

17

CHAPTER 2

Troubleshooting Jini
Configuration Problems

J

INI

IS

ADVERTISED

AS

 “network plug and work,” which carries the idea of zero
administration, where you buy a device, switch it on, and

voila—

it is there and
available. Well, this may happen in the future, but right now there are a number
of back-room games that you have to succeed at. Once you have won at these,
network plug and work

does

 indeed work, but if you lose at any stage, then it can
be all uphill!

The difficulty is getting the right files in the right places with the right permis-
sions. About 50 percent of the messages in the Jini mailing list are about these
configuration problems. They shouldn’t occur, and that is why this is “The Chapter
That Shouldn’t Exist.” This chapter looks at some of the problems that can arise in
a Jini system. Most of them are configuration problems of some kind.

This is the second chapter in the book, so right now you shouldn’t have man-
aged to fail at anything! In the following chapters, the sections contains
instructions on what to do to get the example programs working, and include
step-by-step instructions, so skip on to the next chapters, but come back here
when things go wrong. Your luck may vary: I got a reasonable way into my first
attempts without problems, and some people are even luckier. Some aren’t...

Java Packages

A typical Java packages error looks like this:

Exception in thread "main" java.lang.NoClassDefFoundError:

 basic/InvalidLookupLocator

Most of the code in this tutorial is organized into packages. To run the exam-
ples, the classes must be accessible from your class path. For example, one of the
programs in the

basic

 directory is

InvalidLookupLocator.java

. This defines the class

InvalidLookupLocator

 in the

basic

 package. The program must be run using the
fully qualified path name, like this:

java basic.InvalidLookupLocator

Chapter 2

18

Note the use of the period (.), not a slash (/).

In order to find this class, the

CLASSPATH

 must be set correctly for the Java runt-
ime. If you have copied the

classes.zip

 file, the class files for this tutorial are in
there. You only need to reference this:

CLASSPATH=classes.zip:...

If you have downloaded the source files, then they are all in subdirectories,
such as

basic

,

complex

, etc. After compilation, the class files should also be in the
subdirectories, such as

basic/InvalidLookupLocator.class

. An alternative to using

classes.zip

 is to set the CLASSPATH to include the directory containing those sub-
directories. For example, if the full path is

/home/jan/classes/basic/

InvalidLookupLocator.class

, then set the

CLASSPATH

 to

CLASSPATH=/home/jan/classes:...

An alternative to setting the

CLASSPATH

 environment variable is to use the

-

classpath

 option to the Java runtime engine, like this:

java -classpath /home/jan/classes basic.InvalidLookupLocator

Jini Versions

At the time of writing, there are two versions of Jini: 1.0 and 1.1.
The core
classes are all the same for versions 1.0 and 1.1. The only changes in version 1.1 for
the programmer are that some classes from Jini 1.0 have been better specified and
are in different packages, and some classes are new.

These are the main classes that have changed:

•

JoinManager

•

LeaseRenewalManager

•

ServiceIDListener

These are the main new classes:

•

LookupLocatorDiscovery

•

LookupDiscoveryManager

•

ClientLookupManager

Jan Newmarch
I haven't figured out how to
join these lines after changes yet

Troubleshooting Jini Configuration Problems

1919

If you get syntax or runtime errors relating to these classes, then it is possible
that you are using Jini 1.0 instead of Jini 1.1. If you get “deprecated” warnings, then
it is likely that you are using the Jini 1.0 classes in a Jini 1.1 environment. The old
classes are supported for now, but are not approved.

Jini Packages

A typical Jini package error looks like this:

Exception in thread "main" java.lang.NoClassDefFoundError:

 net/jini/discovery/DiscoveryListener

The Jini class files are all in jar files. The Jini distribution puts them in a

lib

subdirectory when they are unpacked. There are a whole bunch of these jar files:

The

jini-core.jar

 jar file contains the major packages of Jini:

net.jini.core

net.jini.core.discovery

net.jini.core.entry

net.jini.core.event

net.jini.core.lease

net.jini.core.lookup

net.jini.core.transaction

If the Java compiler or runtime can’t find a class in one of these packages, then you
need to make sure that the

jini-core.jar

 file is in your

CLASSPATH

.

The jar file

jini-ext.jar

 contains a set of packages that are not in the core, but
are still heavily used:

net.jini.admin

jini-core.jar mahalo-dl.jar sun-util.jar

jini-examples-dl.jar mahalo.jar tools.jar

jini-examples.jar reggie-dl.jar reggie.jar

jini-ext.jar

Chapter 2

20

net.jini.discovery

net.jini.entry

net.jini.lease

net.jini.lookup

net.jini.lookup.entry

net.jini.space

If the Java compiler or runtime can’t find a class in one of these packages, then you
need to make sure that the

jini-ext.jar

 file is in your

CLASSPATH

.

