

193

CHAPTER 13

More Complex Examples

C

HAPTER

 8

LOOKED

AT

A

SIMPLE

 J

INI

APPLICATION

.

 In Chapter 9, some of the architec-
tural choices for services were explored. There are, however, many other issues
involved in building Jini services and clients.

This chapter delves into some of the more complex things that can happen
with Jini applications. It covers issues such as the location of class files, multi-
threading, extending the matching algorithm used by Jini service locators, finding
a service once only, and lease management. These are issues that can arise using
the Jini components discussed so far. There are also further aspects to Jini that are
explored in later chapters.

Where Are the Class Files?

Clients, servers, and service locators can use class files from a variety of sources.
Which source they use can depend on the structure of the client and the server.
This section looks at some of the variations that can occur.

Problem Domain

A service may require information about a client before it can (or will) proceed. For
example, a banking service may require a user ID and a PIN number. Using the tech-
niques discussed in earlier chapters, this could be done by the client collecting the
information and calling suitable methods, such as

void setName(String name)

 in the
service (or more likely, in the service’s proxy) running in the client, as shown here:

public class Client {

 String getName() {

 ...

 service.setName(...);

 ...

 };

}

class Service {

 void setName(String name) {

Chapter 13

194

 ...

 };

}

A service may wish to have more control over the setting of names and pass-
words than this. For example, it may wish to run verification routines based on the
pattern of keystroke entries. More mundanely, it may wish to set time limits on the
period between entering the name and the password. Or it may wish to enforce
some particular user interface to collect this information. In any case, the service
proxy may perform some sort of input processing on the client side before com-
municating with the real service. The service proxy may need to find extra classes
in order to perform this processing.

A standalone application that gets a user name might use a GUI interface as
shown in Figure 13-1.

The implementation for this name entry user interface might look like this:

package standalone;

import java.awt.*;

import java.awt.event.*;

/**

 * NameEntry.java

 */

public class NameEntry extends Frame {

 public NameEntry() {

 super("Name Entry");

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {System.exit(0);}

 });

 Label label = new Label("Name");

 TextField name = new TextField(20);

Figure 13-1. User interface for name entry

More Complex Examples

195195

 add(label, BorderLayout.WEST);

 add(name, BorderLayout.CENTER);

 name.addActionListener(new NameHandler());

 pack();

 }

 public static void main(String[] args) {

 NameEntry f = new NameEntry();

 f.setVisible(true);

 }

} // NameEntry

class NameHandler implements ActionListener {

 public void actionPerformed(ActionEvent evt) {

 System.out.println("Name was: " + evt.getActionCommand());

 }

}

The classes used in this implementation are these:

• A set of standard classes:

Frame

,

Label

,

TextField

,

ActionListener

,

Action-

Event

,

BorderLayout

,

WindowEvent

, and

System

• A couple of new classes:

NameEntry

 and

NameHandler

At compile time and at runtime these will need to be accessible.

NameEntry Interface

A standalone application needs to have all the class files available to it. In a Jini
system, we have already seen that different components may only need access to a
subset of the total set of classes. The simple application just shown used a large set
of classes. If this is used to form part of a Jini system then some parts of this appli-
cation will end up in Jini clients, and some will end up in Jini services. Each of
them will have requirements about which classes they have access to, and this will
depend on how the components are distributed.

We don’t want to be overly concerned about the program logic of what is done
with the user name once it has been entered—the interesting part is the location

Chapter 13

196

of the classes. All possible ways of distributing this application into services and
clients will need an interface definition, which we can make as follows:

package common;

/**

 * NameEntry.java

 */

public interface NameEntry {

 public void show();

} // NameEntry

Then the client can call upon an implementation to simply

show()

 itself and
collect information in whatever way it chooses.

Naive Implementation

A simple implementation of this

NameEntry

 interface is as follows:

package complex;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import com.sun.jini.lookup.JoinManager;

import net.jini.core.lookup.ServiceID;

import com.sun.jini.lookup.ServiceIDListener;

import com.sun.jini.lease.LeaseRenewalManager;

/**

 * NameEntryImpl1.java

 */

NOTE We don’t want to get involved here in the ongoing discussion about the
most appropriate interface definition for GUI classes—this is taken up in
Chapter 19.

More Complex Examples

197197

public class NameEntryImpl1 extends Frame implements common.NameEntry,

 ActionListener, java.io.Serializable {

 public NameEntryImpl1() {

 super("Name Entry");

 /*

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {System.exit(0);}

 public void windowOpened(WindowEvent e) {}});

 */

 setLayout(new BorderLayout());

 Label label = new Label("Name");

 add(label, BorderLayout.WEST);

 TextField name = new TextField(20);

 add(name, BorderLayout.CENTER);

 name.addActionListener(this);

 // don't do this here!

 // pack();

 }

 /**

 * method invoked on pressing <return> in the TextField

 */

 public void actionPerformed(ActionEvent evt) {

 System.out.println("Name was: " + evt.getActionCommand());

 }

 public void show() {

 pack();

 super.show();

 }

} // NameEntryImpl1

This implementation of the user interface creates the GUI elements in the con-
structor. When exported, this entire user interface will be serialized and exported.
The instance data isn’t too big in this case (about 2,100 bytes), but that is because the
example is small. A GUI with several hundred objects will be much larger. This is
overhead, which could be avoided by deferring creation to the client side.

Figure 13-2 shows which instances are running in which JVM.

