

23

CHAPTER 3

Discovering a Lookup
Service

J

INI

USES

A

LOOKUP

SERVICE

 in much the same way as other distributed systems use
naming services and traders. Services register with lookup services, and clients use
them to find services they are interested in. Jini lookup services are designed to be
an integral part of the Jini system, and they have their own set of classes and meth-
ods. This chapter looks at what is involved in discovering a lookup service or
service locator. This is common to both services and clients. The chapter also dis-
cusses issues particular to the Sun lookup service,

reggie

.

Running a Lookup Service

A client locates a service by querying a lookup service (service locator). In order to
do this, it must first locate a lookup service. Similarly, a service must register itself
with a lookup service, and in order to do so it must also first locate a lookup service.

The initial task for both a client and a service is thus discovering a lookup ser-
vice. Such a service (or set of services) will usually have been started by some
independent mechanism. The search for a lookup service can be done either by
unicast or by multicast. Unicast means that you know the address of the lookup
service and can contact it directly. Multicast is used when you do not know where
a lookup service is and have to broadcast a message across the network so that any
lookup service can respond. In fact, the lookup service is just another Jini service,
but it is one that is specialized to store services and pass them on to clients looking
for them.

Reggie

Sun supplies a lookup service called

reggie

 as part of the standard Jini distribu-
tion. The specification of a lookup service is public, and in future we can expect to
see other implementations of lookup services.

There may be any number of these lookup services running in a network. A
LAN may run many lookup services to provide redundancy in case one of them
crashes. Similarly, across the internet, people may run lookup services for a variety

Chapter 3

24

of reasons: a public lookup service is running on

http://www.jini.canberra.edu.au

to aid people trying Jini clients and services so that they don’t need to also set up a
lookup service. Other lookup services may act as coordination centers, such as a
repository of locations for all the atomic clock servers in the world.

Anybody can start a lookup service (depending on access permissions), but it
will usually be started by an administrator, or started at boot time.

Reggie

 requires support services: an HTTP server and an RMI daemon,

rmid

.
These need to be already running by the time

reggie

 is started. If there is already
an HTTP server running, it can be used, or a new one can be started.

If you don’t have access to an HTTP server (such as Apache), then there is a
simple one supplied by Jini. This server is incomplete, and it is only good for
downloading Java class files—it cannot be used as a general-purpose Web server.
The Jini HTTP server is in the

tools.jar

 file, and it can be started with this
command:

java -jar tools.jar

This Jini HTTP server runs on a default port (8080), which means that any user
can start it as long as local network policies do not forbid it. It uses the current
directory as the document root for locating class files. These can be controlled by
parameters:

java -jar tools-jarfile [-port port-number] [-dir document-root-dir] [-trees] [-
verbose]

The HTTP server is needed to deliver the stub class files (of the

registrar

) to
clients. These class files are stored in

reggie-dl.jar

, so this file must be reachable
from the document root. For example, on my machine the jar file has the full path

/home/jan/tmpdir/jini1_0/lib/reggie-dl.jar

. I set the document root to

/home/jan/

tmpdir/jini1_0/lib

, so the relative URL from this server is just

/reggie-dl.jar

.
The other support service needed for

reggie

 is an RMI daemon. This is

rmid

,
and it is a part of the standard Java distribution. Vendors could implement other
RMI daemons, but this is unlikely to happen.

rmid

 must be run on the same
machine as

reggie

. The following command is a Unix command that runs

rmid

 as a
background process:

rmid &

This command also has major options:

rmid [-port num] [-log dir]

Discovering a Lookup Service

2525

These options can specify the TCP port used (which defaults to 4160). You can also
specify the location for the log files that

rmid

 uses to store its state—they default to
being in the

log

 subdirectory.

There is a security issue with

rmid

 on multiuser systems such as Unix. The acti-
vation system that it supports allows anyone on the same machine to run
programs using the user ID that

rmid

 is running under. That means you should
never run

rmid

using a sensitive user ID such as

root

, but instead should run it as
the least privileged user,

nobody

.
Once the HTTP server and

rmid

 are running,

reggie

 can be started with a num-
ber of compulsory parameters:

java -jar lookup-server-jarfile lookup-client-codebase lookup-policy-file \

 output-log-dir lookup-service-group

The parameters are as follows:

• The

lookup-server-jarfile

 will be

reggie.jar

 or some path to it.