The

sun-util.jar

 jar file contains the packages from the

com.sun.jini

 hierarchy.
These contain a number of “convenience” classes that are not essential but can be
useful. These are less frequently used.

A compile or run of a Jini application will typically have an environment set
something like this:

JINI_HOME=wherever_Jini_home_is

CLASSPATH=.:$JINI_HOME/lib/jini-core.jar:$JINI_HOME/lib/jini-ext.jar

Lookup Service

A typical lookup service error looks like this:

java.rmi.activation.ActivationException: ActivationSystem not running;

nested exception is:

 java.rmi.NotBoundException: java.rmi.activation.ActivationSystem

java.rmi.NotBoundException: java.rmi.activation.ActivationSystem

The command

rmid

 starts the activation system running. If this cannot start
properly or dies just after starting, you will get this message. Usually it is caused by
incorrect file permissions.

RMI Stubs

A typical RMI stubs error looks like this:

java.rmi.StubNotFoundException:

 Stub class not found: rmi.FileClassifierImpl_Stub;

nested exception is:

 java.lang.ClassNotFoundException: rmi.FileClassifierImpl_Stub

Troubleshooting Jini Configuration Problems

2121

Many of the examples in this book export services as remote RMI objects. These
objects are subclasses of

UnicastRemoteObject

. What gets exported is not the object
itself, but a stub that will act as a proxy for the object (which continues to run back in
the server). The stub has to be created using the

rmic

 compiler, like this:

rmic -v1.2 -d . rmi.FileClassifierImpl

This will create a

FileClassifierImpl_Stub.class

 in the

rmi

 subdirectory. The stub
class file needs to be accessible to the Java runtime in the same way as the original
class file.

Another typical error is this:

java.rmi.ServerException: RemoteException occurred in server thread; nested excep-

tion is:

 java.rmi.UnmarshalException: error unmarshalling arguments; nested exception is:

 java.lang.ClassNotFoundException: rmi.FileClassifierImpl_Stub

This error arises when an object is trying to get a remote reference to

File-

ClassifierImpl

, and it is trying to load the class file for the stub from an HTTP
server. What makes this one particularly annoying is that it may not be referring to
the

FileClassifierImpl_Stub

 at all! The class will often implement a remote inter-
face, such as

RemoteFileClassifier

. This, in turn, implements the common class

FileClassifier

, as shown in Figure 2-1.

Class files for all of these classes and interfaces have to be available!

 The

File-

Classifier

 interface may be “well known,” with a class file on each client and server.
However, an interface such as

RemoteFileClassifier

, as well as the implementation

Figure 2-1. Interfaces and superclasses for an exported stub

RemoteFileClassifier

FileClassifier

FileClassifierImpl_Stub

Chapter 2

22

files for

FileClassifierImpl

, may only be known to a particular server. The HTTP
server must carry not only the class files for the stubs, but the class files for all
superclasses and interfaces that are not available to all—in this case, for

Remote-

FileClassifier

 as well as

FileClassfier

.

Debugging

Debugging a Jini application is difficult because there are so many bits to it, and
these bits are all running separately: the server for a service, the client, the lookup
services, the remote activation daemons, and the HTTP servers. There are a few
(not many) errors within the Jini objects themselves, but more importantly, many
of these objects are implemented using multiple threads, and the flow of execu-
tion is not always clear. There are no magic “debug” flags that can be turned on to
show what is happening.

On either the client or service side, a debugger such as

jdb

 can be used to step
through or trace execution of a client or server. Lots of print statements help too.
There are also three flags that can be turned on to help:

java -Djava.security.debug=access \

 -Dnet.jini.discovery.debug=1 \

 -Djava.rmi.server.logCalls=true ...

These flags don’t give complete information, but they do give some, and they
can at least tell you if the application’s parts are still living! If the

java.secu-

rity.debug

 property is set to

access

, then every time the application needs to check
a security access (such as making a network connection, opening a file, etc.) it will
print a message. If

net.jini.discovery.debug

 is set to any non-null value, then any
exceptions thrown during the discovery process will be printed. The final property
will set on logging of RMI calls.

Summary

Setting up and running a Jini system is complex at present, with many things
that can go wrong. This chapter has looked at some of the problems that can occur
and at some of the solutions. The list is not complete, but it may help in the most
common situations.