Chapter 13

198

Another problem with this code is that it first creates an object on the server
that has heavy reliance on environmental factors on the server. It then removes
itself from that environment and has to reestablish itself on the target client
environment.

On my current system, this dependence on environments shows up as a

Text-

Field

 complaining that it cannot find a whole bunch of fonts on my server. Of
course, that doesn’t matter because it gets moved to the client machine. (As it hap-
pens, the fonts aren’t available on my client machine either, so I end up with two
batches of complaint messages, from the server and from the client. I should only
get the client complaints.) It could matter if the service died because of missing
pieces on the server side that exist on the client.

What Files Need to Be Where?

The client needs to know the

NameEntry

 interface class. This must be in its

CLASSPATH

.
The server needs to know the class files for

• NameEntry

• Server1

• NameEntryImpl1

These must be in its

CLASSPATH

.

The HTTP server needs to know the class files for

NameEntryImpl1

. This must be
in the directory of documents for this server.

Figure 13-2. JVM objects for the naive implementation of the user interface

Frame

NameEntry
Impl1

Label

TextField

Frame

NameEntry
Impl1

Label

TextField

client JVM server JVM

More Complex Examples

199199

Factory Implementation

The second implementation minimizes the amount of serialized code that must
be shipped around by creating as much as possible on the client side. We don’t
even need to declare the class as a subclass of

Frame

, because that class also exists
on the client side. The client calls the

show()

 interface method, and all the GUI cre-
ation is moved to there. Essentially, what is created on the server side is a factory
object, and this object is moved to the client. The client than makes calls on this
factory to create the user interface.

package complex;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import com.sun.jini.lookup.JoinManager;

import net.jini.core.lookup.ServiceID;

import com.sun.jini.lookup.ServiceIDListener;

import com.sun.jini.lease.LeaseRenewalManager;

/**

 * NameEntryImpl2.java

 */

public class NameEntryImpl2 implements common.NameEntry,

 ActionListener, java.io.Serializable {

 public NameEntryImpl2() {

 }

 /**

 * method invoked on pressing <return> in the TextField

 */

 public void actionPerformed(ActionEvent evt) {

 System.out.println("Name was: " + evt.getActionCommand());

 }

 public void show() {

 Frame fr = new Frame("Name Entry");

 fr.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {System.exit(0);}

 public void windowOpened(WindowEvent e) {}});

Chapter 13

200

 fr.setLayout(new BorderLayout());

 Label label = new Label("Name");

 fr.add(label, BorderLayout.WEST);

 TextField name = new TextField(20);

 fr.add(name, BorderLayout.CENTER);

 name.addActionListener(this);

 fr.pack();

 fr.show();

 }

} // NameEntryImpl2

Figure 13-3 shows which instances are running in which JVM.

There are some standard classes that cannot be serialized: one example is the
Swing

JTextArea

 class (as of Swing 1.1). This has frequently been logged as a bug
against Swing. Until this is fixed, the only way one of these objects can be used by a
service is to create it on the client.

Figure 13-3. JVM objects for the factory implementation of the user interface

NameEntry
Impl2

Frame

Label

TextField

Impl2
NameEntry

client JVM

server JVM

NOTE Swing is the set of user interface classes introduced as part of the Java
Foundation Classes in JDK 1.2

More Complex Examples

201201

What Files Need to Be Where?

For this implementation, the client needs to know the

NameEntry

 interface class.
The server needs to know the class files for

• NameEntry

• Server2

• NameEntryImpl2

• NameEntryImpl2$1

The last class in the list is an

anonymous class

 that acts as the

WindowListener

. The
class file is produced by the compiler. In the naive implementation earlier in the
chapter, this part of the code was commented out for simplicity.

The HTTP server needs to know the class files for

• NameEntryImpl2

• NameEntryImpl2$1

Using Multiple Class Files

Apart from the standard classes and a common interface, the previous implemen-
tations just used a single class that was uploaded to the lookup service and then
passed on to the client. A more realistic situation might require the uploaded ser-
vice to access a number of other classes that could not be expected to be on the
client machine. That is, the server might upload an object from a single class to the
lookup service and from there to a client. However, when the object runs, it needs
to create

other

 objects using class files that are not known to the client.
For example, the listener object of the last implementation could belong to a

separate

NameHandler

 class. The code looks like this:

package complex;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import com.sun.jini.lookup.JoinManager;

import net.jini.core.lookup.ServiceID;

import com.sun.jini.lookup.ServiceIDListener;

Chapter 13

202

import com.sun.jini.lease.LeaseRenewalManager;

/**

 * NameEntryImpl3.java

 */

public class NameEntryImpl3 implements common.NameEntry,

 java.io.Serializable {

 public NameEntryImpl3() {

 }

 public void show() {

 Frame fr = new Frame("Name Entry");

 fr.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {System.exit(0);}

 public void windowOpened(WindowEvent e) {}});

 fr.setLayout(new BorderLayout());

 Label label = new Label("Name");

 fr.add(label, BorderLayout.WEST);

 TextField name = new TextField(20);

 fr.add(name, BorderLayout.CENTER);

 name.addActionListener(new NameHandler());

 fr.pack();

 fr.show();

 }

} // NameEntryImpl3

class NameHandler implements ActionListener {

 /**

 * method invoked on pressing <return> in the TextField

 */

 public void actionPerformed(ActionEvent evt) {

 System.out.println("Name was: " + evt.getActionCommand());

 }

} // NameHandler

This version of the user interface implementation uses a

NameHandler

 class that
only exists on the server machine. When the client attempts to deserialize the

More Complex Examples

203203

NameEntryImpl3

 instance, it will fail to find this class and be unable to complete
deserialization. How is this resolved? Well, in the same way as before, by making it
available through the HTTP server.

