

123

CHAPTER 20

Activation

M

ANY

OF

THE

EXAMPLES

IN

EARLIER

CHAPTERS

 use RMI proxies for services. These ser-
vices subclass

UnicastRemoteObject

 and live within a server whose principal task is to
keep the service alive and registered with lookup services. If the server fails to renew
leases, then lookup services will eventually discard it; if it fails to keep itself and its
service alive, then the service will not be available when a client wants to use it.

This results in a server and a service that will be idle most of the time, proba-
bly swapped out to disk, but still using virtual memory. In JDK 1.2, the memory
requirements on the server side can be enormous (hopefully this will be fixed, but
at the moment this is a severe embarrassment to Java and a potential threat to the
success of Jini). In JDK 1.2, there is an extension to RMI called Activation, which
allows an idle object to die and be recalled to life when needed. In this way, it does
not occupy virtual memory while idle. Of course, a process needs to be alive to
restore such objects, and RMI supplies a daemon

rmid

 to manage this. In effect,

rmid

 acts as another virtual memory manager because it stores information about
dormant Java objects in its own files and restores them from there as needed.

There is a serious limitation to

rmid

: it is a Java program itself, and when run-
ning also uses enormous amounts of memory. So it only makes sense to use this
technique when you expect to be running a number of largely idle services on the
same machine. When a service is recalled to life, or activated, a new JVM may be
started to run the object. This again increases memory use.

If memory use were the only concern, there are a variety of other systems,
such as

echidna

, that run multiple applications within a single JVM. These may be
adequate to solve the memory issues. However, RMI Activation is also designed to
work with distributed objects and allows JVMs to hold remote references to objects
that are no longer active. Instead of throwing a remote exception when trying to
access these objects, the Activation system tries to resurrect the object using

rmid

to give a valid (and new) reference. Of course, if it fails to do this, it will throw an
exception anyway.

The principal place that this is used in the standard Jini distribution is with the

reggie

 lookup service.

reggie

 is an activatable service that starts, registers itself
with

rmid

, and then exits. Whenever lookup services are required,

rmid

 restarts

reggie

 in a new JVM. Clients of the lookup service are unaware of this mechanism;
they simply make calls on their proxy

ServiceRegistration

 object and the Activa-
tion system looks after the rest. The main problem is for the system
administrator—getting

reggie

 to work in the first place!

Chapter 20

124

A Service Using Activation

The major concepts in Activation are the activatable object itself (which extends

java.rmi.activation.Activatable

) and the environment in which it runs, an

ActivationGroup

.
A JVM may have an activation group associated with it. If an object needs to be

activated and there is already a JVM running its group, then it is restarted within
that JVM. Otherwise, a new JVM is started. An activation group may hold a number
of cooperating objects.

The next sections show how to create a service as an activatable object that
starts life in a server that sets up the activation group. Issues related to activation,
such as security and state maintenance, will also be discussed.

The Service

An activable object subclasses from

Activatable

 and uses a special two-argument
constructor that will be called when the object needs to be reconstructed. There is
a standard implementation of this constructor that just calls the superclass
constructor:

public ActivatableImpl(ActivationID id, MarshalledObject data)

 throws RemoteException {

 super(id, 0);

}

(The use of the marshalled object parameter is discussed later in the “Main-
taining State” section). Adding this constructor is all that is normally needed to
change a remote service (that implements

UnicastRemoteObject

) into an activatable
service. For example, an activatable version of the remote file classifier described
in Chapter 9 in the “RMI Proxy for FileClassifier” section is as follows:

package activation;

import java.rmi.activation.Activatable;

import java.rmi.activation.ActivationID;

import java.rmi.MarshalledObject;

import common.MIMEType;

import common.FileClassifier;

import rmi.RemoteFileClassifier;

/**

Activation

125125

 * FileClassifierImpl.java

 */

public class FileClassifierImpl extends Activatable

 implements RemoteFileClassifier {

 public MIMEType getMIMEType(String fileName)

 throws java.rmi.RemoteException {

 if (fileName.endsWith(".gif")) {

 return new MIMEType("image", "gif");

 } else if (fileName.endsWith(".jpeg")) {

 return new MIMEType("image", "jpeg");

 } else if (fileName.endsWith(".mpg")) {

 return new MIMEType("video", "mpeg");

 } else if (fileName.endsWith(".txt")) {

 return new MIMEType("text", "plain");

 } else if (fileName.endsWith(".html")) {

 return new MIMEType("text", "html");

 } else

 // fill in lots of other types,

 // but eventually give up and

 return new MIMEType(null, null);

 }

 public FileClassifierImpl(ActivationID id, MarshalledObject data)

 throws java.rmi.RemoteException {

 super(id, 0);

 }

} // FileClassifierImpl

Note that an activatable object cannot have a default no-args constructor to
initialize itself, since this new constructor is required for the object to be con-
structed by the activation system.

The Server

The server needs to create an activation group for the objects to run in. The main
issue involved here is to set a security policy file. There are two security policies
in activatable objects: the policy used to create the server and export the service,
and the policy used to run the service. The activation group sets a policy file for
running methods of the service object. The policy file for the server is set using

Chapter 20

126

the normal

-Djava.security.policy=...

 argument to start the server. After setting
various parameters, the activation group is set for the JVM by

Activation-

Group.createGroup()

.
Remote objects that subclass

UnicastRemoteObject

 are created in the normal
way using a constructor on the server. Activatable objects are not constructed in
the server but are instead registered with

rmid

, which will look after construction
on an as-needed basis.

In order to create activatable objects,

rmid

 needs to know the class name and
the location of the class files. The server wraps these up in an

ActivationDesc

, and
registers this with

rmid

 by using

Activatable.register()

. This returns an RMI stub
object that can be registered with lookup services using the

ServiceRegistrar.reg-

ister()

 methods. This is also a little different from subclasses of

UnicastRemoteObject

, which pass an object that is converted to a stub by the RMI
runtime. The required actions, in point form, are as follows:

• A service creates a subclass of

UnicastRemoteObject

 using its constructor.

• A subclass of

Activatable

 is created by

rmid

 using a special constructor.

• For a

UnicastRemoteObject

 object, the server needs to know the class files for
the class in its

CLASSPATH

 and the client needs to know the class files for the
stub from an HTTP server.

• For an

Activatable

 object,

rmid

 needs to know the class files from an HTTP
server, the server must be able to find the stub files from its

CLASSPATH

, and
the client must be able to get the stub files from an HTTP server.

