

255

CHAPTER 15

ServiceDiscoveryManager

B

OTH

CLIENTS

AND

SERVICES

NEED

TO

FIND

lookup services. Both can do this using
low-level core classes, or discovery utilities such as

LookupDiscoveryManager

. Once a
lookup service is found, a service just needs to register with it and try to keep the
lease alive for as long as it wants to. A service can make use of the

JoinManager

class for this.

The

ServiceDiscoveryManager

 class performs client-side functions similar to
that of

JoinManager

 for services, and simplifies the task of finding services. The

ServiceDiscoveryManager

 class is only available in Jini 1.1.

ServiceDiscoveryManager Interface

The

ServiceDiscoveryManager

 class is a utility class designed to help in the various
client-side lookup cases that can occur:

• A client may wish to use a service immediately or later

• A client may want to use multiple services

• A client will want to find services by their interfaces, but may also want to
apply additional criteria, such as being a “fast enough” printer

• A client may just wish to use a service if it is available at the time of the
request, but alternatively may want to be informed of new services becom-
ing available and to respond to this new availability (for example, a service
browser)

Due to the variety of possible cases, the

ServiceDiscoveryManager

 class is more
complex than

JoinManager

. Its interface includes the following:

package net.jini.lookup;

public class ServiceDiscoveryManager {

 public ServiceDiscoveryManager(DiscoveryManagement discoveryMgr,

 LeaseRenewalManager leaseMgr)

 throws IOException;

Chapter 15

256

 LookupCache createLookupCache(ServiceTemplate tmpl,

 ServiceItemFilter filter,

 ServiceDiscoveryListener listener);

 ServiceItem[] lookup(ServiceTemplate tmpl,

 int maxMatches, ServiceItemFilter filter);

 ServiceItem lookup(ServiceTemplate tmpl,

 ServiceItemFilter filter);

 ServiceItem lookup(ServiceTemplate tmpl,

 ServiceItemFilter filter, long wait);

 ServiceItem[] lookup(ServiceTemplate tmpl,

 int minMaxMatch, int maxMatches,

 ServiceItemFilter filter, long wait);

 void terminate();

}

ServiceItemFilter Interface

Most methods of the client lookup manager require a

ServiceItemFilter

. This is a
simple interface designed to be an additional filter on the client side to help in
finding services. The primary way for a client to find a service is to ask for an
instance of an interface, possibly with additional entry attributes. This matching is
performed on the lookup service, and it only involves a form of exact pattern
matching. It allows the client to ask for a toaster that will handle two slices of toast
exactly, but not for one that will toast two or more.

Performing arbitrary Boolean matching on the lookup service raises a security
issue as it would involve running some code from the client or service in the
lookup service, and it also raises a possible performance issue for the lookup ser-
vice. This means that enhancing the matching process in the lookup service is
unlikely to ever occur, so any more sophisticated matching must be done by the
client. The

ServiceItemFilter

 allows additional Boolean filtering to be performed
on the client side, by client code, so these issues are local to the client only.

The

ServiceItemFilter

 interface is as follows:

package net.jini.lookup;

public interface ServiceItemFilter {

 boolean check(ServiceItem item);

}

ServiceDiscoveryManager

257257

A client filter will implement this interface to perform additional checking.

Client-side filtering will not solve all of the problems of locating the “best” ser-
vice. Some situations will still require other services that know “local” information,
such as distances in a building

Finding a Service Immediately

The simplest scenario for a client is that it wants to find a service immediately,
use it, and then (perhaps) terminate. The client will be prepared to wait a certain
amount of time before giving up. All issues of discovery can be given to the

Ser-

viceDiscoveryManager

, and the task of finding a service can be given to a method
such as

lookup()

 with a

wait

 parameter. The

lookup()

 method will block until a
suitable service is found or the time limit is reached. If the time limit is reached, a

null

 object will be returned; otherwise a non-

null

 service object will be returned.

package client;

import common.FileClassifier;

import common.MIMEType;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.lookup.ServiceDiscoveryManager;

import net.jini.core.lookup.ServiceItem;

import net.jini.lease.LeaseRenewalManager;

/**

 * ImmediateClientLookup.java

 */

public class ImmediateClientLookup {

 private static final long WAITFOR = 100000L;

 public static void main(String argv[]) {

 new ImmediateClientLookup();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(2*WAITFOR);

Chapter 15

258

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

 public ImmediateClientLookup() {

 ServiceDiscoveryManager clientMgr = null;