Figure 13-4 shows which instances are running in which JVM.

What Files Need to Be Where?

The client needs to know the

NameEntry

 interface class.
The server needs to know the class files for

• NameEntry

• Server3

• NameEntryImpl3

• NameEntryImpl3$1

• NameHandler

The

NameHandler

 class file is another one produced by the compiler.

The HTTP server needs to know the class files for

• NameEntryImpl3

• NameEntryImpl3$1

• NameHandler

Figure 13-4. JVM objects for multiple class files implementation

Frame

TextField

Label

NameEntry

NameEntry

client JVM

server JVM

NameHandler

Impl3

Impl3

instance

HTTP
server NameHandler.class

NameEntryImpl3.class

data

class
files

Chapter 13

204

Running Threads from Discovery

The previous section looked at issues involving the location of classes in order to
reduce network traffic and to improve the speed and responses of clients and ser-
vices. Within a client or service, other techniques, such as multithreading, can also
be used to improve responsiveness.

In all of the examples using explicit registration (such as those in Chapters 8
and 9), a single thread was used. That is, as a service locator was discovered, the
registration process commenced in the same thread. This registration may take
some time, and during this time, new lookup services may be discovered. To avoid
the possibility of these new services timing out and being missed, all registration
processing should be carried out in a separate thread, rather than possibly holding
up the discovery thread.

Server Threads

Running another thread is not a difficult procedure. Basically we have to define a
new class that extends

Thread

, and move most of the registration into its

run

method. This is done in the following version of the file classifier server, which is
based on the server in Chapter 3 that uploads a complete service. In this version,
the registration code is moved to a separate thread, which is implemented using
an inner class:

package complex;

import complete.FileClassifierImpl;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import net.jini.core.lease.Lease;

// import com.sun.jini.lease.LeaseRenewalManager;

// import com.sun.jini.lease.LeaseListener;

// import com.sun.jini.lease.LeaseRenewalEvent;

import net.jini.lease.LeaseRenewalManager;

import net.jini.lease.LeaseListener;

import net.jini.lease.LeaseRenewalEvent;

More Complex Examples

205205

/**

 * FileClassifierServer.java

 */

public class FileClassifierServer implements DiscoveryListener,

 LeaseListener {

 protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();

 public static void main(String argv[]) {

 new FileClassifierServer();

 // keep server running forever to

 // - allow time for locator discovery and

 // - keep re-registering the lease

 Object keepAlive = new Object();

 synchronized(keepAlive) {

 try {

 keepAlive.wait();

 } catch(InterruptedException e) {

 // do nothing

 }

 }

 }

 public FileClassifierServer() {

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

Chapter 13

206

 new RegisterThread(registrar).start();

 }

 }

 public void discarded(DiscoveryEvent evt) {

 }

 public void notify(LeaseRenewalEvent evt) {

 System.out.println("Lease expired " + evt.toString());

 }

 /**

 * an inner class to register the service in its own thread

 */

 class RegisterThread extends Thread {

 ServiceRegistrar registrar;

 RegisterThread(ServiceRegistrar registrar) {

 this.registrar = registrar;

 }

 public void run() {

 ServiceItem item = new ServiceItem(null,

 new FileClassifierImpl(),

 null);

 ServiceRegistration reg = null;

 try {

 reg = registrar.register(item, Lease.FOREVER);

 } catch(java.rmi.RemoteException e) {

 System.err.println("Register exception: " + e.toString());

 return;

 }

 System.out.println("service registered");

 // set lease renewal in place

 leaseManager.renewUntil(reg.getLease(), Lease.FOREVER,

 FileClassifierServer.this);

 }

 }

} // FileClassifierServer

More Complex Examples

207207

Join Manager Threads

If you use a JoinManager to handle lookup and registration, then it essentially does
this for you: it creates a new thread to handle registration. Thus, the examples in
Chapter 11 do not need any modification, as the JoinManager already uses the con-
cepts of this section.

Client Threads

It is probably more important to use threads in the client than in the server, because
the client will actually perform some computation (which may be lengthy) based on
the service it discovers. Again, this is a simple matter of moving code into a new
class that implements Thread. Doing this to the multicast client TestFileClassifier
of Chapter 3 results in the following code:

package client;

import common.FileClassifier;

import common.MIMEType;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

/**

 * TestFileClassifierThread.java

 */

public class TestFileClassifierThread implements DiscoveryListener {

 public static void main(String argv[]) {

 new TestFileClassifierThread();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(10000L);

 } catch(java.lang.InterruptedException e) {

 // do nothing

Chapter 13

208

 }

 }

 public TestFileClassifierThread() {

 System.setSecurityManager(new RMISecurityManager());

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 for (int n = 0; n < registrars.length; n++) {

 System.out.println("Service found");

 ServiceRegistrar registrar = registrars[n];

 new LookupThread(registrar).start();

 }

 }

 public void discarded(DiscoveryEvent evt) {

 // empty

 }

 class LookupThread extends Thread {

 ServiceRegistrar registrar;

 LookupThread(ServiceRegistrar registrar) {

 this.registrar = registrar;

