

169

CHAPTER 12

Security

S

ECURITY

PLAYS

AN

IMPORTANT

ROLE

 in distributed systems. All parts of a Jini djinn,
which consists of clients, services, and lookup services, can be all be subjected to
attack by hostile agents. You could trust everyone, but the large number of attacks
that are made on all sorts of systems by both skilled and unskilled people doesn’t
make this a reasonable approach. The Jini security model is based on the JDK 1.2
security system, and all components of a Jini system use the JDK 1.2 security
mechanisms. This can be tricky to set up, and it is looked at in detail in this chapter.

Getting Going with No Security

Security for Jini is based on the JDK 1.2 security model, which makes use of a

Secu-

rityManager

 to grant or deny access to resources. All potentially dangerous
requests, such as opening a file, starting a process, or establishing a network con-
nection, are all passed to a

SecurityManager

. This manager will make decisions
based on a security policy (which should have been established for that applica-
tion) and either allow or deny the request.

A few of the examples given so far in this book may work fine without a secu-
rity manager, but most will require an appropriate security manager to be in place.
The major requirement in most examples is for the RMI runtime to be able to
download class files to instantiate proxy objects. This can be enabled by installing
an

RMISecurityManager

. Installing a security manager may be done by including this
statement in your code:

System.setSecurityManager(new RMISecurityManager());

This should be done before any network-related calls, and is often done in the

main()

 method or in a constructor for the application class.

The security manager will need to make use of a security policy. This is typi-
cally given in policy files, which are kept in default locations or are specified to the
Java runtime. If

policy.all

 is a policy file in the current directory, then invoking
the runtime with this statement

java -Djava.security.policy="policy.all" ...

will load the contents of the policy file.

Chapter 12

170

A totally permissive policy file can contain the following:

grant {

 permission java.security.AllPermission "", "";

};

This will allow all permissions, and should never be used outside of a test and
development environment—and moreover, one that is insulated from other
potentially untrusted machines. (Standalone is good here!)

The big advantage of this permissive policy file is that it gets you going on the
rest of Jini without worrying about security issues while you are grappling with
other problems!

Why AllPermission Is Bad

Granting all permissions to everyone is a very trusting act in the potentially hostile
world of the Internet. Not everyone is “mister nice guy.” The client is vulnerable to
attack because it is downloading code that satisfies a request for a service, and it
then executes that code. There are really no checks that the downloaded code is a
genuine service: the downloaded code has to implement the requested interface
and maybe satisfy conditions on associated

Entry

 objects. If it passes these condi-
tions, then it can do anything.

For example, a client asking for a simple file classifier could end up getting this
hostile object:

package hostile;

import common.MIMEType;

import common.FileClassifier;

/**

 * HostileFileClassifier1.java

 */

public class HostileFileClassifier1 implements FileClassifier {

 public MIMEType getMIMEType(String fileName) {

 if (java.io.File.pathSeparator.equals("/")) {

 // Unix - don't uncomment the next line!

 // Runtime.getRuntime().exec("/bin/rm -rf /");

 } else {

 // DOS - don't uncomment the next line!

Security

171171

 // Runtime.getRuntime().exec("format c: /u");

 }

 return null;

 }

 public HostileFileClassifier1() {

 // empty

 }

} // HostileFileClassifier1

This object would be exported from a hostile service to run completely in any cli-
ent unfortunate enough to download it.

It is not necessary to actually call a method on the downloaded object—the
mere act of downloading can do the damage if the object overrides the deserializa-
tion method:

package hostile;

import common.MIMEType;

import common.FileClassifier;

/**

 * HostileFileClassifier2.java

 */

public class HostileFileClassifier2 implements FileClassifier,

 java.io.Externalizable {

 public MIMEType getMIMEType(String fileName) {

 return null;

 }

 public void readExternal(java.io.ObjectInput in) {

 if (java.io.File.pathSeparator.equals("/")) {

 // Unix - don't uncomment the next line!