• A server hands a

UnicastRemoteObject

 object to the

ServiceRegistrar.regis-

ter()

. This is converted to the stub by the RMI runtime.

• A server gets a stub for an

Activatable

 object from

Activatable.register()

.
This stub is given directly to

ServiceRegistrar.register()

.

Changes need to be made to servers that export activatable objects instead of
unicast remote objects. The server in Chapter 9, in the “RMI Proxy for FileClassi-
fier” section, creates a unicast remote object and exports its RMI proxy to lookup
services by passing the remote object to the

ServiceRegistrar.register()

 method.
The changes for such servers to export activatable objects are as follows:

• An activation group has to be created with a security policy file.

• The service is not created explicitly but is instead registered with

rmid

.

Activation

127127

• The return object from the registration is a stub that can be registered with
lookup services.

• Leasing vanishes—the server just exits. The service will just expire after a
while. See the “LeaseRenewalService” section, later in the chapter, for more
details on how to keep the service alive.

The file classifier server using an activatable service would look like this:

package activation;

import rmi.RemoteFileClassifier;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lease.Lease;

import java.rmi.RMISecurityManager;

import java.rmi.MarshalledObject;

import java.rmi.activation.ActivationDesc;

import java.rmi.activation.ActivationGroupDesc;

import java.rmi.activation.ActivationGroupDesc.CommandEnvironment;

import java.rmi.activation.Activatable;

import java.rmi.activation.ActivationGroup;

import java.rmi.activation.ActivationGroupID;

import java.util.Properties;

import java.rmi.activation.UnknownGroupException;

import java.rmi.activation.ActivationException;

import java.rmi.RemoteException;

/**

 * FileClassifierServer.java

 */

public class FileClassifierServer implements DiscoveryListener {

 static final protected String SECURITY_POLICY_FILE =

 "/home/jan/projects/jini/doc/policy.all";

 // Don't forget the trailing '/'!

Chapter 20

128

 static final protected String CODEBASE = "http://localhost/classes/";

 // protected FileClassifierImpl impl;

 protected RemoteFileClassifier stub;

 public static void main(String argv[]) {

 new FileClassifierServer(argv);

 // stick around while lookup services are found

 try {

 Thread.sleep(10000L);

 } catch(InterruptedException e) {

 // do nothing

 }

 // the server doesn't need to exist anymore

 System.exit(0);

 }

 public FileClassifierServer(String[] argv) {

 // install suitable security manager

 System.setSecurityManager(new RMISecurityManager());

 // Install an activation group

 Properties props = new Properties();

 props.put("java.security.policy",

 SECURITY_POLICY_FILE);

 ActivationGroupDesc.CommandEnvironment ace = null;

 ActivationGroupDesc group = new ActivationGroupDesc(props, ace);

 ActivationGroupID groupID = null;

 try {

 groupID = ActivationGroup.getSystem().registerGroup(group);

 } catch(RemoteException e) {

 e.printStackTrace();

 System.exit(1);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 }

 try {

 ActivationGroup.createGroup(groupID, group, 0);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 }

Activation

129129

 String codebase = CODEBASE;

 MarshalledObject data = null;

 ActivationDesc desc = null;

 try {

 desc = new ActivationDesc("activation.FileClassifierImpl",

 codebase, data);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 }

System.out.println("Group ID " + ActivationGroup.currentGroupID().toString());

 try {

 stub = (RemoteFileClassifier) Activatable.register(desc);

 } catch(UnknownGroupException e) {

 e.printStackTrace();

 System.exit(1);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 } catch(RemoteException e) {

 e.printStackTrace();

 System.exit(1);

 }

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 RemoteFileClassifier service;

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

Chapter 20

130

 // export the proxy service

 ServiceItem item = new ServiceItem(null,

 stub,

 null);

 ServiceRegistration reg = null;

 try {

 reg = registrar.register(item, Lease.FOREVER);

 } catch(java.rmi.RemoteException e) {

 System.err.print("Register exception: ");

 e.printStackTrace();

 // System.exit(2);

 continue;

 }

 try {

 System.out.println("service registered at " +

 registrar.getLocator().getHost());

 } catch(Exception e) {

 }

 }

 }

 public void discarded(DiscoveryEvent evt) {

 }

} // FileClassifierServer

Running the Service

The service backend and the server must be compiled as usual, and in addition, an
RMI stub object must be created for the service backend using the

rmic

 compiler (in
JDK 1.2, at least). The class files for the stub must be copied to somewhere where an
HTTP server can deliver them to clients. This is the same as for any other RMI stubs.

There is an extra step that must be performed for Activatable objects: the acti-
vation server

rmid

 must be able to reconstruct a copy of the service backend (the
client must be able to reconstruct a copy of the service’s stub). This means that

rmid

 must have access to the class files of the service backend, either from an
HTTP server or from the file system. In the previous server, the

codebase

 property
in the

ActivationDesc

 is set to an HTTP URL, so the class files for the service back-
end must be accessible to an HTTP server. Note that

rmid

 does not get the class
files for a service backend from the

CLASSPATH

, but from the codebase of the ser-
vice. The HTTP server need not be on the same machine as the service backend.

Activation

131131

Before starting the service provider, an

rmid

 process must be set running on
the same machine as the service provider. An HTTP server must be running on a
machine specified by the

codebase

 property on the service. The service provider
can then be started. This will register the service with

rmid

 and will copy a stub
object to any lookup services that are found. The server can then terminate. (As
mentioned earlier, this will cause the service’s lease to expire, but techniques to
handle this are described later).

In summary, there are typically three processes involved in getting an activat-
able service running:

• The service provider, which specifies the location of class files in its
codebase.

•

rmid

, which must be running on the same machine as the service provider
and must be started before the service provider. It gets class files using the
codebase of the service.

• An HTTP server, which can be on a different machine and is pointed to by
the codebase.

While the service remains registered with lookup services, clients can download
its RMI stub. The service will be created on demand by

rmid

. You only need to run the
server once, since

rmid

 keeps information about the service in its own log files.

Security

The JVM for the service will be created by

rmid

 and will be running in the same
environment as

rmid

. Such things as the current directory for the service will be the
same as for rmid, not from where the server ran. Similarly, the user ID for the ser-
vice will be the user ID of rmid. This is a potential security problem in multi-user
systems. For example, any user on a Unix system could write a service that attempts
to read the shadow password file on the system, as an activatable service. Once
registered with rmid, this same user could write a client that calls the appropriate
methods on the service. If rmid is running in privileged mode, owned by the super-
user of the system, then the service will run in that same mode and will happily
read any file in the entire file system! For safety, rmid should probably be run using
the user ID nobody, much like the recommendations for HTTP servers.