• The

lookup-client-codebase

 will be the URL for the reggie stub class files,
using the HTTP server started earlier. In my case, this is

http://jan-

note.dstc.edu.au:8080/reggie-dl.jar

. Note that an absolute IP hostname
must be used—you cannot use

localhost

 because to the

reggie

 service

 that
means

jannote.dstc.edu.au

. To the

client

 it would be a different machine
altogether, because to the client

localhost

 is their own machine, not

jan-

note.dstc.edu.au

! The client would then fail to find

reggie-dl.jar

 on its own
machine. Even an abbreviated address, such as

jannote

, would fail to be
resolved if the client is external to the local network.

• The

lookup-policy-file

 controls security accesses. Initially you can set this
to the

policy.all

 path in the Jini distribution, but for deployment, use a less
dangerous policy file. The topic of security is discussed in Chapter 12, but in
brief, Jini code mobility allows code from other sources to run within the
client machine. If you trust the other code, then that may be fine, but can
you

really

 trust it? If not, you don’t want to run it, and Jini security can con-
trol this. However, in the debugging and testing phases, this security can
cause extra complications, so you should turn off security while testing
other aspects of your code by using a weak security policy. Then make sure
you turn it back on later!

• The

output-log-dir

 can be set to any (writable) path to store the log files.

• The

lookup-service-group

 can be set to the public group

public

.

Chapter 3

26

As an example, on my own machine, I start

reggie

 like this:

java -jar /home/jan/tmpdir/jini1_0/lib/reggie.jar \

 http://jannote.dstc.edu.au:8080/reggie-dl.jar \

 /home/jan/tmpdir/jini1_0/example/lookup/policy.all \

 /tmp/reggie_log public

After starting,

reggie

 will promptly exit! Don’t worry about this—it is actually
kept in a passive state by

rmid

 and will be brought back into existence whenever
necessary (this is done by the new

Activation

 mechanism of RMI in JDK 1.2).
You only need to start

reggie

 once, even if your machine is switched off or
rebooted. The activation daemon

rmid

 restarts it on an as-needed basis, since it
keeps information about

reggie

 in its log files.

Rmid and JDK 1.3

rmid

 is responsible for starting (or restarting) services such as

reggie

. It will create a
new JVM on demand to run the service.

rmid

 may look after a number of services,
not just

reggie

, and they will all be run in their own JVMs. In JDK 1.2 there was no
difference in handling these different JVMs. However, in JDK 1.3, the ability to set
different security policies was introduced. This topic is dealt with in detail in
Chapter 12.

In JDK 1.3, starting

rmid

 requires an extra parameter to set the

sun.rmi.activa-

tion.execPolicy

 policy. It is simplest to set it so that

rmid

 behaves the same way as
it did in JDK 1.2. This can be done with the following command:

rmid -J-Dsun.rmi.activation.execPolicy=none

This setting ignores the new security mechanism, and it is not recommended as a
long-term or production solution.

Unicast Discovery

Unicast discovery can be used when you know the machine on which the lookup
service resides and can ask for it directly. This approach is expected to be used for
a lookup service that is outside of your local network, but that you know the
address of anyway (such as your home network while you are at work, or a network
identified in a newsgroup or email message, or maybe even one advertised on TV).

Unicast discovery relies on a single class,

LookupLocator

, which is described in
the next section. Basic use of this class is illustrated in the sections on the

Invalid-

LookupLocator

 program. The

InvalidLookupLocator

 should be treated as an

Discovering a Lookup Service

2727

introductory Jini program that you can build and run without having to worry
about network issues. Connecting to a lookup service using the network is done
with the

getRegistrar()

method of

LookupLocator

, and an example program using
this is shown in the

UnicastRegistrar

 program in the “Get Registrar” section.

LookupLocator

The

LookupLocator

 class in the

net.jini.core.discovery

 package is used for unicast
discovery of a lookup service. There are two constructors:

package net.jini.core.discovery;

public class LookupLocator {

 LookupLocator(java.lang.String url)

 throws java.net.MalformedURLException;

 LookupLocator(java.lang.String host,int port);

}

For the first constructor, the

url

 parameter follows the standard URL syntax of
“protocol://host” or “protocol://host:port”. The protocol is jini. If no port is given,
it defaults to 4160. The host should be a valid DNS name (such as pandonia.can-
berra.edu.au or an IP address (such as 137.92.11.13). So for example, "jini://pan-
donia.canberra.edu.au:4160" may be given as the URL for the first constructor. No
unicast discovery is performed at this stage, though, so any rubbish could be
entered. Only a check for the syntactic validity of the URL is performed. The first
constructor will throw an exception if it discovers a syntax error. This syntactic
check is not even done for the second constructor, which takes a host name and
port separately.