 // Runtime.getRuntime().exec("/bin/rm -rf /");

 } else {

 // DOS - don't uncomment the next line!

 // Runtime.getRuntime().exec("format c: /u");

 }

 }

Chapter 12

172

 public void writeExternal(java.io.ObjectOutput out)

 throws java.io.IOException{

 out.writeObject(this);

 }

 public HostileFileClassifier2() {

 // empty

 }

} // HostileFileClassifier2

The two classes above assume that clients will make requests for the imple-
mentation of a particular interface, and this means that the attacker would require
some knowledge of the clients it is attacking (that they will ask for this interface).
At the moment, there are no standard interfaces, so this may not be a feasible way
of attacking many clients. As interfaces such as those for a printer become speci-
fied and widely used, however, attacks based on hostile implementations of
services may become more common.

Removing AllPermission

Setting the security access to

AllPermission

 is easy and removes all possible secu-
rity issues that may hinder development of a Jini application. However, it leaves
your system open, so you must start using a more rigorous security policy at some
stage—hopefully before others have damaged your system. The problem with
moving away from this open policy is that permissions are additive rather than
subtractive. That is, you can’t take permissions away from

AllPermission

; you have
to start with an empty permission set and add to that.

Not giving enough permission can result in at least three situations when you
try to access something:

• A security-related exception can be thrown. This is comparatively easy to deal
with, because the exception will tell you what permission is being denied. You
can then decide if you should be granting this permission or not. Of course,
this should be caught during testing, not when the application is deployed!

• A security-related exception can be thrown but caught by some library
object, which attempts to handle it. This happens within the multicast
lookup methods, which make multicast requests. If this permission is
denied, it will be retried several times before giving up. This leads to a cumu-
lative time delay before anything else can happen. The application may be
able to continue, and it will just suffer this time delay.

Security

173173

• A security-related exception can be thrown but caught by some library
object and ignored. The application may be unable to continue in any ratio-
nal way after this, and may just appear to hang. This may happen if network
access is requested but denied, and then a thread waits for messages that
can never arrive. Or it may just get stuck in a loop...

The first two cases will occur if permissions are turned off for the service providers,
such as in the

rmi.FileClassifierServer

 of Chapter 9. The third occurs for the cli-
ent

client.TestFileClassifier

 of Chapter 8.

There is a

java.security.debug

 system property that can be set to print infor-
mation about various types of access to the security mechanisms. This can be used
with a slack security policy to find out exactly what permissions are being granted.
Then, with the screws tightened, you can see where permission is being denied.
An appropriate value for this property is

access

, as in

java -Djava.security.debug=access ...

For example, running

client.TestFileClassifier

 with few permissions
granted may result in a trace such as the following:

...

access: access allowed (java.util.PropertyPermission socksProxyHost read)

access: access allowed (java.net.SocketPermission 127.0.0.1:1174 accept,resolve)

access: access denied (java.net.SocketPermission 130.102.176.249:1024

accept,resolve)

access: access denied (java.net.SocketPermission 130.102.176.249:1025

accept,resolve)

access: access denied (java.net.SocketPermission 130.102.176.249:1027

accept,resolve)

...

The denied access is an attempt to make a socket accept or resolve request on my
laptop (IP address 130.102.176.249), probably for RMI-related sockets. Since the
client just sits there indefinitely making this request on one random port after
another, this permission needs to be opened up, because the client otherwise
appears to just hang.