Some of the security issues with rmid have been addressed in JDK 1.3. These
were discussed in Chapter 12, and they allow a security policy to be associated
with each activatable service.

Chapter 20

132

Non-Lazy Services

The types of services discussed in this chapter so far are “lazy” services, activated
on demand when their methods are called. This reduces memory use at the expense
of starting up a new JVM when required. Some services need to be continuously
alive but can still benefit from the logging mechanism of rmid. If rmid crashes and
is restarted, or the machine is rebooted and rmid restarts, then the server is able to
use its log files to restart any “active” services registered with it, as well as to restore
“lazy” services on demand. By making services non-lazy and ensuring that rmid is
started on reboot, you can avoid messing around with boot configuration files.

Maintaining State

An activatable object is created afresh each time a method is called on it, using its
two-argument constructor. The default action, calling super(id, 0) will result in
the object being created in the same state on each activation. However, method
calls on objects (apart from get...() methods) usually result in a change of state of
the object. Activatable objects will need some way of reflecting this change on
each activation, and saving and restoring state using a disk file typically does this.

When an object is activated, one of the parameters passed to it is a Marshalled-
Object instance. This is the same object that was passed to the activation system in
the ActivationDesc parameter to Activation.register(). This object does not
change between different activations, so it cannot hold changing state, but only
data, which is fixed for all activations. A simple use for it is to hold the name of a
file that can be used for state. Then, on each activation the object can restore state
by reading stored information. On each subsequent method call that changes
state, the information in the file can be overwritten.

The mutable file classifier example was discussed in Chapter 14—it could be
sent addType() and removeType() messages. It begins with a given set of MIME type/
file extension mappings. State here is very simple; it is just a matter of storing all
the file extensions and their corresponding MIME types in a Map. If we turn this
into an activatable object, we store the state by just storing the map. This map can
be saved to disk using ObjectOutputStream.writeObject(), and it can be retrieved by
ObjectInputStream.readObject(). More complex cases might need more complex
storage methods.

The very first time a mutable file classifier starts on a particular host, it should
build its initial state file. There are a variety of methods that could be used. For
example, if the state file does not exist, then the first activation could detect this
and construct the initial state at that time. Alternatively, a method such as init()
could be defined, to be called once after the object has been registered with the
activation system.

Activation

133133

The “normal” way of instantiating an object—through a constructor—doesn’t
work very well with activatable objects. If a constructor for a class doesn’t start by
calling another constructor with this(...) or super(...), then the no-argument
superclass constructor super() is called. However, the class Activatable doesn’t
have a no-args constructor, so you can’t subclass from Activatable and have a con-
structor such as FileClassifierMutable(String stateFile) that doesn’t use the
activation system.

You can avoid this problem by not inheriting from Activatable and registering
explicitly with the activation system, like this:

public FileClassifierMutable(ActivationID id, MarshalledObject data)

 throws java.rmi.RemoteException {

 Activatable.exportObject(this, id, 0);

 // continue with instantiation

Nevertheless, this is a bit clumsy: you create an object solely to build up initial
state, and then discard it because the activation system will recreate it on demand.

The technique we’ll use here is to create initial state if the attempt to restore
state from the state file fails for any reason when the object is activated. This is
done in the restoreMap() method called from the constructor FileClassifier-
Mutable(ActivationID id, MarshalledObject data). The name of the file is extracted
from the marshalled object passed in as parameter.

package activation;

import java.io.*;

import java.rmi.activation.Activatable;

import java.rmi.activation.ActivationID;

import java.rmi.MarshalledObject;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.EventRegistration;

import java.rmi.RemoteException;

import net.jini.core.event.UnknownEventException ;

import javax.swing.event.EventListenerList;

import common.MIMEType;

import common.MutableFileClassifier;

import mutable.RemoteFileClassifier;

import java.util.Map;

import java.util.HashMap;

Chapter 20

134

/**

 * FileClassifierMutable.java

 */

public class FileClassifierMutable extends Activatable

 implements RemoteFileClassifier {

 /**

 * Map of String extensions to MIME types

 */

 protected Map map = new HashMap();

 /**

 * Permanent storage for the map while inactive

 */

 protected String mapFile;

 /**

 * Listeners for change events

 */

 protected EventListenerList listenerList = new EventListenerList();

 public MIMEType getMIMEType(String fileName)

 throws java.rmi.RemoteException {

 System.out.println("Called with " + fileName);

 MIMEType type;

 String fileExtension;

 int dotIndex = fileName.lastIndexOf('.');

 if (dotIndex == -1 || dotIndex + 1 == fileName.length()) {

 // can't find suitable suffix

 return null;

 }

 fileExtension= fileName.substring(dotIndex + 1);

 type = (MIMEType) map.get(fileExtension);

 return type;

 }

 public void addType(String suffix, MIMEType type)

 throws java.rmi.RemoteException {

Activation

135135

 map.put(suffix, type);

 fireNotify(MutableFileClassifier.ADD_TYPE);

 saveMap();

 }

 public void removeMIMEType(String suffix, MIMEType type)

 throws java.rmi.RemoteException {

 if (map.remove(suffix) != null) {

 fireNotify(MutableFileClassifier.REMOVE_TYPE);

 saveMap();

 }

 }

 public EventRegistration addRemoteListener(RemoteEventListener listener)

 throws java.rmi.RemoteException {

 listenerList.add(RemoteEventListener.class, listener);

 return new EventRegistration(0, this, null, 0);

 }

 // Notify all listeners that have registered interest for

 // notification on this event type. The event instance

 // is lazily created using the parameters passed into

 // the fire method.

 protected void fireNotify(long eventID) {

 RemoteEvent remoteEvent = null;

 // Guaranteed to return a non-null array

 Object[] listeners = listenerList.getListenerList();

 // Process the listeners last to first, notifying

 // those that are interested in this event

 for (int i = listeners.length - 2; i >= 0; i -= 2) {

 if (listeners[i] == RemoteEventListener.class) {

 RemoteEventListener listener = (RemoteEventListener) listeners[i+1];

 if (remoteEvent == null) {

 remoteEvent = new RemoteEvent(this, eventID,

 0L, null);

 }

 try {

 listener.notify(remoteEvent);

 } catch(UnknownEventException e) {

 e.printStackTrace();

Chapter 20

136

 } catch(RemoteException e) {

 e.printStackTrace();

 }

 }

 }

 }

 /**

 * Restore map from file.