InvalidLookupLocator

The following program creates some objects with valid and invalid host/URLs.
They are only checked for syntactic validity rather than existence as URLs. That is,
no network lookups are performed. This should be treated as a basic example to
get you started building and running a simple Jini program.

package basic;

import net.jini.core.discovery.LookupLocator;

/**

Chapter 3

28

 * InvalidLookupLocator.java

 */

public class InvalidLookupLocator {

 static public void main(String argv[]) {

 new InvalidLookupLocator();

 }

 public InvalidLookupLocator() {

 LookupLocator lookup;

 // this is valid

 try {

 lookup = new LookupLocator("jini://localhost");

 System.out.println("First lookup creation succeeded");

 } catch(java.net.MalformedURLException e) {

 System.err.println("First lookup failed: " + e.toString());

 }

 // this is probably an invalid URL,

 // but the URL is syntactically okay

 try {

 lookup = new LookupLocator("jini://ABCDEFG.org");

 System.out.println("Second lookup creation succeeded");

 } catch(java.net.MalformedURLException e) {

 System.err.println("Second lookup failed: " + e.toString());

 }

 // this IS a malformed URL, and should throw an exception

 try {

 lookup = new LookupLocator("A:B:C://ABCDEFG.org");

 System.out.println("Third lookup creation succeeded");

 } catch(java.net.MalformedURLException e) {

 System.err.println("Third lookup failed: " + e.toString());

 }

 // this is valid, but no check is made anyway

 lookup = new LookupLocator("localhost", 80);

 System.out.println("Fourth lookup creation succeeded");

 }

} // InvalidLookupLocator

Discovering a Lookup Service

2929

Running the InvalidLookupLocator

All Jini programs will need to be compiled using the JDK 1.2 or 1.3 compiler. Jini pro-
grams will not compile or run under JDK 1.1 (any versions).

The InvalidLookupLocator program defines the InvalidLookupLocator class in
the basic package. The source code will be in the InvalidLookupLocator.java file in
the basic subdirectory. From the parent directory, this can be compiled by a com-
mand such as this:

javac basic/InvalidLookupLocator.java

This will leave the class file also in the basic subdirectory.

When you compile the source code, the CLASSPATH will need to include the
jini-core.jar Jini file. Similarly, when a service is run, this Jini file will need to be
in its CLASSPATH, and when a client runs, it will also need this file in its CLASSPATH.
The reason for this repetition is that the service and the client are two separate
applications, running in two separate JVMs, and quite likely will be on two sepa-
rate computers.

The InvalidLookupLocator has no additional requirements. It does not perform
any network calls and does not require any additional service to be running. It can
be run simply by entering this command:

java -classpath ... basic.InvalidLookupLocator

Information from the LookupLocator

Two of the methods of LookupLocator are these:

String getHost();

int getPort();

These methods will return information about the hostname that the locator will
use, and the port it will connect on or is already connected on. This is just the
information fed into the constructor or left to default values, though. It doesn’t
offer anything new for unicasting. This information will be useful in the multicast
situation, though, if you need to find out where the lookup service is.

Chapter 3

30

Get Registrar

Search and lookup is performed by the getRegistrar() method of the LookupLoca-
tor, which returns an object of class ServiceRegistrar.

public ServiceRegistrar getRegistrar()

 throws java.io.IOException,java.lang.ClassNotFoundException

The ServiceRegistrar class is discussed in detail later. This class performs net-
work lookup on the URL given in the LookupLocator constructor.

UML sequence diagrams are useful for showing the timelines of object exist-
ence, and the method calls that are made from one object to another. The timeline
reads down, and method calls and their returns read across. A UML sequence dia-
gram augmented with a jagged arrow showing the network connection is shown in
Figure 3-1. The UnicastRegister object makes a new() call to create a LookupLocator,
and this call returns a lookup object. The getRegistrar() method call is then made
on the lookup object, and this causes network activity. As a result of this, a Service-
Registrar object is created in some manner by the lookup object, and this is
returned from the method as the registrar.