Jini with Protection

The safest way for a Jini client or service to be part of a Jini federation is through
abstinence: that is, for it to refuse to take part. This doesn’t get you very far in

Chapter 12

174

populating a federation, though. The JDK 1.2 security model offers a number of
ways in which more permissive activity may take place:

• Grant permission only for certain activities, such as socket access at various
levels on particular ports, or access to certain files for reading, writing, or
execution.

grant {

 permission java.net.SocketPermission "224.0.1.85", "connect,accept";

 permission java.net.SocketPermission "*.edu.au:80", "connect";

}

• Grant access only to particular hosts, subdomains, or domains.

grant codebase "http://sunshade.dstc.edu.au/classes/" {

 permission java.security.AllPermission "", "";

}

• Require digital signatures to be attached to code.

grant signedBy "sysadmin" {

 permission java.security.AllPermission "", "";

}

For any particular security access, you will need to decide which of these
options is appropriate. This will depend on the overall security policy for your
organization, and if your organization doesn’t have such a policy that you can refer
to, then you certainly shouldn’t be exposing your systems to the Internet (or to
anyone within the organization, either)!

Service Requirements

In order to partake in a Jini federation, a service must become sufficiently visible.
The service needs to find a service locator before it can advertise its services, and as
explained in Chapter 3, this can be by unicast to particular locations or by multicast.

Unicast discovery does not need any particular permissions to be set. The
discovery can be done without any policy file.

For the multicast case, the service must have

DiscoveryPermission

 for each
group that it is trying to join. For all groups, the asterisk (

*

) wildcard can be used.
So, to join all groups, the permission granted should be as follows:

permission net.jini.discovery.DiscoveryPermission "*";

Security

175175

For example, to join the

printers

 and

toasters

 groups, the permission would
be this:

permission net.jini.discovery.DiscoveryPermission,

 "printers, toasters";

Once this permission is given, the service will make a multicast broadcast on
224.0.1.84. This particular address is used by Jini for broadcasts and should be
used in your policy files. Socket permission for these requests and announce-
ments must be given as follows:

permission java.net.SocketPermission "224.0.1.84", "connect,accept";

permission java.net.SocketPermission "224.0.1.85", "connect,accept";

The service may export a

UnicastRemoteObject

, which will need to communi-
cate back to the server, and so the server will need to listen on a port for these
remote object requests. Ports are numbered from 1 to 65,000, and the default con-
structor will assign a random port (greater than 1,024) for this. If desired, this port
may be specified by other constructors. This will require further socket permis-
sions, such as the following, to accept connections on any port above 1024 from
the

localhost

 or any computer in the

dstc.edu.au

 domain:

permission java.net.SocketPermission "localhost:1024-", "connect,accept";

permission java.net.SocketPermission "*.dstc.edu.au:1024-", "connect,accept";

The reason Jini uses a port greater than 1024 is because the use of lower port num-
bers is restricted on Unix systems.

A number of parameters may be set by preferences, such as

net.jini.discov-

ery.ttl

. It does no harm to allow the Jini system to look for these parameters, and
this may be allowed by including code like the following in the policy file:

permission java.util.PropertyPermission "net.jini.discovery.*", "read";

A fairly minimal policy file suitable for a service exporting an RMI object could
then be as follows:

grant {

 permission net.jini.discovery.DiscoveryPermission "*";

 // multicast request address

 permission java.net.SocketPermission "224.0.1.85", "connect,accept";

 // multicast announcement address

 permission java.net.SocketPermission "224.0.1.84", "connect,accept";

Chapter 12

176

 // RMI connections

 permission java.net.SocketPermission "*.canberra.edu.au:1024-",

"connect,accept";

 permission java.net.SocketPermission "130.102.176.249:1024-", "connect,accept";

 permission java.net.SocketPermission "127.0.0.1:1024-", "connect,accept";

 // reading parameters

 // like net.jini.discovery.debug!

 permission java.util.PropertyPermission "net.jini.discovery.*", "read";

};

Client Requirements

The client is most at risk in the Jini environment. The service exports objects; the
lookup locator stores objects, but does not “bring them to life” or execute any of
their methods; but the client brings an external object into its address space and
runs it, giving it all of the permissions of a process running in an operating system.
The object will run under the permissions of a particular user in a particular direc-
tory, with user access to the local file system and network. It could destroy files,
make network connections to undesirable sites (or desirable, depending on your
tastes!) and download images from them, start processes to send obnoxious mail to
anyone in your address book, and generally make a mess of your electronic identity!