 }

 public void run() {

More Complex Examples

209209

 Class[] classes = new Class[] {FileClassifier.class};

 FileClassifier classifier = null;

 ServiceTemplate template = new ServiceTemplate(null, classes,

 null);

 try {

 classifier = (FileClassifier) registrar.lookup(template);

 } catch(java.rmi.RemoteException e) {

 e.printStackTrace();

 return;

 }

 if (classifier == null) {

 System.out.println("Classifier null");

 return;

 }

 MIMEType type;

 try {

 type = classifier.getMIMEType("file1.txt");

 System.out.println("Type is " + type.toString());

 } catch(java.rmi.RemoteException e) {

 System.err.println(e.toString());

 }

 }

 }

} // TestFileClassifier

Inexact Service Matching

Suppose you have a printer service that prints at 30 pages per minute. A client
wishes to find a printer that will print at least 24 pages per minute. How will this
client find the service? The standard Jini pattern matching will either be for an
exact match on an attribute or an ignored match on an attribute, so the only way a
client can find this printer is to ignore the speed attribute and perform a later
selection among all the printers that it sees.

We can define a simple printer interface that will allow us to print documents
and also allow us to access the printer speed as follows:

package common;

import java.io.Serializable;

Chapter 13

210

/**

 * Printer.java

 */

public interface Printer extends Serializable {

 public void print(String str);

 public int getSpeed();

} // Printer

I don’t want to delve here into the complexities of building a real printer service.
A “fake” printer implementation that takes its speed from a parameter in the con-
structor can be written as a complete uploadable service (see Chapter 3) as follows:

package printer;

/**

 * PrinterImpl.java

 */

public class PrinterImpl implements common.Printer, java.io.Serializable {

 protected int speed;

 public PrinterImpl(int sp) {

 speed = sp;

 }

 public void print(String str) {

 // fake stuff:

 System.out.println("I'm the " + speed + " pages/min printer");

 System.out.println(str);

 }

 public int getSpeed() {

 return speed;

 }

} // PrinterImpl

Printer implementations can be created and made available using server imple-
mentations of earlier chapters.

More Complex Examples

211211

Given this, a client can choose a suitably fast printer in a two-step process:

1. Find a service using the lookup exact/ignore match algorithm.

2. Query the service to see if it satisfies other types of Boolean conditions.

The following program shows how you can find a printer that is “fast enough”:

package client;

import common.Printer;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.lookup.ServiceMatches;

/**

 * TestPrinterSpeed.java

 */

public class TestPrinterSpeed implements DiscoveryListener {

 public TestPrinterSpeed() {

 System.setSecurityManager(new RMISecurityManager());

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

Chapter 13

212

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 Class[] classes = new Class[] {Printer.class};

 ServiceTemplate template = new ServiceTemplate(null, classes,

 null);

 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];

 ServiceMatches matches;

 try {

 matches = registrar.lookup(template, 10);

 } catch(java.rmi.RemoteException e) {

 e.printStackTrace();

 continue;

 }

 // NB: matches.totalMatches may be greater than matches.items.length

 for (int m = 0; m < matches.items.length; m++) {

 Printer printer = (Printer) matches.items[m].service;

 // Inexact matching is not performed by lookup()

 // we have to do it ourselves on each printer

 // we get

 int speed = printer.getSpeed();

 if (speed >= 24) {

 // this one is okay, use its print() method

 printer.print("fast enough printer");

 } else {

 // we can't use this printer, so just say so

 System.out.println("Printer too slow at " + speed);

 }

 }

 }

 }

 public void discarded(DiscoveryEvent evt) {

 // empty

 }

 public static void main(String[] args) {

More Complex Examples

213213

 TestPrinterSpeed f = new TestPrinterSpeed();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(10000L);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

} // TestPrinterSpeed

Matching Using Local Services

When a user connects their laptop into a brand-new network, they will probably
know little about the environment they have joined. If they want to use services in
this network, they will probably want to use general terms and have them trans-
lated into specific terms for this new environment. For example, the user may
want to print a file on a nearby printer. In this situation, there is little likelihood
that the new user knows how to work out the distance between themselves and the
printers. However, a local service could be running which does know how to calcu-
late physical distances between objects on the network.

Finding a “close enough” printer then becomes a matter of querying service
locators both for printers and for a distance service. As each printer is found, the
distance service can be asked to calculate the distance between itself and the lap-
top (or camera, or any other device that wants to print).

The complexity of the task to be done by clients is growing: a client has to find
two sets of services, and when it finds one (a printer) invoke the other (the dis-
tance service). This calls for lookup processing to be handled in separate threads.
In addition, as each locator is found, it may know about printers, it may know
about distance services, it may know both, or it may know none! When the client
starts up, it will be discovering these services in an arbitrary order, and the code
must be structured to deal with this.

These are some of the cases that may arise:

• A printer may be discovered before any distance service has been found. In
this case, the printer must be stored for later distance checking.

• A printer may be discovered after a distance service has been found. It can
be checked immediately.

Chapter 13

214

• A distance service is found after some printers have been found. This saved
set of printers should be checked at this point.

In this problem, we only need to find one distance service, but possibly many
printers. The client code given shortly will save printers in a Vector, and save a dis-
tance service in a single variable.

In searching for printers, we only want to find those that have location infor-
mation. However, we do not want to match on any particular values. The client will
have to use wildcard patterns in a location object. The location information of a
printer will need to be retrieved along with the printer so it can be used. Therefore,
instead of just storing printers, we need to store ServiceItem objects, which carry
the attribute information as well as the objects.