 System.setSecurityManager(new RMISecurityManager());

 try {

 LookupDiscoveryManager mgr =

 new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

 null /* unicast locators */,

 null /* DiscoveryListener */);

 clientMgr = new ServiceDiscoveryManager(mgr,

 new LeaseRenewalManager());

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 Class [] classes = new Class[] {FileClassifier.class};

 ServiceTemplate template = new ServiceTemplate(null, classes,

 null);

 ServiceItem item = null;

 // Try to find the service, blocking till timeout if necessary

 try {

 item = clientMgr.lookup(template,

 null, /* no filter */

 WAITFOR /* timeout */);

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 if (item == null) {

 // couldn't find a service in time

 System.out.println("no service");

 System.exit(1);

 }

 // Get the service

 FileClassifier classifier = (FileClassifier) item.service;

ServiceDiscoveryManager

259259

 if (classifier == null) {

 System.out.println("Classifier null");

 System.exit(1);

 }

 // Now we have a suitable service, use it

 MIMEType type;

 try {

 String fileName;

 // Try several file types: .txt, .rtf, .abc

 fileName = "file1.txt";

 type = classifier.getMIMEType(fileName);

 printType(fileName, type);

 fileName = "file2.rtf";

 type = classifier.getMIMEType(fileName);

 printType(fileName, type);

 fileName = "file3.abc";

 type = classifier.getMIMEType(fileName);

 printType(fileName, type);

 } catch(java.rmi.RemoteException e) {

 System.err.println(e.toString());

 }

 System.exit(0);

 }

 private void printType(String fileName, MIMEType type) {

 System.out.print("Type of " + fileName + " is ");

 if (type == null) {

 System.out.println("null");

 } else {

 System.out.println(type.toString());

 }

 }

} // ImmediateClientLookup

Using a Filter

An example in Chapter 13 discussed how to select a printer with a speed greater than a
certain value. This type of problem is well suited to the

ServiceDiscoveryManager

Chapter 15

260

using a

ServiceItemFilter

. The

ServiceItemFilter

 interface has a

check()

 method,
which is called on the client side to perform additional filtering of services. This
method can accept or reject a service based on criteria supplied by the client.

The following program illustrates how this

check()

 method can be used to
select only printer services with a speed greater than 24 pages per minute:

package client;

import common.Printer;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.lookup.ServiceDiscoveryManager;

import net.jini.core.lookup.ServiceItem;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lookup.ServiceItemFilter;

/**

 * TestPrinterSpeedFilter.java

 */

public class TestPrinterSpeedFilter implements ServiceItemFilter {

 private static final long WAITFOR = 100000L;

 public TestPrinterSpeedFilter() {

 ServiceDiscoveryManager clientMgr = null;

 System.setSecurityManager(new RMISecurityManager());

 try {

 LookupDiscoveryManager mgr =

 new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

 null /* unicast locators */,

 null /* DiscoveryListener */);

 clientMgr = new ServiceDiscoveryManager(mgr,

 new LeaseRenewalManager());

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 Class[] classes = new Class[] {Printer.class};

ServiceDiscoveryManager

261261

 ServiceTemplate template = new ServiceTemplate(null, classes,

 null);

 ServiceItem item = null;

 try {

 item = clientMgr.lookup(template,

 this, /* filter */

 WAITFOR /* timeout */);

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 if (item == null) {

 // couldn't find a service in time

 System.exit(1);

 }

 Printer printer = (Printer) item.service;

 // Now use the printer

 // ...

 }

 public boolean check(ServiceItem item) {

 // This is the filter

 Printer printer = (Printer) item.service;

 if (printer.getSpeed() > 24) {

 return true;

 } else {

 return false;

 }

 }

 public static void main(String[] args) {

 TestPrinterSpeed f = new TestPrinterSpeed();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(2*WAITFOR);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

} // TestPrinterSpeed

Chapter 15

262

Building a Cache of Services

A client may wish to make use of a service multiple times. If the client simply
found a suitable reference to a service, then before each use it would have to check
whether the reference was still valid, and if not, it would need to find another one.
The client may also want to use minor variants of a service, such as a fast printer
one time and a slow one the next. While this management can be done easily
enough in each case, the

ServiceDiscoveryManager

 can supply a cache of services
that will do this work for you. This cache will monitor lookup services to keep the
cache as up-to-date as possible.