 * Install default map if any errors occur

 */

 public void restoreMap() {

 try {

 FileInputStream istream = new FileInputStream(mapFile);

 ObjectInputStream p = new ObjectInputStream(istream);

 map = (Map) p.readObject();

 istream.close();

 } catch(Exception e) {

 e.printStackTrace();

 // restoration of state failed, so

 // load a predefined set of MIME type mappings

 map.put("gif", new MIMEType("image", "gif"));

 map.put("jpeg", new MIMEType("image", "jpeg"));

 map.put("mpg", new MIMEType("video", "mpeg"));

 map.put("txt", new MIMEType("text", "plain"));

 map.put("html", new MIMEType("text", "html"));

 this.mapFile = mapFile;

 saveMap();

 }

 }

 /**

 * Save map to file.

 */

 public void saveMap() {

 try {

 FileOutputStream ostream = new FileOutputStream(mapFile);

 ObjectOutputStream p = new ObjectOutputStream(ostream);

 p.writeObject(map);

 p.flush();

 ostream.close();

 } catch(Exception e) {

Activation

137137

 e.printStackTrace();

 }

 }

 public FileClassifierMutable(ActivationID id, MarshalledObject data)

 throws java.rmi.RemoteException {

 super(id, 0);

 try {

 mapFile = (String) data.get();

 } catch(Exception e) {

 e.printStackTrace();

 }

 restoreMap();

 }

} // FileClassifierMutable

The difference between the server for this service and the last one is that we
now have to prepare a marshalled object for the state file and register it with the
activation system. Here the filename is hard-coded, but it could be given as a com-
mand line argument (as services such as reggie do).

package activation;

import mutable.RemoteFileClassifier;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lease.Lease;

import java.rmi.RMISecurityManager;

import java.rmi.MarshalledObject;

import java.rmi.activation.ActivationDesc;

import java.rmi.activation.ActivationGroupDesc;

import java.rmi.activation.ActivationGroupDesc.CommandEnvironment;

import java.rmi.activation.Activatable;

import java.rmi.activation.ActivationGroup;

import java.rmi.activation.ActivationGroupID;

import java.util.Properties;

import java.rmi.activation.UnknownGroupException;

Chapter 20

138

import java.rmi.activation.ActivationException;

import java.rmi.RemoteException;

/**

 * FileClassifierServerMutable.java

 */

public class FileClassifierServerMutable implements DiscoveryListener {

 static final protected String SECURITY_POLICY_FILE =

 "/home/jan/projects/jini/doc/policy.all";

 // Don't forget the trailing '/'!

 static final protected String CODEBASE = "http://localhost/classes/";

 static final protected String LOG_FILE = "/tmp/file_classifier";

 // protected FileClassifierImpl impl;

 protected RemoteFileClassifier stub;

 public static void main(String argv[]) {

 new FileClassifierServerMutable(argv);

 // stick around while lookup services are found

 try {

 Thread.sleep(10000L);

 } catch(InterruptedException e) {

 // do nothing

 }

 // the server doesn't need to exist anymore

 System.exit(0);

 }

 public FileClassifierServerMutable(String[] argv) {

 // install suitable security manager

 System.setSecurityManager(new RMISecurityManager());

 // Install an activation group

 Properties props = new Properties();

 props.put("java.security.policy",

 SECURITY_POLICY_FILE);

 ActivationGroupDesc.CommandEnvironment ace = null;

 ActivationGroupDesc group = new ActivationGroupDesc(props, ace);

 ActivationGroupID groupID = null;

 try {

 groupID = ActivationGroup.getSystem().registerGroup(group);

 } catch(RemoteException e) {

Activation

139139

 e.printStackTrace();

 System.exit(1);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 }

 try {

 ActivationGroup.createGroup(groupID, group, 0);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 }

 String codebase = CODEBASE;

 MarshalledObject data = null;

 try {

 data = new MarshalledObject(LOG_FILE);

 } catch(java.io.IOException e) {

 e.printStackTrace();

 }

 ActivationDesc desc = null;

 try {

 desc = new ActivationDesc("activation.FileClassifierMutable",

 codebase, data);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 }

System.out.println("Group ID " + ActivationGroup.currentGroupID().toString());

 try {

 stub = (RemoteFileClassifier) Activatable.register(desc);

 } catch(UnknownGroupException e) {

 e.printStackTrace();

 System.exit(1);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 } catch(RemoteException e) {

 e.printStackTrace();

 System.exit(1);

 }

Chapter 20

140

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 RemoteFileClassifier service;

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

 // export the proxy service

 ServiceItem item = new ServiceItem(null,

 stub,

 null);

 ServiceRegistration reg = null;

 try {

 reg = registrar.register(item, Lease.FOREVER);

 } catch(java.rmi.RemoteException e) {

 System.err.print("Register exception: ");

 e.printStackTrace();

 // System.exit(2);

 continue;

 }

 try {

 System.out.println("service registered at " +

 registrar.getLocator().getHost());

 } catch(Exception e) {

 }

 }

 }

 public void discarded(DiscoveryEvent evt) {

 }

Activation

141141

} // FileClassifierServerMutable

This example used a simple way of storing state. Sun uses a far more complex
system in many of its services, such as reggie—a “reliable log” in the package
com.sun.jini.reliableLog. However, this package is not a part of standard Jini, so it
may change or even be removed in later versions of Jini. There is nothing to stop
you from using it, though, if you need a robust storage mechanism.

LeaseRenewalService

Activatable objects are an example of services that are not continuously alive. Mobile
services, such as those that will exist on mobile phones, are another. These services
will be brought to life on demand (as activatable objects), or will join the network on
occasion. These services raise a number of problems, and one was skirted around in
the last section: How do you renew leases when the object is not alive?

Activatable objects are brought back to life when methods are invoked on
them, and the expiration of a lease does not cause any methods to be invoked.
There is no “lease-expiring event” generated that could cause a listener method to
be invoked, either. It is true that a ServiceRegistrar such as reggie will generate an
event when a lease changes status, but this is a “service removed” event rather
than a “service about to be removed” event—at that point it is too late.

If a server is alive, then it can use a LeaseRenewalManager to keep leases alive,
but there are two problems with this: first the renewal manager works by sleeping
and waking up just in time to renew the leases, and second, if the server exits, then
no LeaseRenewalManager will continue to run.

Jini 1.1 supplies a lease renewal service that partly solves these problems.
Since it runs as a service, it has an independent existence that does not depend on
the server for any other service. It can act like a LeaseRenewalManager in keeping
track of leases registered with it, renewing them as needed. In general, it can keep
leases alive without waking the service itself, which can slumber until it is acti-
vated by clients calling methods.

