tmpl

) if:

item.serviceID

equals

tmpl.serviceID

 (or if

tmpl.serviceID

 is

null

); and

item.service

 is
an instance of every type in

tmpl.serviceTypes; and item.attributeSets

Chapter 6

62

contains at least one matching entry for each entry template in
tmpl.attributeSetTemplates.

2. An entry matches an entry template if the class of the template is the
same as, or a superclass of, the class of the entry, and every non-null field
in the template equals the corresponding field of the entry. Every entry
can be used to match more than one template. Note that in a service tem-
plate, for serviceTypes and attributeSetTemplates, a null field is
equivalent to an empty array; both represent a wildcard.

Summary

A client prepares a ServiceTemplate, which is a list of class objects and a list of
entries. For each service locator that is found, the client can query the ServiceReg-
istrar object by preparing a ServiceTemplate object and calling the
ServiceRegistrar object’s lookup() method to see if the locator has a service
matching the template. If the match is successful, an object is returned that can be
cast into the class required. Service methods can then be invoked on this object.