Of course, for this to work, the client also needs to know where it is! This could
be done, for example, by popping up a dialog box asking the user to locate
themselves.

A client satisfying these requirements is given in the following program. (The
location of the client is hard-coded into the getMyLocation() method for simplicity.)

package client;

import common.Printer;

import common.Distance;

import java.util.Vector;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.lookup.entry.Location;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceMatches;

import net.jini.core.entry.Entry;

/**

 * TestPrinterDistance.java

 */

public class TestPrinterDistance implements DiscoveryListener {

 protected Distance distance = null;

 protected Object distanceLock = new Object();

More Complex Examples

215215

 protected Vector printers = new Vector();

 public static void main(String argv[]) {

 new TestPrinterDistance();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(10000L);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

 public TestPrinterDistance() {

 System.setSecurityManager(new RMISecurityManager());

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 for (int n = 0; n < registrars.length; n++) {

 System.out.println("Service found");

 ServiceRegistrar registrar = registrars[n];

 new LookupThread(registrar).start();

 }

 }

 public void discarded(DiscoveryEvent evt) {

 // empty

 }

Chapter 13

216

 class LookupThread extends Thread {

 ServiceRegistrar registrar;

 LookupThread(ServiceRegistrar registrar) {

 this.registrar = registrar;

 }

 public void run() {

 synchronized(distanceLock) {

 // only look for one distance service

 if (distance == null) {

 lookupDistance();

 }

 if (distance != null) {

 // found a new distance service

 // process any previously found printers

 synchronized(printers) {

 for (int n = 0; n < printers.size(); n++) {

 ServiceItem item = (ServiceItem) printers.elementAt(n);

 reportDistance(item);

 }

 }

 }

 }

 ServiceMatches matches = lookupPrinters();

 for (int n = 0; n < matches.items.length; n++) {

 if (matches.items[n] != null) {

 synchronized(distanceLock) {

 if (distance != null) {

 reportDistance(matches.items[n]);

 } else {

 synchronized(printers) {

 printers.addElement(matches.items[n]);

 }

 }

 }

 }

 }

 }

More Complex Examples

217217

 /*

 * We must be protected by the lock on distanceLock here

 */

 void lookupDistance() {

 // If we don't have a distance service, see if this

 // locator knows of one

 Class[] classes = new Class[] {Distance.class};

 ServiceTemplate template = new ServiceTemplate(null, classes,

 null);

 try {

 distance = (Distance) registrar.lookup(template);

 } catch(java.rmi.RemoteException e) {

 e.printStackTrace();

 }

 }

 ServiceMatches lookupPrinters() {

 // look for printers with

 // wildcard matching on all fields of Location

 Entry[] entries = new Entry[] {new Location(null, null, null)};

 Class[] classes = new Class[1];

 try {

 classes[0] = Class.forName("common.Printer");

 } catch(ClassNotFoundException e) {

 System.err.println("Class not found");

 System.exit(1);

 }

 ServiceTemplate template = new ServiceTemplate(null, classes,

 entries);

 ServiceMatches matches = null;

 try {

 matches = registrar.lookup(template, 10);

 } catch(java.rmi.RemoteException e) {

 e.printStackTrace();

 }

 return matches;

 }

 /**

 * report on the distance of the printer from

 * this client

Chapter 13

218

 */

 void reportDistance(ServiceItem item) {

 Location whereAmI = getMyLocation();

 Location whereIsPrinter = getPrinterLocation(item);

 if (whereIsPrinter != null) {

 int dist = distance.getDistance(whereAmI, whereIsPrinter);

 System.out.println("Found a printer at " + dist +

 " units of length away");

 }

 }

 Location getMyLocation() {

 return new Location("1", "1", "Building 1");

 }

 Location getPrinterLocation(ServiceItem item) {

 Entry[] entries = item.attributeSets;

 for (int n = 0; n < entries.length; n++) {

 if (entries[n] instanceof Location) {

 return (Location) entries[n];

 }

 }

 return null;

 }

 }

} // TestFileClassifier

A number of services will need to be running. At least one distance service will
be needed, implementing the interface Distance:

package common;

import net.jini.lookup.entry.Location;

/**

 * Distance.java

 */

public interface Distance extends java.io.Serializable {

 int getDistance(Location loc1, Location loc2);

} // Distance

More Complex Examples

219219

The following is an example implementation of a distance service:

package complex;

import net.jini.lookup.entry.Location;

/**

 * DistanceImpl.java

 */

public class DistanceImpl implements common.Distance {

 public DistanceImpl() {

 }

 /**

 * A very naive distance metric

 */

 public int getDistance(Location loc1, Location loc2) {

 int room1, room2;

 try {

 room1 = Integer.parseInt(loc1.room);

 room2 = Integer.parseInt(loc2.room);

 } catch(Exception e) {

 return -1;

 }

 int value = room1 - room2;

 return (value > 0 ? value : -value);

 }

} // DistanceImpl

Earlier in this chapter we gave the code for PrinterImpl. A simple program to
start up a distance service and two printers is as follows:

package complex;

import printer.PrinterImpl;

import printer.PrinterImpl;

import complex.DistanceImpl;

// import com.sun.jini.lookup.JoinManager;

import net.jini.lookup.JoinManager;

Chapter 13

220

import net.jini.core.lookup.ServiceID;

// import com.sun.jini.lookup.ServiceIDListener;