There is a small hiccup in this system, though: how long should the LeaseRe-
newalService keep renewing leases for a service? The LeaseRenewalManager utility
has a simple solution: keep renewing while the server for that service is alive. If the
server dies, taking down a service, then it will also take down the LeaseRenewalMan-
ager running in the same JVM, so leases will expire, as expected, after an interval.

But this mechanism won’t work for LeaseRenewalService because the man-
aged service can disappear without the LeaseRenewalService knowing about it. So
the lease renewal must be done on a leased basis itself! The LeaseRenewalService
will renew leases for a service only for a particular amount of time, as specified
by a lease. The service will still have to renew its lease, but with a LeaseRenewal-
Service instead of a bunch of lookup services. The lease granted by this service

Chapter 20

142

will need to be of much longer duration than those granted by the lookup ser-
vices for this to be of value.

Activatable services can only be woken by calling one of their methods. The
LeaseRenewalService accomplishes this by generating renewal events in advance
and calling a notify() method on a listener. If the listener is the activatable object,
this will wake it up so that it can perform the renewal. If the rmid process managing
the service has died or is unavailable, then the event will not be delivered and the
LeaseRenewalService can remove this service from its renewal list.

This is not quite satisfactory for other types of “dormant” services, such as
might exist on mobile phones, since there is no equivalent of rmid to handle activa-
tion. Instead, the mobile phone service might say that it will connect once a day
and renew the lease, as long as the LeaseRenewalService agrees to keep the lease for
at least a day. This is still “negotiable,” in that the service asks for a duration and
the LeaseRenewalService replies with a value that might not be so long. Still, it
should be better than dealing with the lookup services.

The Norm Service

Jini 1.1 supplies an implementation of LeaseRenewalService called norm. This is a
non-lazy Activatable service that requires rmid to be running. This is run with the
following command

java -jar [setup_jvm_options] executable_jar_file

 codebase_arg norm_policy_file_arg

 log_directory_arg

 [groups] [server_jvm] [server_jvm_args]

as in the following

java -jar \

 -Djava.security.policy=/files/jini1_1/example/txn/policy.all \

 /files/jini1_1/lib/norm.jar \

 http://`hostname`:8080/norm-dl.jar \

 /files/jini1_1/example/books/policy.all /tmp/norm_log

The first security file defines the policy that will be used for the server startup.
The norm.jar file contains the class files for the norm service. This exports RMI
stubs, and the class definitions for these are in norm-dl.jar. The second security
file defines the policy file that will be used in the execution of the LeaseRenewal-
Service methods. Finally, the log file is used to keep state, so that it can keep track
of the leases it is managing.

Activation

143143

The norm service will maintain a set of leases for a period of up to two hours.
The reggie lookup service only grants leases for five minutes, so using this service
increases the amount of time between renewing leases by a factor of over 20.

Using the LeaseRenewalService

The norm service exports an object of type LeaseRenewalService, which is defined by
the following interface:

package net.jini.lease;

public interface LeaseRenewalService {

 LeaseRenewalSet createLeaseRenewalSet(long leaseDuration)

 throws java.rmi.RemoteException;

}

A server that wants to use the lease renewal service will first find this service and
then call the createLeaseRenewal() method. The server requests a leaseDuration
value, measured in milliseconds, for the lease service to manage a set of leases.
The lease service creates a lease for this request, but the lease time may be less
than the requested time (for norm, it is a maximum of two hours). In order for the
lease service to continue to manage the set beyond the lease’s expiry, the lease
must be renewed before expiration. Since the service may be inactive at the time
of expiry, the LeaseRenewalSet can be asked to register a listener object that will
receive an event containing the lease. This will activate a dormant listener so that
the listener can renew the lease in time. If the lease for the LeaseRenewalSet is
allowed to lapse, then eventually all the leases for the services it was managing will
also expire, making the services unavailable.

The LeaseRenewalSet returned from createLeaseRenewalSet has an interface
including the following:

package net.jini.lease;

public interface LeaseRenewalSet {

 public void renewFor(Lease leaseToRenew,

 long membershipDuration)

 throws RemoteException;

 public EventRegistration setExpirationWarningListener(

 RemoteEventListener listener,

 long minWarning,

 MarshalledObject handback)

 throws RemoteException;

Chapter 20

144

}

The renewFor() method adds a new lease to the set being looked after. The
LeaseRenewalSet will keep renewing the lease until either the requested membership-
Duration expires or the lease for the whole LeaseRenewalSet expires (or until an
exception happens, like a lease being refused).

Setting an expiration warning listener means that the notify() method of the
listener will be called at least minWarning milliseconds before the lease for the set
expires. The event argument will actually be an ExpirationWarningEvent:

package net.jini.lease;

public class ExpirationWarningEvent extends RemoteEvent {

 Lease getLease();

}

This allows the listener to get the lease for the LeaseRenewalSet and (probably)
renew it. Here is a simple activatable class that can renew the lease:

package activation;

import java.rmi.activation.Activatable;

import java.rmi.activation.ActivationID;

import java.rmi.MarshalledObject;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.lease.Lease;

import net.jini.lease.ExpirationWarningEvent;

public class RenewLease extends Activatable

 implements RemoteEventListener {

 public RenewLease(ActivationID id, MarshalledObject data)

 throws java.rmi.RemoteException {

 super(id, 0);

 }

 public void notify(RemoteEvent evt) {

 System.out.println("expiring... " + evt.toString());

 ExpirationWarningEvent eevt = (ExpirationWarningEvent) evt;

 Lease lease = eevt.getLease();

 try {

 // This is short, for testing. Try 2+ hours

Activation

145145

 lease.renew(20000L);

 } catch(Exception e) {

 e.printStackTrace();

 }

 System.out.println("Lease renewed for " +

 (lease.getExpiration() -

 System.currentTimeMillis()));

 }

}

The server will need to register the service and export it as an activatable object.
This is done in exactly the same way as in the FileClassifierServer example of the
first section of this chapter. In addition, it will need to do a few other things:

• It will need to register the lease listener with the activation system as an
activatable object.

• It will need to find a LeaseRenewalService from a lookup service.

• It will need to register all leases from lookup services with the LeaseRenewal-
Service. Since it may find lookup services before it finds the renewal
service, it will need to keep a list of lookup services found before finding
the service, in order to register them with it.