The UnicastRegistrar program that implements Figure 3-1 and performs the
network connection to get a ServiceRegistrar object is as follows:

package basic;

import net.jini.core.discovery.LookupLocator;

Figure 3-1. UML sequence diagram for lookup

Unicast
Register

getRegistrar()

registrar

new()

lookup

Registrar
Service

Locator
Lookup

Service
locator

Discovering a Lookup Service

3131

import net.jini.core.lookup.ServiceRegistrar;

/**

 * UnicastRegistrar.java

 */

public class UnicastRegister {

 static public void main(String argv[]) {

 new UnicastRegister();

 }

 public UnicastRegister() {

 LookupLocator lookup = null;

 ServiceRegistrar registrar = null;

 try {

 lookup = new LookupLocator("jini://www.jini.canberra.edu.au");

 } catch(java.net.MalformedURLException e) {

 System.err.println("Lookup failed: " + e.toString());

 System.exit(1);

 }

 try {

 registrar = lookup.getRegistrar();

 } catch (java.io.IOException e) {

 System.err.println("Registrar search failed: " + e.toString());

 System.exit(1);

 } catch (java.lang.ClassNotFoundException e) {

 System.err.println("Registrar search failed: " + e.toString());

 System.exit(1);

 }

 System.out.println("Registrar found");

 // the code takes separate routes from here for client or service

 }

} // UnicastRegister

The registrar object will be used in different ways for clients and services: the
services will use it to register themselves, and the clients will use it to locate services.

Chapter 3

32

Running the UnicastRegister

When the UnicastRegistrar program in the previous section program needs to be
compiled and run, it has to have the file jini-code.jar in its CLASSPATH. When run, it
will attempt to connect to the service locator, so obviously the service locator
needs to be running on the machine specified in order for this to happen. Other-
wise, the program will throw an exception and terminate. In this case, the host
specified is www.jini.canberra.edu.au. It could, however, be any machine accessi-
ble on the local or remote network (as long as it is running a service locator). For
example, to connect to the service locator running on my current workstation, the
parameter for LookupLocator would be jini://pandonia.canberra.edu.au.

The UnicastRegister program will receive a ServiceRegistrar from the service
locator. However, it does so with a simple readObject() on a socket connected to
the service locator, so it does not need any additional support services, such as
rmiregistry or rmid. The program can be run by this command:

java basic.UnicastRegister

The CLASSPATH for the UnicastRegister program should contain the Jini jar files
as well as the path to basic/UnicastRegister.class.

Broadcast Discovery

If the location of a lookup service is unknown, it is necessary to make a broadcast
search for one. UDP supports a multicast mechanism that the current implemen-
tations of Jini use. Because multicast is expensive in terms of network
requirements, most routers block multicast packets. This usually restricts broad-
casts to a local area network, although this depends on the network configuration
and the time-to-live (TTL) of the multicast packets.

There can be any number of lookup services running on the network accessi-
ble to the broadcast search. On a small network, such as a home network, there
may be just a single lookup service, but in a large network there may be many—
perhaps one or two per department. Each one of these may choose to reply to a
broadcast request.

NOTE Tip title goes here

This program might not run as is, due to security issues. If that is the case,
see the first section of Chapter 12.

Discovering a Lookup Service

3333

Groups

Some services may be meant for anyone to use, but some may be more restricted
in applicability. For example, the Engineering department may wish to keep lists of
services specific to that department. This may include a departmental diary ser-
vice, a departmental inventory, etc. The services themselves may be running
anywhere in the organization, but the department would like to be able to store
information about them and to locate them from their own lookup service. Of
course, this lookup service may be running anywhere, too!

So there could be lookup services specifically for a particular group of ser-
vices, such as the Engineering department services, and others for the Publicity
department services. Some lookup services may cater to more than one group—
for example, a company may have a lookup service to hold information about all
services running for all groups on the network.

When a lookup service is started, it can be given a list of groups to act for as a
command line parameter. A service may include such group information by giving
a list of groups that it belongs to. This is an array of strings, like this:

String [] groups = {"Engineering dept"};

LookupDiscovery

The LookupDiscovery class in package net.jini.discovery is used for broadcast dis-
covery. There is a single constructor:

LookupDiscovery(java.lang.String[] groups)

The parameter in the LookupDiscovery constructor can take three possible
values:

• null, or LookupDiscovery.ALL_GROUPS, means that the object should attempt
to discover all reachable lookup services, no matter which group they
belong to. This will be the normal case.