// import com.sun.jini.lease.LeaseRenewalManager;

import net.jini.lookup.ServiceIDListener;

import net.jini.lease.LeaseRenewalManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.lookup.entry.Location;

import net.jini.core.entry.Entry;

import net.jini.discovery.LookupDiscoveryManager;

/**

 * PrinterServerLocation.java

 */

public class PrinterServerLocation implements ServiceIDListener {

 public static void main(String argv[]) {

 new PrinterServerLocation();

 // run forever

 Object keepAlive = new Object();

 synchronized(keepAlive) {

 try {

 keepAlive.wait();

 } catch(InterruptedException e) {

 // do nothing

 }

 }

 }

 public PrinterServerLocation() {

 JoinManager joinMgr = null;

 try {

 LookupDiscoveryManager mgr =

 new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

 null /* unicast locators */,

 null /* DiscoveryListener */);

 // distance service

 joinMgr = new JoinManager(new DistanceImpl(),

 null,

 this,

 mgr,

 new LeaseRenewalManager());

More Complex Examples

221221

 // slow printer in room 120

 joinMgr = new JoinManager(new PrinterImpl(20),

 new Entry[] {new Location("1", "120",

 "Building 1")},

 this,

 mgr,

 new LeaseRenewalManager());

 // fast printer in room 130

 joinMgr = new JoinManager(new PrinterImpl(30),

 new Entry[] {new Location("1", "130",

 "Building 1")},

 this,

 mgr,

 new LeaseRenewalManager());

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 }

 public void serviceIDNotify(ServiceID serviceID) {

 System.out.println("got service ID " + serviceID.toString());

 }

} // PrinterServerLocation

Finding a Service Once Only

There may be many lookup services on the local network, perhaps specializing in
certain groups of services. There could be many lookup services running on the
Internet, which could act as global repositories of information. For example, there
is a lookup service running at www.jini.canberra.edu.au that acts as a publicly
available lookup service for those who wish to experiment with Jini. One may
expect to find lookup services acting in a “portal” role, listing all of the public clock
services, the real estate services, and so on.

A service will probably register with as many service locators as it can to
improve its chances of being found. On the other hand, clients looking for a ser-
vice may be content to find just a single suitable implementation, or may wish to

Chapter 13

222

find all service implementations. This second case can cause some uniqueness
problems: if a client finds every service that has been registered with multiple
locators, then it will probably find the same service more than once.

Why is this a problem? Well, suppose the client wants to find all power drills in
the factory and ask them to drill exactly one hole each. Or suppose it finds all
backup services for the system, and wants each one to perform a single backup. In
that case, it needs to know the identity of each service so that it can tell when it is
getting a duplicate copy from another locator source. Otherwise, each drill might
make six holes because the client got a copy of each drill from six service locators,
or you might get six backups of the same data. Whenever a service can perform a
non-idempotent service (i.e., one in which repeating the action has a different
effect each time), then duplicate copies on the client side must be avoided.

Jini has a concept of a service being a “good citizen.” This concept includes
having a single identity across all lookup services, which allows clients to tell
whether they have come across multiple copies of the same service or have
encountered a different implementation of the service. The behavior on the part of
services is contained in the Jini “Lookup Service” specification, and it hinges on
the use of the ServiceID.

A ServiceID can be specified when registering a service with a service locator.
If this is the first time this service has ever been registered, then the ServiceID
should be null. The service locator will then generate a non-null ServiceID that
can be used in future to identify this service. This object is specified to be unique,
so that a service locator cannot generate the same ServiceID for two different ser-
vices, and two different locators cannot generate the same ServiceID. This provides
a unique identifier that can be used to identify duplicates.

The procedure for a service to follow when it is registering itself with service
locators is as follows:

1. The very first time a service is registered, use null as the serviceID value of
the ServiceItem in ServiceRegistrar.register().

2. The returned ServiceRegistration has a getServiceID() method for
retrieving the ServiceID. This ServiceID should then be used in any future
registrations both with this service locator and with any others. This
ensures that the service has a unique identity across all lookup services. It
should be noted that JoinManager already does this, although this is not
stated in its documentation. We have done this in earlier examples, such
as the server in Chapter 8.

3. The client has a choice of two lookup() methods to use with its Service-
Registrar object: the first just returns a single object, and the second
returns an array of ServiceMatches objects. This second one is more useful

More Complex Examples

223223

here, as it can give the array of ServiceItem objects, and the ServiceID can
be extracted from there.

4. The client should maintain a list of service IDs that it has seen, and com-
pare any new ones against it—then it can check whether a service is a new
one or a previously seen one.

5. The service should save its ID in persistent storage so that if it dies and
restarts, it can use the same ID—after all, it is the same service. (This may
involve subtle considerations: it should only use the same ServiceID if it
really is the same service. For example, if the service maintains state that
is lost in a crash, then it isn’t the same service!)