A client using multicast search to find service locators will need to grant dis-
covery permission and multicast announcement permission, just like the service:

permission net.jini.discovery.DiscoveryPermission "*";

permission java.net.SocketPermission "224.0.1.84", "connect,accept";

permission java.net.SocketPermission "224.0.1.85", "connect,accept";

RMI connections on random ports may also be needed:

permission java.net.SocketPermission "*.dstc.edu.au:1024-", "connect,accept"

In addition, class definitions will probably need to be uploaded so that ser-
vices can actually run in the client. This is the most serious risk area for the client,
as the code contained in these class definitions will be run in the client, and any
errors or malicious code will have their effect because of this. The client view of the
different levels of trust is shown in Figure 12-1. The client is the most likely candi-
date to require signed trust certificates since it has the highest trust requirement of
the components of a Jini system.

Security

177177

Many services will just make use of whatever HTTP server is running on their
system, and this will probably be on port 80. Permission to connect on this port
can be granted with the following statements:

permission java.net.SocketPermission "127.0.0.1:80", "connect,accept";

permission java.net.SocketPermission "*.dstc.edu.au:80", "connect,accept";

However, while this will allow code to be downloaded on port 80, it may not
block some malicious attempts. Any user can start an HTTP server on any port
(Windows) or above 1024 (Unix). A service can then set its codebase to whatever
port the HTTP server is using. Perhaps these other ports should be blocked, but
unfortunately, RMI uses random ports, so these ports need to be open.

So, it is probably not possible to close all holes for hostile code to be down-
loaded to a client. What you need is a second stage defense: given that hostile code
may reach you, set the JDK security so that hostile (or just buggy) code cannot per-
form harmful actions in the client.

A fairly minimal policy file suitable for a client could then be as follows:

grant {

 permission net.jini.discovery.DiscoveryPermission "*";

 // multicast request address

 permission java.net.SocketPermission "224.0.1.85", "connect,accept";

 // multicast announcement address

Figure 12-1. Trust levels of the client

lookup
service

lookup
service

lookup
service

service

service

client

classes

instance

reasonably

highly
trustedtrust

so-so

trusted

Chapter 12

178

 permission java.net.SocketPermission "224.0.1.84", "connect,accept";

 // RMI connections

 // DANGER

 // HTTP connections - this is where external code may come in - careful!!!

 permission java.net.SocketPermission "127.0.0.1:1024-", "connect,accept";

 permission java.net.SocketPermission "*.canberra.edu.au:1024-",

"connect,accept";

 permission java.net.SocketPermission "130.102.176.249:1024-", "connect,accept";

 // DANGER

 // HTTP connections - this is where external code may come in - careful!!!

 permission java.net.SocketPermission "127.0.0.1:80", "connect,accept";

 permission java.net.SocketPermission "*.dstc.edu.au:80", "connect,accept";

 // reading parameters

 // like net.jini.discovery.debug!

 permission java.util.PropertyPermission "net.jini.discovery.*", "read";

};

RMI Parameters

A service is specified by an interface. In many cases, an RMI proxy will be delivered
to the client that implements this interface. Depending on the interface, this can
be used by the client to attack the service. The

FileClassifier

 interface is safe, but
in Chapter 14 we will look at how a client can upload a new MIME type to a service,
and this extended interface exposes a service to attack.

This is the relevant method from the

MutableFileClassifier

 interface of
Chapter 14:

public void addType(String suffix, MIMEType type)

 throws java.rmi.RemoteException;

This method allows a client to pass an object of type

MIMEType

 up to the service,
where it will presumably try to add it to a list of existing MIME types. The

MIMEType

class is an ordinary class, not an interface. Nevertheless, it can be subclassed, and
this subclass can make an attack as described in the second section of this chapter.