• An empty list of strings, or LookupDiscovery.NO_GROUPS, means that the object
is created but no search is performed. In this case, the method setGroups()
will need to be called in order to perform a search.

• A non-empty array of strings can be given. This will attempt to discover all
lookup services in that set of groups.

Chapter 3

34

DiscoveryListener

A broadcast is a multicast call across the network, and lookup services are
expected to reply as they receive the call. Doing so may take time, and there will
generally be an unknown number of lookup services that can reply. To be notified
of lookup services as they are discovered, the application must register a listener
with the LookupDiscovery object, as follows:

public void addDiscoveryListener(DiscoveryListener l)

The listener must implement the DiscoveryListener interface:

package net.jini.discovery;

public abstract interface DiscoveryListener {

 public void discovered(DiscoveryEvent e);

 public void discarded(DiscoveryEvent e);

}

The discovered() method is invoked whenever a lookup service has been dis-
covered. The API recommends that this method should return quickly and not
make any remote calls. However, the discovered() method is the natural place for a
service to register, and it is also the natural place for a client to ask if there is a ser-
vice available and to invoke the service. It may be better to perform these lengthy
operations in a separate thread.

There are other timing issues involved—when the DiscoveryListener is cre-
ated, the broadcast is made, and after this, a listener is added to this discovery
object. What happens if replies come in very quickly, before the listener is added?
The “Jini Discovery Utilities Specification” guarantees that these replies will be
buffered and delivered when a listener is added. Conversely, no replies may come
in for a long time—what is the application supposed to do in the meantime? It
cannot simply exit, because then there would be no object to reply to! It has to be
made persistent enough to last until replies come in. One way of handling this is
for the application to have a GUI interface, in which case the application will stay
until the user dismisses it. Another possibility is that the application may be pre-
pared to wait for a while before giving up. In that case, the main() method could
sleep for, say, ten seconds and then exit. This will depend on what the application
should do if no lookup service is discovered.

The discarded() method is invoked whenever the application discards a
lookup service by calling discard() on the registrar object.

Discovering a Lookup Service

3535

DiscoveryEvent

The parameter of the discovered() method of the DiscoveryListener interface is a
DiscoveryEvent object.

package net.jini.discovery;

public Class DiscoveryEvent {

 public net.jini.core.lookup.ServiceRegistrar[] getRegistrars();

}

This has one public method, getRegistrars(), which returns an array of
ServiceRegistrar objects. Each one of these implements the ServiceRegistrar
interface, just like the object returned from a unicast search for a lookup service.
More than one ServiceRegistrar object can be returned if a set of replies have
come in before the listener was registered—they are collected in an array and
returned in a single call to the listener. A UML sequence diagram augmented with
jagged arrows showing the network broadcast and replies is shown in Figure 3-2.

In Figure 3-2, the creation of a LookupDiscovery object starts the broadcast
search, and it returns the discover object. The MulticastRegister adds itself as a lis-
tener to the discover object. The search continues in a separate thread, and when a

Figure 3-2. UML sequence diagram for discovery

Multicast
Register

addDiscoveryListener()

Discovery
Lookup

new()

discover

discovered(evt) Event
Discovery

getRegistrars()

Registrar
Service

registrars

Lookup
...

Services

Chapter 3

36

new lookup service replies, the discover object invokes the discovered() method in
the MulticastRegister, passing it a newly created DiscoveryEvent. The Multicast-
Register object can then make calls on the DiscoveryEvent, such as getRegistrars(),
which will return suitable ServiceRegistrar objects. There is no line connecting to
the ServiceRegistrar because the DiscoveryEvent creates the ServiceRegistrar
somehow, but the actual mechanism that is used is hidden in the implementation
of the DiscoveryEvent.

A MulticastRegister program that implements multicast searches for lookup
services would look like this:

package basic;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

/**

 * MulticastRegister.java

 */

public class MulticastRegister implements DiscoveryListener {

 static public void main(String argv[]) {

 new MulticastRegister();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(10000L);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

 public MulticastRegister() {

 System.setSecurityManager(new java.rmi.RMISecurityManager());

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 e.printStackTrace();

 System.exit(1);

 }

Jan Newmarch
Indent these two lines to start under "System..."