Adding these additional requirements to the FileClassifierServer of the first
section results in this server:

package activation;

import rmi.RemoteFileClassifier;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.lease.Lease;

import net.jini.lease.LeaseRenewalService;

import net.jini.lease.LeaseRenewalSet;

import java.rmi.RMISecurityManager;

Chapter 20

146

import java.rmi.MarshalledObject;

import java.rmi.activation.ActivationDesc;

import java.rmi.activation.ActivationGroupDesc;

import java.rmi.activation.ActivationGroupDesc.CommandEnvironment;

import java.rmi.activation.Activatable;

import java.rmi.activation.ActivationGroup;

import java.rmi.activation.ActivationGroupID;

import java.rmi.activation.ActivationID;

import java.rmi.MarshalledObject;

import java.util.Properties;

import java.util.Vector;

import java.rmi.activation.UnknownGroupException;

import java.rmi.activation.ActivationException;

import java.rmi.RemoteException;

/**

 * FileClassifierServerLease.java

 */

public class FileClassifierServerLease

 implements DiscoveryListener {

 static final protected String SECURITY_POLICY_FILE =

 "/home/jan/projects/jini/doc/policy.all";

 // Don't forget the trailing '/'!

 static final protected String CODEBASE = "http://localhost/classes/";

 protected RemoteFileClassifier stub;

 protected RemoteEventListener leaseStub;

 // Lease renewal management

 protected LeaseRenewalSet leaseRenewalSet = null;

 // List of leases not yet managed by a LeaseRenewalService

 protected Vector leases = new Vector();

 public static void main(String argv[]) {

 new FileClassifierServerLease(argv);

 // stick around while lookup services are found

 try {

 Thread.sleep(10000L);

Activation

147147

 } catch(InterruptedException e) {

 // do nothing

 }

 // the server doesn't need to exist anymore

 System.exit(0);

 }

 public FileClassifierServerLease(String[] argv) {

 // install suitable security manager

 System.setSecurityManager(new RMISecurityManager());

 // Install an activation group

 Properties props = new Properties();

 props.put("java.security.policy",

 SECURITY_POLICY_FILE);

 ActivationGroupDesc.CommandEnvironment ace = null;

 ActivationGroupDesc group = new ActivationGroupDesc(props, ace);

 ActivationGroupID groupID = null;

 try {

 groupID = ActivationGroup.getSystem().registerGroup(group);

 } catch(RemoteException e) {

 e.printStackTrace();

 System.exit(1);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 }

 try {

 ActivationGroup.createGroup(groupID, group, 0);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 }

 String codebase = CODEBASE;

 MarshalledObject data = null;

 ActivationDesc desc = null;

 ActivationDesc descLease = null;

 try {

 desc = new ActivationDesc("activation.FileClassifierImpl",

 codebase, data);

 descLease = new ActivationDesc("activation.RenewLease",

 codebase, data);

Chapter 20

148

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 }

 try {

 stub = (RemoteFileClassifier) Activatable.register(desc);

 leaseStub = (RemoteEventListener) Activatable.register(descLease);

 } catch(UnknownGroupException e) {

 e.printStackTrace();

 System.exit(1);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 } catch(RemoteException e) {

 e.printStackTrace();

 System.exit(1);

 }

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 RemoteFileClassifier service;

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

 // export the proxy service

 ServiceItem item = new ServiceItem(null,

 stub,

 null);

 ServiceRegistration reg = null;

 try {

Activation

149149

 reg = registrar.register(item, Lease.FOREVER);

 } catch(java.rmi.RemoteException e) {

 System.err.print("Register exception: ");

 e.printStackTrace();

 // System.exit(2);

 continue;

 }

 try {

 System.out.println("service registered at " +

 registrar.getLocator().getHost());

 } catch(Exception e) {

 }

 Lease lease = reg.getLease();

 // if we have a lease renewal manager, use it

 if (leaseRenewalSet != null) {

 try {

 leaseRenewalSet.renewFor(lease, Lease.FOREVER);

 } catch(RemoteException e) {

 e.printStackTrace();

 }

 } else {

 // add to the list of unmanaged leases

 leases.add(lease);

 // see if this lookup service has a lease renewal manager

 findLeaseService(registrar);

 }

 }

 }

 public void findLeaseService(ServiceRegistrar registrar) {

 System.out.println("Trying to find a lease service");

 Class[] classes = {LeaseRenewalService.class};

 ServiceTemplate template = new ServiceTemplate(null, classes,

 null);

 LeaseRenewalService leaseService = null;

 try {

 leaseService = (LeaseRenewalService) registrar.lookup(template);

 } catch(RemoteException e) {

 e.printStackTrace();

 return;

 }

 if (leaseService == null) {

 System.out.println("No lease service found");

Chapter 20

150

 return;

 }

 try {

 // This time is unrealistically small - try 10000000L

 leaseRenewalSet = leaseService.createLeaseRenewalSet(20000);

 System.out.println("Found a lease service");

 // register a timeout listener

 leaseRenewalSet.setExpirationWarningListener(leaseStub, 5000,

 null);

 // manage all the leases found so far

 for (int n = 0; n < leases.size(); n++) {

 Lease ll = (Lease) leases.elementAt(n);

 leaseRenewalSet.renewFor(ll, Lease.FOREVER);

 }

 leases = null;

 } catch(RemoteException e) {

 e.printStackTrace();

 }

 Lease renewalLease = leaseRenewalSet.getRenewalSetLease();

 System.out.println("Lease expires in " +

 (renewalLease.getExpiration() -

 System.currentTimeMillis()));

 }

 public void discarded(DiscoveryEvent evt) {

 }

} // FileClassifierServerLease

LookupDiscoveryService

It is easy enough for a server to discover all of the lookup services within reach at
the time it is started, by using LookupDiscovery. While the server continues to stay
alive, any new lookup services that start will also be found by LookupDiscovery. But
if the server terminates, which it will for activable services, then any new lookup
services will probably never be found. This will result in the service not being reg-
istered with them, which could mean that clients may not find it. This is analogous
to leases not being renewed if the server terminates.

Jini 1.1 supplies a service, the LookupDiscoveryService, that can be used to con-
tinuously monitor the state of lookup services. It will monitor them on behalf of a
service that will most likely want to register with each new lookup service as it starts.
If the service is an activatable one, the server that would have done registered the

Activation

151151

service will have terminated, as its role would have just been to register the service
with rmid.

When there is a change to lookup services, the LookupDiscoveryService needs
to notify an object about this by sending it a remote event (actually of type Remote-
DiscoveryEvent). But again, we do not want to have a process sitting around
waiting for such notification, so the listener object will probably also be an activat-
able object.