This particular attack can be avoided by ensuring that the parameters to any
method call in an interface are all

final

 classes. If the

MIMEType

 class was defined by

public final class MIMEType {...}

Security

179179

then it would not be possible to subclass it. No attack could be made by a subclass,
since no subclass could be made! There aren’t enough Jini services defined yet to
know whether making all parameters

final

 is a good enough solution.

ServiceRegistrar

Services will transfer objects to be run within clients. This chapter has so far been
concerned with the security policies that will allow this and the restrictions that
may need to be in place. The major protection for clients at the moment is that
there are no standardized service interfaces, so attackers do not yet know what
hostile objects to write.

A lookup service, on the other hand, exports an object that implements

Service-

Registrar

. It does not use the same mechanism as a service would to get its code into
a client. Instead, the lookup service replies directly to unicast connections with a
registrar object, or responds to multicast requests by establishing a unicast connec-
tion to the requester and again sending a registrar. The mechanism is different, but it
is clearly documented in the Jini specifications and it is quite easy to write an appli-
cation that performs at least this much of the discovery protocols.

The end result of lookup discovery is that the lookup service will have down-
loaded registrar objects. The registrar objects run in both clients and services—
they both need to find lookup services. The

ServiceRegistrar

 interface is standard-
ized by the Jini specification, so it is fairly easy to write a hostile lookup service that
can attack both clients and services.

While it is unlikely that anyone will knowingly make a unicast connection to a
hostile lookup service, someone might get tricked into it. There are already some
quite unscrupulous Web sites that will offer “free” services on producing a credit
card (to the user’s later cost). There is every probability that such sites will try to
entice Jini clients if they see a profit in doing so. Also, anyone with access to the
network and within broadcast range of clients and services (i.e., on your local net-
work) can start lookup services that will be found by multicast discovery.

The only real counter to this attack is to require that all connections that can
result in downloaded code should be covered by digital certificates, so that all
downloaded code must be signed. This covers all possible ports, since an HTTP
server can be started on any port on a Windows machine. The objects that are
downloaded in the Sun implementation of the lookup service,

reggie

, are all in

reggie-dl.jar

. This is not signed by any certificates. If you are worried about an
attack through this route, you should sign this file, as well as the jar files of any ser-
vices you wish to use.

Chapter 12

180

Transaction Manager and Other Activatable Services

The Jini distribution includes a transaction manager called mahalo. This uses the
new activation methods of RMI in JDK 1.2. Without worrying about any other
arguments, the call to run this transaction manager is

java -jar mahalo.jar

(assuming the jar file is in the CLASSPATH). The transaction manager is a Jini service
and will need class definitions to be uploaded to clients. The class files are in mah-
alo-dl.jar, and will come from an HTTP server. The location of this jar file is spec-
ified in the first command-line argument. For example, to access it from the HTTP
server on my laptop, jannote, I would issue the following command:

java -jar mahalo.jar http://jannote.dstc.edu.au/mahalo-dl.jar

The transaction manager is a Jini service, and so should set a security policy.
This security policy should allow the transaction manager to register with a lookup
service, and allow client access to it. In addition, the transaction manager needs to
maintain state about transactions in permanent storage. To do this, it needs access
to the file system, and since it has a security manager installed, this access needs to
be granted explicitly. This is done using the normal java.security.policy property:

java -Djava.security.policy=policy.txn \

 -jar mahalo.jar http://jannote.dstc.edu/au/mahalo-dl.jar

This will allow the service to be registered and uploaded, and also will allow access
to the file system.