In Chapter 8 we gave the code for a multicast client that looked for a service,
used it, and exited. A modified client that looks for all unique services and uses
each one is as follows:

package unique;

import common.FileClassifier;

import common.MIMEType;

import java.rmi.RMISecurityManager;

import net.jini.discovery.LookupDiscovery;

import net.jini.discovery.DiscoveryListener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.lookup.ServiceMatches;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceID;

import java.util.Vector;

/**

 * TestFileClassifier.java

 */

public class TestFileClassifier implements DiscoveryListener {

 protected Vector serviceIDs = new Vector();

 public static void main(String argv[]) {

 new TestFileClassifier();

Chapter 13

224

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(10000L);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

 public TestFileClassifier() {

 System.setSecurityManager(new RMISecurityManager());

 LookupDiscovery discover = null;

 try {

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

 } catch(Exception e) {

 System.err.println(e.toString());

 System.exit(1);

 }

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar[] registrars = evt.getRegistrars();

 Class [] classes = new Class[] {FileClassifier.class};

 FileClassifier classifier = null;

 ServiceTemplate template = new ServiceTemplate(null, classes,

 null);

 for (int n = 0; n < registrars.length; n++) {

 System.out.println("Service found");

 ServiceRegistrar registrar = registrars[n];

 ServiceMatches matches = null;

 try {

 matches = registrar.lookup(template, 10);

 } catch(java.rmi.RemoteException e) {

 e.printStackTrace();

 continue;

 }

 ServiceItem[] items = matches.items;

More Complex Examples

225225

 for (int m = 0; m < items.length; m++) {

 ServiceID id = items[m].serviceID;

 if (serviceIDs.indexOf(id) != -1) {

 // found a new serviceID - record it and use it

 classifier = (FileClassifier) items[m].service;

 if (classifier == null) {

 System.out.println("Classifier null");

 continue;

 }

 serviceIDs.add(id);

 MIMEType type;

 try {

 type = classifier.getMIMEType("file1.txt");

 System.out.println("Type is " + type.toString());

 } catch(java.rmi.RemoteException e) {

 System.err.println(e.toString());

 }

 }

 }

 }

 }

 public void discarded(DiscoveryEvent evt) {

 // empty

 }

} // TestFileClassifier

Leasing Changes to a Service

Sometimes a service may allow changes to be made to its state by external (remote)
objects. This happens all the time to service locators, which have services added
and removed. A service may wish to behave in the same manner as the locators,
and just grant a lease for the change. After the lease has expired, the service will
remove the change. Such a situation may occur with file classification, where a
new service that can handle a particular MIME type starts: it can register the file-
name mapping with a file classifier service. However, the file classifier service will
just time out the mapping unless the new service keeps it renewed.

The example in this section follows the “Granting and Handling Leases” sec-
tion of Chapter 7. It gives a concrete illustration of that section, now that there is
enough background to do so.

Chapter 13

226

Leased FileClassifier

A dynamically extensible version of a file classifier will have methods to add and
remove MIME mappings:

package common;

import java.io.Serializable;

/**

 * LeaseFileClassifier.java

 */

import net.jini.core.lease.Lease;

public interface LeaseFileClassifier extends Serializable {

 public MIMEType getMIMEType(String fileName)

 throws java.rmi.RemoteException;

 /*

 * Add the MIME type for the given suffix.

 * The suffix does not contain '.' e.g. "gif".

 * @exception net.jini.core.lease.LeaseDeniedException

 * a previous MIME type for that suffix exists.

 * This type is removed on expiration or cancellation

 * of the lease.

 */

 public Lease addType(String suffix, MIMEType type)

 throws java.rmi.RemoteException,

 net.jini.core.lease.LeaseDeniedException;

 /**

 * Remove the MIME type for the suffix.

 */

 public void removeType(String suffix)

 throws java.rmi.RemoteException;

} // LeaseFileClasssifier

The addType() method returns a lease. We shall use the landlord leasing system
discussed in Chapter 7. The client and the service will be in different Java VMs, prob-
ably on different machines. Figure 13-5 gives the object structure on the service side.

More Complex Examples

227227

This should be compared to Figure 7-3 where we considered the “foo” implementa-
tion of landlord leasing.

On the client side, the lease object will be a copy of the lease created on the
server (normally RMI semantics), but the other objects from the service will be
stubs that call into the real objects on the service. This is shown in Figure 13-6.

Figure 13-5. Class diagram for leasing on the server

FileClassifier
Impl

FileClassifier
Landlord

LeaseDuration
Policy

LandlordLease.
Factory

FileClassifier
LeaseManager

FileClassifier
LeasedResource

FileClassifier
Server

11

1
1

1

1

1 1

1

1

1

1

1

*

Figure 13-6. Class diagram for leasing on the client

TestFile
ClassifierLease

FileClassifier
Impl_Stub

LandlordLease
Landlord_Stub
FileClassifier

Chapter 13

228

The FileClassifier Leased Resource Class

The FileClassifierLeasedResource class acts as a wrapper around the actual
resource, adding cookie and time expiration fields around the resource. It adds a
unique cookie mechanism, in addition to making the wrapped resource visible.

/**

 * FileClassifierLeasedResource.java

 */

package lease;

import common.LeaseFileClassifier;

import com.sun.jini.lease.landlord.LeasedResource;

public class FileClassifierLeasedResource implements LeasedResource {

 static protected int cookie = 0;

 protected int thisCookie;

 protected LeaseFileClassifier fileClassifier;

 protected long expiration = 0;

 protected String suffix = null;

 public FileClassifierLeasedResource(LeaseFileClassifier fileClassifier,

 String suffix) {

 this.fileClassifier = fileClassifier;

 this.suffix = suffix;

 thisCookie = cookie++;

 }

 public void setExpiration(long newExpiration) {

 this.expiration = newExpiration;

 }

 public long getExpiration() {

 return expiration;

 }

 public Object getCookie() {

 return new Integer(thisCookie);