The LookupDiscoveryService interface has the following specification:

package

public interface LookupDiscoveryService {

 LookupDiscoveryRegistration register(String[] groups,

 LookupLocator[] locators,

 RemoteEventListener listener,

 MarshalledObject handback,

 long leaseDuration);

}

Calling the register() method will begin a multicast search for the groups and
unicast lookup for the locators. The registration is leased and will need to be
renewed before expiring (a lease renewal service can be used for this). Note that
the listener cannot be null—this is simple sanity checking, for if the listener was
null, then the service could never do anything useful.

A lookup service in one of the groups can start or terminate, or it can change
its group membership in such a way that it now does (or doesn’t) meet the group
criteria. A lookup service in the locators list can also start or stop. These will gener-
ate RemoteDiscoveryEvent events and call the notify() method of the listener. The
event interface includes the following:

package net.jini.discovery;

public interface RemoteDiscoveryEvent {

 ServiceRegistrar[] getRegistrars();

 boolean isDiscarded();

 ...

}

The list of registrars is the set that triggered the event. The isDiscarded()
method is used to check whether the lookup service is a “discovered” lookup service
or a “discarded” lookup service. An initial event is not posted when the listener is
registered: the set of lookup services that are initially found can be retrieved from
the LookupDiscoveryRegistration object returned from the register() method by
its getRegistrars().

Chapter 20

152

The Fiddler Service

The Jini 1.1 release includes an implementation of the lookup discovery service
called fiddler. It is a non-lazy activatable service and is started much like other
services, such as reggie:

java -jar [setup_jvm_options] executable_jar_file

 codebase_arg fiddler_policy_file_arg

 log_directory_arg

 [groups and

 locators] [server_jvm] [server_jvm_args]

For example,

java -jar \

 -Djava.security.policy=/files/jini1_1/example/txn/policy.all \

 /files/jini1_1/lib/fiddler.jar \

 http://`hostname`:8080/norm-dl.jar \

 /files/jini1_1/example/books/policy.all /tmp/fiddler_log

Using the LookupDiscoveryService

An activatable service can make use of a lease renewal service to look after the
leases for discovered lookup services. It can find these lookup services by means of
a lookup discovery service. The logic that manages these two services is a little tricky.

While lease management can be done by the lease renewal service, the lease
renewal set will also be leased and will need to be renewed on occasion. The lease
renewal service can call an activatable RenewLease object to do this, as shown in the
preceding section of this chapter.

The lookup discovery service is also a leased service—it will only report changes
to lookup services while its own lease is current. Therefore, the lease from this ser-
vice will have to be managed by the lease renewal service, in addition to the leases
for any lookup services discovered.

The primary purpose of the lookup discovery service is to call the notify()
method of some object when information about lookup services changes. This
object should also be an activatable object. We define a DiscoveryChange object
with a notify() method to handle changes in lookup services. If a lookup service
has disappeared, we don’t worry about it. If a lookup service has been discovered,
we want to register the service with it and then manage the resultant lease. This
means that the DiscoveryChange object must know both the service to be registered
and the lease renewal service. This is static data, so these two objects can be

Activation

153153

passed in an array of two objects as the MarshalledObject to the activation
constructor.

The class itself can be implemented as shown here:

package activation;

import java.rmi.activation.Activatable;

import java.rmi.activation.ActivationID;

import java.rmi.MarshalledObject;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.lease.Lease;

import net.jini.lease.ExpirationWarningEvent;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.lease.LeaseRenewalSet;

import net.jini.discovery.RemoteDiscoveryEvent;

import java.rmi.RemoteException;

import net.jini.discovery.LookupUnmarshalException;

import rmi.RemoteFileClassifier;

public class DiscoveryChange extends Activatable

 implements RemoteEventListener {

 protected LeaseRenewalSet leaseRenewalSet;

 protected RemoteFileClassifier service;

 public DiscoveryChange(ActivationID id, MarshalledObject data)

 throws java.rmi.RemoteException {

 super(id, 0);

 Object[] objs = null;

 try {

 objs = (Object []) data.get();

 } catch(ClassNotFoundException e) {

 e.printStackTrace();

 } catch(java.io.IOException e) {

 e.printStackTrace();

 }

 service = (RemoteFileClassifier) objs[0];

 leaseRenewalSet= (LeaseRenewalSet) objs[1];

 }

Chapter 20

154

 public void notify(RemoteEvent evt) {

 System.out.println("lookups changing... " + evt.toString());

 RemoteDiscoveryEvent revt = (RemoteDiscoveryEvent) evt;

 if (! revt.isDiscarded()) {

 // The event is a discovery event

 ServiceItem item = new ServiceItem(null, service, null);

 ServiceRegistrar[] registrars = null;

 try {

 registrars = revt.getRegistrars();

 } catch(LookupUnmarshalException e) {

 e.printStackTrace();

 return;

 }

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

 ServiceRegistration reg = null;

 try {

 reg = registrar.register(item, Lease.FOREVER);

 leaseRenewalSet.renewFor(reg.getLease(), Lease.FOREVER);

 } catch(java.rmi.RemoteException e) {

 System.err.println("Register exception: " + e.toString());

 }

 }

 }

 }

}

The server must install an activation group and then find activation proxies
for the service itself and also for the lease renewal object. After this, it can use a
ClientLookupManager to find the lease service and register the lease renewal object
with it. Now that it has a proxy for the service object, and also a lease renewal ser-
vice, it can create the marshalled data for the lookup discovery service and register
this with rmid. Then we can find the lookup discovery service and register our dis-
covery change listener DiscoveryChange with it. At the same time, we have to
register the service with all the lookup services the lookup discovery service finds
on initialization.