A suitable policy to set up the permissions discussed earlier and grant file sys-
tem access could be as follows:

grant {

 // rmid wants this

 permission java.net.SocketPermission "127.0.0.1:1098", "connect,resolve";

 // other RMI calls want these, too

 permission java.net.SocketPermission "127.0.0.1:1024-", "connect,resolve";

 permission java.net.SocketPermission "130.102.176.153:1024-",

"connect,resolve";

 // access to transaction manager log files

 permission java.io.FilePermission "/tmp/mahalo_log", "read,write";

 permission java.io.FilePermission "/tmp/mahalo_log/-", "read,write,delete";

Security

181181

 // properties used by transaction manager

 permission java.util.PropertyPermission "com.sun.jini.mahalo.managerName",

"read";

 permission java.util.PropertyPermission "com.sun.jini.use.registry", "read";

};

The new activation system of JDK 1.2 takes a little getting used to and causes
confusion to Jini newcomers, because Sun implementations of major Jini services
(such as mahalo) use activation. An activatable service like mahalo hands over
responsibility for execution to a third party, an activation service. This activation
service is usually rmid, and is used by reggie as well as mahalo.

A service (e.g., mahalo) starts, registers itself with this third-party service (e.g.,
rmid), and then exits. The third-party service (rmid) is responsible for fielding calls
to the service (mahalo), and either awakening it or restoring it from scratch to han-
dle the call. There is a subtlety here: the service (mahalo) begins execution in one
JVM, but promptly delegates its execution to this third-party service (rmid) running
in a different JVM! Thus, there are two JVMs involved in running an activatable ser-
vice, and so there are two security policies—one for each of the JVMs.

The first security policy is used when the service is first started (say by a user).
This uses the command line argument -Djava.security.policy=… and is used to
register the service (mahalo) with the activation service (rmid). This startup service
then exits. Some time later, the activation service will try to restart the registered
service (mahalo) and will need to know the security policy to apply to it. This sec-
ond security policy must be passed from the original startup through to the
activation service, and this is specified in an additional command-line argument,
policy.actvn.

java -Djava.security.policy=policy.txn -jar mahalo.jar \

 http://jannote.dstc.edu.au/mahalo-dl.jar \

 policy.actvn

The policy file just discussed is suitable for starting the mahalo service. A suit-
able activation policy for actually running the mahalo service from the activation
server could be as follows:

grant {

 // rmid wants this

 permission java.net.SocketPermission "127.0.0.1:1098", "connect,resolve";

 // other RMI calls want these, too

 permission java.net.SocketPermission "127.0.0.1:1024-", "connect,resolve";

 permission java.net.SocketPermission "130.102.176.153:1024-",

"connect,resolve";

Chapter 12

182

 // access the transaction manager log files

 permission java.io.FilePermission "/tmp/mahalo_log", "read,write";

 permission java.io.FilePermission "/tmp/mahalo_log/-", "read,write,delete";

 // properties used by transaction manager

 permission java.util.PropertyPermission "com.sun.jini.mahalo.managerName",

"read";

 permission java.util.PropertyPermission "com.sun.jini.use.registry", "read";

 // needed for activation

 permission java.net.SocketPermission "224.0.1.84", "connect,accept,resolve";

 permission java.io.FilePermission "/tmp/mahalo_log/-", "read";

 permission java.util.PropertyPermission "com.sun.jini.thread.debug", "read";

 permission java.lang.RuntimePermission "modifyThreadGroup";

 permission java.lang.RuntimePermission "modifyThread";

 // for downloading mahalo-dl.jar from HTTP server

 permission java.net.SocketPermission "*:8080", "connect,accept,resolve";

 permission net.jini.discovery.DiscoveryPermission "*";

};

rmid

An activatable service runs within a JVM started by rmid. It does so with the same
user identity as rmid, so if rmid is run by, say, the superuser root on a Unix system,
then all activatable services will run with that same user ID, root. This is a security
flaw, as any user on that system can write and start an activatable service, and then
write and run a client that makes calls on the service. This is a way to run programs
with superuser privileges from an arbitrary user.