The cache is defined as an interface:

package net.jini.lookup;

public interface LookupCache {

 public ServiceItem lookup(ServiceItemFilter filter);

 public ServiceItem[] lookup(ServiceItemFilter filter,

 int maxMatches);

 public void addListener(ServiceDiscoveryListener l);

 public void removeListener(ServiceDiscoveryListener l);

 public void discard(Object serviceReference);

 void terminate();

}

A suitable implementation object can be created by the

ServiceDiscoveryManager

method:

LookupCache createLookupCache(ServiceTemplate tmpl,

 ServiceItemFilter filter,

 ServiceDiscoveryListener listener);

We will ignore the

ServiceDiscoveryListener

 until the next section of this chapter.
It can be set to

null

 in

createLookupCache()

.

The

LookupCache

 created by

createLookupCache()

 takes a template for matching
against interface and entry attributes. In addition, it also takes a filter to perform
additional client-side Boolean filtering of services. The cache will then maintain a
set of references to services matching the template and passing the filter. These
references are all local to the client and consist of the service proxies and their
attributes downloaded to the client. Searching for a service can then be done by
local methods:

LookupCache.lookup()

. These can take an additional filter that can
be used to further refine the set of services returned to the client.

The search in the cache is done directly on the proxy services and attributes
already found by the client, and does not involve querying lookup services.

ServiceDiscoveryManager

263263

Essentially, this involves a tradeoff of lookup service activity while the client is
idle to produce fast local response when the client is active.

There are versions of

ServiceDiscoveryManager.lookup()

 with a time parameter,
which block until a service is found or the method times out. These methods do
not use polling, but instead use event notification because they are trying to find
services based on remote calls to lookup services. The

lookup()

 methods of

Lookup-

Cache

 do not implement such a blocking call because the methods run purely
locally, and it is reasonable to poll the cache for a short time if need be.

Here is a version of the file classifier client that creates and examines the cache
for a suitable service:

package client;

import common.FileClassifier;

import common.MIMEType;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.lookup.ServiceDiscoveryManager;

import net.jini.lookup.LookupCache;

import net.jini.core.lookup.ServiceItem;

import net.jini.lease.LeaseRenewalManager;

/**

 * CachedClientLookup.java

 */

public class CachedClientLookup {

 private static final long WAITFOR = 100000L;

 public static void main(String argv[]) {

 new CachedClientLookup();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(WAITFOR);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

Chapter 15

264

 public CachedClientLookup() {

 ServiceDiscoveryManager clientMgr = null;

 LookupCache cache = null;

 System.setSecurityManager(new RMISecurityManager());

 try {

 LookupDiscoveryManager mgr =

 new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

 null /* unicast locators */,

 null /* DiscoveryListener */);

 clientMgr = new ServiceDiscoveryManager(mgr,

 new LeaseRenewalManager());

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 Class [] classes = new Class[] {FileClassifier.class};

 ServiceTemplate template = new ServiceTemplate(null, classes,

 null);

 try {

 cache = clientMgr.createLookupCache(template,

 null, /* no filter */

 null /* no listener */);

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 // loop until we find a service

 ServiceItem item = null;

 while (item == null) {

 System.out.println("no service yet");

 try {

 Thread.currentThread().sleep(1000);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 // see if a service is there now

 item = cache.lookup(null);

 }

 FileClassifier classifier = (FileClassifier) item.service;

ServiceDiscoveryManager

265265

 if (classifier == null) {

 System.out.println("Classifier null");

 System.exit(1);

 }

 // Now we have a suitable service, use it

 MIMEType type;

 try {

 String fileName;

 fileName = "file1.txt";

 type = classifier.getMIMEType(fileName);

 printType(fileName, type);

 fileName = "file2.rtf";

 type = classifier.getMIMEType(fileName);

 printType(fileName, type);

 fileName = "file3.abc";

 type = classifier.getMIMEType(fileName);

 printType(fileName, type);

 } catch(java.rmi.RemoteException e) {

 System.err.println(e.toString());

 }

 System.exit(0);

 }

 private void printType(String fileName, MIMEType type) {

 System.out.print("Type of " + fileName + " is ");

 if (type == null) {

 System.out.println("null");

 } else {

 System.out.println(type.toString());

 }

 }

} // CachedClientLookup

Running the CachedClientLookup

While it is okay to poll the local cache, the cache itself must get its contents from
lookup services, and in general it is not okay to poll these because that involves pos-
sibly heavy network traffic. The cache itself gets its information by registering itself
as a listener for service events from the lookup services (as explained in Chapter 14).