Discovering a Lookup Service

3737

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

 // the code takes separate routes from here for client or service

 System.out.println("found a service locator");

 }

 }

 public void discarded(DiscoveryEvent evt) {

 }

} // MulticastRegister

Staying Alive

In the preceding constructor for the MulticastRegister program, we create a Look-
upDiscovery object, add a DiscoveryListener, and then the constructor terminates.
The main() method, having called this constructor, promptly goes to sleep. What is
going on here? The constructor for LookupDiscovery actually starts up a number of
threads to broadcast the service and to listen for replies (see Chapter 21).

When replies come in, the listener thread will call the discovered() method of
the MulticastRegister. However, these threads are daemon threads. Java has two
types of threads—daemon and user threads—and at least one user thread must be
running or the application will terminate. All these other threads are not enough
to keep the application alive, so it keeps a user thread running in order to continue
to exist.

The sleep() method ensures that a user thread continues to run, even though
it apparently does nothing. This will keep the application alive, so that the daemon
threads (running in the “background”) can discover some lookup locators. Ten
seconds (10,000 milliseconds) is long enough for that. To stay alive after this ten
seconds expires requires either increasing the sleep time or creating another user
thread in the discovered() method. In Chapter 7, use is made of a useful constant,
Lease.FOREVER. It is tempting to use the FOREVER constant if you want a thread to
sleep forever. While the “leasing” system understands this FOREVER constant, the
standard Java sleep() method does not treat it any special way and merely uses its

Chapter 3

38

Long.MAX_VALUE value and treats it as the maximum value of a long, so that it just
sleeps for a very lengthy period.

I have placed the sleep() call in the main() method. It is perfectly reasonable to
place it in the application constructor, and some examples do this. However, it
looks a bit strange in the constructor, because it looks like the constructor does not
terminate (so is the object created or not?), so I prefer this placement. Note that
although the constructor for MulticastRegister will have terminated without us
assigning its object reference, a live reference has been passed into the discover
object as a DiscoveryListener, and it will keep the reference alive in its own dae-
mon threads. This means that the application object will still exist for its
discovered() method to be called.

Any other method that results in a user thread continuing to exist will do just
as well. For example, a client that has an AWT or Swing user interface will stay alive
because there are many user threads created by any of these GUI objects.

For services, which typically will not have a GUI interface running, another
simple way to keep them alive is to create an object and then wait for another
thread to notify() it. Since nothing will, the thread (and hence the application)
stays alive. Essentially, this is an unsatisfied wait that will never terminate—
usually an erroneous thing to do, but here it is deliberate:

Object keepAlive = new Object();

synchronized(keepAlive) {

 try {

 keepAlive.wait();

 } catch(InterruptedException e) {

 // do nothing

 }

}

This will keep the service alive indefinitely, and it will not terminate unless inter-
rupted. This is unlike sleep(), which will terminate eventually.

Running the MulticastRegister

The MulticastRegister program needs to be compiled and run with jini-core.jar
and jini-ext.jar in its CLASSPATH. The extra jar file is needed because it contains
the class files from the net.jini.discovery package. When run, the program will
attempt to find all the service locators that it can. If there are none, it will find
none—pretty boring. So one or more service locators should be set running in the
network or on the local machine. Service locators running in the network must be
accessible by multicast calls or they will not be found. This usually means that they
will have to be on the same LAN as the MulticastRegister program.

Discovering a Lookup Service

3939

This program will receive ServiceRegistrars from the service locators. How-
ever, it does so with a simple readObject() on a socket connected to a service
locator, and so does not need any additional RMI support services, such as
rmiregistry.

Broadcast Range

Services and clients search for lookup locators using the multicast protocol by
sending out packets as UDP datagrams. It makes announcements on UDP
224.0.1.84 on port 4160. How far do these announcements reach? This is con-
trolled by two things:

• the time-to-live (TTL) field on the packets

• the network administrator settings on routers and gateways

By default, the current implementation of LookupDiscovery sets the TTL to be
15. Common network administrative settings restrict such packets to the local net-
work. However, the TTL can be changed by giving the system property
net.jini.discovery.ttl a different value. However, be careful about setting this;
many people will get irate if you flood the networks with multicast packets.

ServiceRegistrar

The ServiceRegistrar is an abstract class that is implemented by each lookup ser-
vice. The actual details of this implementation are not relevant here. The role of a
ServiceRegistrar is to act as a proxy for the lookup service. This proxy runs in the
application, which may be a service or a client.