My own machine has only a few users, and all of them I trust not to write
deliberately malicious programs (and right now, I am the only one who can write
Jini services). However, most people may not be in such a fortunate position. Con-
sequently, rmid should be run in such a way that even if it is attacked, it will not be
able to do any damage.

On Unix, there are two ways of reducing the risk:

• Run rmid as a harmless user, such as user nobody. This can be done by chang-
ing rmid to be setuid to this user. Note that the program rmid in the Java bin
directory is actually a shell script that eventually calls a program such as
bin/i386/green_threads/rmid, and it is this program that needs to have the
setuid bit set.

Security

183183

• Use the chroot mechanism to run rmid in a subdirectory that appears to be
the top-level directory ‘/’. This will make all other files invisible to rmid.

Since the attack can only come from someone who already has an account on
the machine, the setuid method is probably good enough, and it is certainly sim-
pler to set up than chroot.

On an NT system, rmid should be set up so that it only runs under general user
access rights.

rmid and JDK 1.3

The security problems of the last section have been partly addressed by a tighter
security mechanism introduced in JDK 1.3. These restrict what activatable services
can do by using a security mechanism that is under the control of whoever
starts rmid. This means that there has to be cooperation between the person
who starts rmid and the person who starts an activatable service that will use rmid.

The simplest mechanism is to just turn the new security system off. This was
discussed briefly in Chapter 3, and it means running rmid with an additional
argument:

rmid -J-Dsun.rmi.activation.execPolicy=none

All that rmid then checks is that any activatable service that registers with it is
started on the same machine as rmid. This is the weak security mechanism in the
JDK 1.2 version of rmid, which assumes that users on the same machine pose no
security risks.

The default new mechanism can also be set explicitly:

rmid -J-Dsun.rmi.activation.execPolicy=default

This requires an additional security policy file that will be used by rmid, and the
location of this policy file is also given on the command line for rmid. For example,

NOTE setuid is the description of the Unix mechanism for changing the
apparent user of a program. Unix performs this change when the setuid bit
is set in the file permissions of the program. This can be added by the Unix
command chmod +s program.

Chapter 12

184

the following command will start rmid using the new default mechanism with the
policy file set to /usr/local/jini1_1/rmid.policy:

rmid -J-Djava.security.policy=/usr/local/jini1_1/rmid.policy

The policy file used by rmid is a standard JDK 1.2 policy file, and it grants per-
missions to do various things. For rmid, the main permission that has to be granted
is to use the various options of the activation commands. Granting option permis-
sions is done using the com.sun.rmi.rmid.ExecOptionPermission permission.

For example, reggie is an activatable service. To run this on my system, I use
this command:

java -jar /usr/local/jini1_1/lib/reggie.jar \

 http://jannote.dstc.edu.au:8080/reggie-dl.jar \

 /usr/local/jini1_1/example/lookup/policy \

 /tmp/reggie_log public

To run this with the JDK 1.3 rmid, I need to place the following in the security
policy file:

grant {

 permission com.sun.rmi.rmid.ExecOptionPermission

 "/usr/local/jini1_1/lib/reggie.jar";

 permission com.sun.rmi.rmid.ExecOptionPermission

 "-Djava.rmi.server.codebase=http://jannote.dstc.edu.au:8080/reggie-dl.jar";

 permission com.sun.rmi.rmid.ExecOptionPermission

 "-Djava.security.policy=/usr/local/jini1_1/example/lookup/policy";

 permission com.sun.rmi.rmid.ExecOptionPermission "-cp";

};

The permissions granted are, in turn:

1. The jar file that contains the main application class. This distinguishes
reggie from other activation services.

2. The HTTP address of the class files used in the implementation.

3. The security policy file used by reggie.

Unless all three match, rmid will not run reggie. Wildcards can be used, but this
will reduce the amount of security that rmid has over the activatable services it
looks after.