Chapter 15

266

The lookup services will then call

notify()

 on the cache listener. This call is a remote
call from the remote lookup service to the local cache, done (probably) using an RMI
stub. In fact, the Sun implementation of

ServiceDiscoveryManager

 uses a nested class,

ServiceDiscoveryManager.LookupCacheImpl.LookupListener

, which has an RMI stub.
In order for the cache to actually work, it is necessary to set the RMI codebase

property,

java.rmi.server.codebase

, to a suitable location for the class files (such as
an HTTP server), and to make sure that the class

net/jini/lookup/ServiceDiscov-

eryManager$LookupCacheImpl$LookupListener_Stub.class

 is accessible from this
codebase. The stub file may be found in the

lib/jini-ext.jar

 library in the Jini 1.1
distribution. It has to be extracted from there and placed in the codebase using a
command such as this:

unzip jini-ext.jar 'net/jini/lookup/ServiceDiscoveryManager$LookupCache-
Impl$LookupListener_Stub.class' -d /home/WWW/htdocs/classes

Note that the specification just says that this type of thing has to be done but does
not descend to details about the class name—that is left to the documentation of
the

ServiceDiscoveryManager

 as implemented by Sun. If another implementation is
made of the Jini classes, then it would probably use a different remote class.

Monitoring Changes to the Cache

The cache uses remote events to monitor the state of lookup services. It includes a
local mechanism to pass some of these changes to a client by means of the

Ser-

viceDiscoveryListener

 interface:

package net.jini.lookup;

interface ServiceDiscoveryListener {

 void serviceAdded(ServiceDiscoveryEvent event);

 void serviceChanged(ServiceDiscoveryEvent event);

 void serviceRemoved(ServiceDiscoveryEvent event);

}

The

ServiceDiscoveryListener

 methods take a parameter of type

ServiceDiscovery-

Event

. This class has methods:

package net.jini.lookup;

class ServiceDiscoveryEvent extends EventObject {

 ServiceItem getPostEventServiceItem();

 ServiceItem getPreEventServiceItem();

}

ServiceDiscoveryManager

267267

Clients are not likely to be interested in all events generated by lookup ser-
vices, even for the services in which they are interested. For example, if a new
service registers itself with ten lookup services, they will all generate transition
events from

NO_MATCH

 to

MATCH

, but the client will usually only be interested in see-
ing the first of these—the other nine are just repeated information. Similarly, if a
service’s lease expires from one lookup service, then that doesn’t matter much; but
if it expires from all lookup services that the client knows of, then it does matter,
because the service is no longer available to it. The cache consequently prunes
events so that the client gets information about the real services rather than infor-
mation about the lookup services.

In Chapter 14, an example was given on monitoring changes to services from
a lookup service viewpoint, reporting each change to lookup services. A client-
oriented view just monitors changes in services themselves, which can be done
easily using

ServiceDiscoveryEvent

 objects:

package client;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.lookup.ServiceDiscoveryListener;

import net.jini.lookup.ServiceDiscoveryEvent;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.lookup.ServiceItem;

import net.jini.lookup.ServiceDiscoveryManager;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lookup.LookupCache;

/**

 * ServiceMonitor.java

 */

public class ServiceMonitor implements ServiceDiscoveryListener {

 public static void main(String argv[]) {

 new ServiceMonitor();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(100000L);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

Chapter 15

268

 public ServiceMonitor() {

 ServiceDiscoveryManager clientMgr = null;

 LookupCache cache = null;

 System.setSecurityManager(new RMISecurityManager());

 try {

 LookupDiscoveryManager mgr =

 new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

 null /* unicast locators */,

 null /* DiscoveryListener */);

 clientMgr = new ServiceDiscoveryManager(mgr,

 new LeaseRenewalManager());

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 ServiceTemplate template = new ServiceTemplate(null, null,

 null);

 try {

 cache = clientMgr.createLookupCache(template,

 null, /* no filter */

 this /* listener */);

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 }

 // methods for ServiceDiscoveryListener

 public void serviceAdded(ServiceDiscoveryEvent evt) {

 // evt.getPreEventServiceItem() == null

 ServiceItem postItem = evt.getPostEventServiceItem();

 System.out.println("Service appeared: " +

 postItem.service.getClass().toString());

 }

 public void serviceChanged(ServiceDiscoveryEvent evt) {

 ServiceItem preItem = evt.getPostEventServiceItem();

 ServiceItem postItem = evt.getPreEventServiceItem() ;

 System.out.println("Service changed: " +

 postItem.service.getClass().toString());

ServiceDiscoveryManager

269269

 }

 public void serviceRemoved(ServiceDiscoveryEvent evt) {

 // evt.getPostEventServiceItem() == null

 ServiceItem preItem = evt.getPreEventServiceItem();

 System.out.println("Service disappeared: " +

 preItem.service.getClass().toString());

 }

} // ServiceMonitor

Summary

The client lookup manager can handle a variety of common situations that arise as
clients need to find services under different situations.