 }

 public LeaseFileClassifier getFileClassifier() {

 return fileClassifier;

 }

More Complex Examples

229229

 public String getSuffix() {

 return suffix;

 }

} // FileClassifierLeasedResource

The FileClassifier Lease Manager Class

The FileClassifierLeaseManager class is very similar to the code given for the
FooLeaseManager in Chapter 7:

/**

 * FileClassifierLeaseManager.java

 */

package lease;

import java.util.*;

import common.LeaseFileClassifier;

import net.jini.core.lease.Lease;

import com.sun.jini.lease.landlord.LeaseManager;

import com.sun.jini.lease.landlord.LeasedResource;

import com.sun.jini.lease.landlord.LeaseDurationPolicy;

import com.sun.jini.lease.landlord.Landlord;

import com.sun.jini.lease.landlord.LandlordLease;

import com.sun.jini.lease.landlord.LeasePolicy;

public class FileClassifierLeaseManager implements LeaseManager {

 protected static long DEFAULT_TIME = 30*1000L;

 protected Vector fileClassifierResources = new Vector();

 protected LeaseDurationPolicy policy;

 public FileClassifierLeaseManager(Landlord landlord) {

 policy = new LeaseDurationPolicy(Lease.FOREVER,

 DEFAULT_TIME,

 landlord,

 this,

 new LandlordLease.Factory());

 new LeaseReaper().start();

 }

 public void register(LeasedResource r, long duration) {

Chapter 13

230

 fileClassifierResources.add(r);

 }

 public void renewed(LeasedResource r, long duration, long olddur) {

 // no smarts in the scheduling, so do nothing

 }

 public void cancelAll(Object[] cookies) {

 for (int n = cookies.length; --n >= 0;) {

 cancel(cookies[n]);

 }

 }

 public void cancel(Object cookie) {

 for (int n = fileClassifierResources.size(); --n >= 0;) {

 FileClassifierLeasedResource r = (FileClassifierLeasedResource)

fileClassifierResources.elementAt(n);

 if (!policy.ensureCurrent(r)) {

 System.out.println("Lease expired for cookie = " +

 r.getCookie());

 try {

 r.getFileClassifier().removeType(r.getSuffix());

 } catch(java.rmi.RemoteException e) {

 e.printStackTrace();

 }

 fileClassifierResources.removeElementAt(n);

 }

 }

 }

 public LeasePolicy getPolicy() {

 return policy;

 }

 public LeasedResource getResource(Object cookie) {

 for (int n = fileClassifierResources.size(); --n >= 0;) {

 FileClassifierLeasedResource r = (FileClassifierLeasedResource)

fileClassifierResources.elementAt(n);

 if (r.getCookie().equals(cookie)) {

 return r;

 }

 }

 return null;

 }

More Complex Examples

231231

 class LeaseReaper extends Thread {

 public void run() {

 while (true) {

 try {

 Thread.sleep(DEFAULT_TIME) ;

 }

 catch (InterruptedException e) {

 }

 for (int n = fileClassifierResources.size()-1; n >= 0; n--) {

 FileClassifierLeasedResource r = (FileClassifierLeasedResource)

 fileClassifierResources.elementAt(n)

 ;

 if (!policy.ensureCurrent(r)) {

 System.out.println("Lease expired for cookie = " +

 r.getCookie()) ;

 try {

 r.getFileClassifier().removeType(r.getSuffix());

 } catch(java.rmi.RemoteException e) {

 e.printStackTrace();

 }

 fileClassifierResources.removeElementAt(n);

 }

 }

 }

 }

 }

} // FileClassifierLeaseManager

The FileClassifier Landlord Class

The FileClassifierLandlord class is very similar to the FooLandlord in Chapter 7:

/**

 * FileClassifierLandlord.java

 */

package lease;

import common.LeaseFileClassifier;

Chapter 13

232

import com.sun.jini.lease.landlord.*;

import net.jini.core.lease.LeaseDeniedException;

import net.jini.core.lease.Lease;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.Remote;

public class FileClassifierLandlord extends UnicastRemoteObject implements Land-

lord, Remote {

 FileClassifierLeaseManager manager = null;

 public FileClassifierLandlord() throws java.rmi.RemoteException {

 manager = new FileClassifierLeaseManager(this);

 }

 public void cancel(Object cookie) {

 manager.cancel(cookie);

 }

 public void cancelAll(Object[] cookies) {

 manager.cancelAll(cookies);

 }

 public long renew(java.lang.Object cookie,

 long extension)

 throws net.jini.core.lease.LeaseDeniedException,

 net.jini.core.lease.UnknownLeaseException {

 LeasedResource resource = manager.getResource(cookie);

 if (resource != null) {

 return manager.getPolicy().renew(resource, extension);

 }

 return -1;

 }

 public Lease newFileClassifierLease(LeaseFileClassifier fileClassifier,

 String suffixKey, long duration)

 throws LeaseDeniedException {

 FileClassifierLeasedResource r = new

FileClassifierLeasedResource(fileClassifier,

 suffixKey);

 return manager.getPolicy().leaseFor(r, duration);

 }

 public Landlord.RenewResults renewAll(java.lang.Object[] cookie,

More Complex Examples

233233

 long[] extension) {

 return null;

 }

} // FileClassifierLandlord

Summary

Jini provides a framework for building distributed applications. Nevertheless,
there is still room for variation in how services and clients are written, and some of
these are better than others. This chapter has looked at some of the variations that
can occur, and how to deal with them.