This all leads to the following server:

package activation;

import rmi.RemoteFileClassifier;

Activation

155155

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.LookupDiscoveryService;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.discovery.LookupDiscoveryRegistration;

import net.jini.discovery.LookupUnmarshalException;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.event.RemoteEvent;

import net.jini.core.event.RemoteEventListener;

import net.jini.core.lease.Lease;

import net.jini.lease.LeaseRenewalService;

import net.jini.lease.LeaseRenewalSet;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lookup.ClientLookupManager;

import java.rmi.RMISecurityManager;

import java.rmi.activation.ActivationDesc;

import java.rmi.activation.ActivationGroupDesc;

import java.rmi.activation.ActivationGroupDesc.CommandEnvironment;

import java.rmi.activation.Activatable;

import java.rmi.activation.ActivationGroup;

import java.rmi.activation.ActivationGroupID;

import java.rmi.activation.ActivationID;

import java.rmi.MarshalledObject;

import java.rmi.activation.UnknownGroupException;

import java.rmi.activation.ActivationException;

import java.rmi.RemoteException;

import java.util.Properties;

import java.util.Vector;

/**

 * FileClassifierServerDiscovery.java

 */

Chapter 20

156

public class FileClassifierServerDiscovery

 /* implements DiscoveryListener */ {

 private static final long WAITFOR = 10000L;

 static final protected String SECURITY_POLICY_FILE =

 "/home/jan/projects/jini/doc/policy.all";

 // Don't forget the trailing '/'!

 static final protected String CODEBASE = "http://localhost/classes/";

 protected RemoteFileClassifier serviceStub;

 protected RemoteEventListener leaseStub,

 discoveryStub;

 // Services

 protected LookupDiscoveryService discoveryService = null;

 protected LeaseRenewalService leaseService = null;

 // Lease renewal management

 protected LeaseRenewalSet leaseRenewalSet = null;

 // List of leases not yet managed by a LeaseRenewalService

 protected Vector leases = new Vector();

 protected ClientLookupManager clientMgr = null;

 public static void main(String argv[]) {

 new FileClassifierServerDiscovery();

 // stick around while lookup services are found

 try {

 Thread.sleep(20000L);

 } catch(InterruptedException e) {

 // do nothing

 }

 // the server doesn't need to exist anymore

 System.exit(0);

 }

 public FileClassifierServerDiscovery() {

 // install suitable security manager

 System.setSecurityManager(new RMISecurityManager());

 installActivationGroup();

Activation

157157

 serviceStub = (RemoteFileClassifier)

 registerWithActivation("activation.FileClassifierImpl", null);

 leaseStub = (RemoteEventListener)

 registerWithActivation("activation.RenewLease", null);

 initClientLookupManager();

 findLeaseService();

 // the discovery change listener needs to know the service and the lease

service

 Object[] discoveryInfo = {serviceStub, leaseRenewalSet};

 MarshalledObject discoveryData = null;

 try {

 discoveryData = new MarshalledObject(discoveryInfo);

 } catch(java.io.IOException e) {

 e.printStackTrace();

 }

 discoveryStub = (RemoteEventListener)

 registerWithActivation("activation.DiscoveryChange",

 discoveryData);

 findDiscoveryService();

 }

 public void installActivationGroup() {

 Properties props = new Properties();

 props.put("java.security.policy",

 SECURITY_POLICY_FILE);

 ActivationGroupDesc.CommandEnvironment ace = null;

 ActivationGroupDesc group = new ActivationGroupDesc(props, ace);

 ActivationGroupID groupID = null;

 try {

 groupID = ActivationGroup.getSystem().registerGroup(group);

 } catch(RemoteException e) {

 e.printStackTrace();

 System.exit(1);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 }

Chapter 20

158

 try {

 ActivationGroup.createGroup(groupID, group, 0);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 }

 }

 public Object registerWithActivation(String className, MarshalledObject data) {

 String codebase = CODEBASE;

 ActivationDesc desc = null;

 Object stub = null;

 try {

 desc = new ActivationDesc(className,

 codebase, data);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 }

 try {

 stub = Activatable.register(desc);

 } catch(UnknownGroupException e) {

 e.printStackTrace();

 System.exit(1);

 } catch(ActivationException e) {

 e.printStackTrace();

 System.exit(1);

 } catch(RemoteException e) {

 e.printStackTrace();

 System.exit(1);

 }

 return stub;

 }

 public void initClientLookupManager() {

 LookupDiscoveryManager lookupDiscoveryMgr = null;

 try {

 lookupDiscoveryMgr =

 new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

 null /* unicast locators */,

 null /* DiscoveryListener */);

Activation

159159

 clientMgr = new ClientLookupManager(lookupDiscoveryMgr,

 new LeaseRenewalManager());

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 }

 public void findLeaseService() {

 leaseService = (LeaseRenewalService)

findService(LeaseRenewalService.class);

 if (leaseService == null) {

 System.out.println("Lease service null");

 }

 try {

 leaseRenewalSet = leaseService.createLeaseRenewalSet(20000);

 leaseRenewalSet.setExpirationWarningListener(leaseStub, 5000,

 null);

 } catch(RemoteException e) {

 e.printStackTrace();

 }

 }

 public void findDiscoveryService() {

 discoveryService = (LookupDiscoveryService)

findService(LookupDiscoveryService.class);

 if (discoveryService == null) {

 System.out.println("Discovery service null");

 }

 LookupDiscoveryRegistration registration = null;

 try {

 registration =

 discoveryService.register(LookupDiscovery.ALL_GROUPS,

 null,

 discoveryStub,

 null,

 Lease.FOREVER);

 } catch(RemoteException e) {

 e.printStackTrace();

 }

 // manage the lease for the lookup discovery service

 try {

 leaseRenewalSet.renewFor(registration.getLease(), Lease.FOREVER);

 } catch(RemoteException e) {

Chapter 20

160

 e.printStackTrace();

 }

 // register with the lookup services already found

 ServiceItem item = new ServiceItem(null, serviceStub, null);

 ServiceRegistrar[] registrars = null;

 try {

 registrars = registration.getRegistrars();

 } catch(RemoteException e) {

 e.printStackTrace();

 return;

 } catch(LookupUnmarshalException e) {

 e.printStackTrace();

 return;

 }

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

 ServiceRegistration reg = null;

 try {

 reg = registrar.register(item, Lease.FOREVER);

 leaseRenewalSet.renewFor(reg.getLease(), Lease.FOREVER);

 } catch(java.rmi.RemoteException e) {

 System.err.println("Register exception: " + e.toString());

 }

 }

 }

 public Object findService(Class cls) {

 Class [] classes = new Class[] {cls};

 ServiceTemplate template = new ServiceTemplate(null, classes,

 null);

 ServiceItem item = null;

 try {

 item = clientMgr.lookup(template,

 null, /* no filter */

 WAITFOR /* timeout */);

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 if (item == null) {

 // couldn't find a service in time

Activation

161161

 System.out.println("No service found for " + cls.toString());

 return null;

 }

 return item.service;

 }

} // FileClassifierServerDiscovery

Summary

Some objects may not always be available, either because of mobility issues or
because they are activatable objects. This chapter has dealt with activatable
objects, and also with some of the special services that are needed to properly sup-
port these transient objects.