This is the first object that is moved from one JVM to another by Jini. It is
shipped from the lookup service to the application looking for the lookup service,
using a socket connection. From then on, it runs as an object in the application’s
address space, and the application makes normal method calls to it. When needed,
it communicates back to its lookup service. The implementation used by Sun’s
reggie uses RMI to communicate, but the application does not need to know this,
and anyway, it could be done in different ways. This proxy object should not cache
any information on the application side, but instead should get “live” information
from the lookup service as needed. The implementation of the lookup service sup-
plied by Sun does exactly this.

Chapter 3

40

The ServiceRegistrar object has two major methods. One is used by a service
attempting to register:

public ServiceRegistration register(ServiceItem item,

 long leaseDuration)

 throws java.rmi.RemoteException

The other method (with two forms) is used by a client trying to locate a particular
service:

public java.lang.Object lookup(ServiceTemplate tmpl)

 throws java.rmi.RemoteException;

public ServiceMatches lookup(ServiceTemplate tmpl,

 int maxMatches)

 throws java.rmi.RemoteException;

The details of these methods are given in Chapter 5 and Chapter 6. For now, an
overview will suffice.

A service provider will register a service object (that is, an instance of a class),
and a set of attributes for that object. For example, a printer may specify that it can
handle Postscript documents, or a toaster that it can deal with frozen slices of
bread. The service provider may register a singleton object that completely imple-
ments the service, but more likely it will register a service proxy that will
communicate back to other objects in the service provider. Note carefully: the reg-
istered object will be shipped around the network, and when it finally gets to run,
it may be a long way away from where it was originally created. It will have been
created in the service’s JVM, transferred to the lookup locator by register(), and
then to the client’s JVM by lookup().

A client is trying to find a service using some properties of the service that it
knows about. Whereas the service can export a live object, the client cannot use a
service object as a property, because then it would already have the thing, and
wouldn’t need to try to find one! What it can do is use a class object, and try to find
instances of this class lying around in service locators. As discussed later in Chap-
ter 6, it is best if the client asks for an interface class object. In addition to this
class specification, the client may specify a set of attribute values that it requires
from the service.

The next step is to look at the possible forms of attribute values, and at how
matching will be performed. This is done using Jini Entry objects, which are dis-
cussed in Chapter 4. The simplest services, and the least demanding clients, will
not require any attributes: the Entry[] array will be null. You may wish to skip
ahead to Chapter 5 or to Chapter 6 and come back to the discussion of entries in
Chapter 4 later.

Discovering a Lookup Service

4141

Information from the ServiceRegistrar

The ServiceRegistrar is returned after a successful discovery has been made. This
object has a number of methods that will return useful information about the
lookup service. So, in addition to using this object to register a service or to look up
a service, you can use it to find out about the lookup locator. The major methods
are these:

String[] getGroups();;

LookupLocator getLocator();

ServiceID getServiceID();

The first method, getGroups(), will return a list of the groups that the locator is
a member of.

The second method, getLocator(), is more interesting. This returns exactly the
same type of object as is used in the unicast lookup, but now its fields are filled in
by the discovery process. You can find out which host the locator is running on,
and its hostname, by using the following statement:

registrar.getLocator().getHost();

The following code shows how this can be used in the discovered() method to
print information about each lookup service that replies to the multicast request:

public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

 System.out.println("Service locator at " +

 registrar.getLocator().getHost());

 }

}

You could use the discovered() method to find out where a service locator is so
that the next time this program runs, it could connect directly by unicast.

The third method, getServiceID(), is unlikely to be of much use to you. In gen-
eral, service IDs are used to give a globally unique identifier for the service
(different services should not have the same ID), and a service should have the
same ID with all service locators. However, this is the service ID of the lookup ser-
vice, not of any services registered with it.

Jan Newmarch
Indent "System..." to start in same clomun as previous line's "Service..."

Chapter 3

42

Summary

Both services and clients need to find lookup services. Discovering a lookup ser-
vice may be done using unicast or multicast protocols. Unicast discovery is a
synchronous mechanism. Multicast discovery is an asynchronous mechanism
that requires use of a listener to respond when a new service locator is discovered.

When a service locator is discovered, it sends a ServiceRegistrar object to run
in the client or service. This acts as a proxy for the locator. This object may be que-
ried for information, such as the host the service locator is on.