You may have noticed that there is a mismatch between the command I type
to get reggie running and the contents of the policy file. Not all of the command

Security

185185

line arguments I type are in the policy file. For example, what has happened to the
/tmp/reggie_log argument?

Well, arguments like /usr/local/jini1_1/example/lookup/policy are property
overrides that are defined to the JVM in the form -D=, as shown here:

-Djava.security.policy=/usr/local/jini1_1/example/lookup/policy

On the other hand, the argument /tmp/reggie_log is just a simple command line
argument and not a property override at all. The property overrides need to go in
the policy file, but the ordinary command line arguments do not.

So do you have to go through each argument in turn, to decide if it is a prop-
erty? No, that would be too tedious. Instead, you start with an empty policy file,
start rmid, and then start an activatable service such as reggie. Generally, this will
fail with an exception message such as this:

Unable to invoke by reflection, the method:

com.sun.jini.reggie.CreateLookup.create.

An exception was thrown by the invoked method.

java.lang.reflect.InvocationTargetException: java.rmi.activation.ActivateFailedEx-

ception: failed to activate object; nested exception is:

 java.security.AccessControlException: access denied (com.sun.rmi.rmid.Exec-

OptionPermission -Djava.security.policy=/usr/local/jini1_1/example/lookup/policy)

java.security.AccessControlException: access denied (com.sun.rmi.rmid.ExecOption-

Permission -Djava.security.policy=/usr/local/jini1_1/example/lookup/policy)

In this exception message is the phrase “com.sun.rmi.rmid.ExecOptionPer-
mission -Djava.security.policy=/usr/local/jini1_1/example/lookup/policy”. The
person who wants to run reggie must communicate this information to the person
who controls rmid so that they can place this information in the rmid policy file.

You’ll need to go through this process a few times to build up the complete set
of permissions for reggie. That’s tedious too ... but there isn’t any other way. The doc-
ument http://developer.java.sun.com/developer/products/jini/execpolicy.html
gives policy files for the Jini services reggie, mahalo, and FrontEndSpace.

There is a third choice in mechanisms, and that is to specify an object that will
be used to establish the security access, but that is beyond the scope of this chap-
ter. It is discussed in the JDK 1.3 documentation for rmid.

Chapter 12

186

Being Paranoiac

Jini applications download and execute code from other sources:

• Both clients and services download ServiceRegistrar objects from lookup
services. They then call methods such as lookup() and register().

• A client will download services and execute whatever methods are defined
in the interface.

• A remote listener will call the notify() method of foreign code.

In a safe environment where all code can be trusted, no safeguards need to be
employed. However, most environments carry some kind of risk from hostile
agents. An attack will consist of a hostile agent implementing one of the known
interfaces (of ServiceRegistrar, of a well-known service such as the transaction
manager, or of RemoteEventListener) with code that does not implement the
implied “contract” of the interface but instead tries to perform malicious acts.
These acts may not even be deliberately hostile; most programmers make at least
some errors, and these errors may result in risky behavior.

There are all sorts of malicious acts that can be performed. Hostile code can
simply terminate the application, but the code can perform actions such as read
sensitive files, alter sensitive files, forge messages to other applications, perform
denial of service attacks such as filling the screen with useless windows, and so on.

It doesn’t take much reading about security issues to instill a strong sense of
paranoia, and possible overreaction to security threats. If you can trust everyone
on your local network (which you are already doing if you run a number of com-
mon network services such as NFS), then the techniques discussed in this section
are probably overkill. If you can’t, then paranoia may be a good frame of mind to
be in!

Protection Domains

The Java 1.2 security model is based on the traditional idea of “protection
domains.” In Java, a protection domain is associated with classes based on their
CodeSource, which consists of the URL from which the class file was loaded (the
codebase), plus a set of digital certificates used to sign the class files. For example,
the class files for the LookupLocator class are in the file jini-core.jar (in the lib
directory of the Jini distribution). This class has a protection domain associated
with the CodeSource for jini-core.jar. (All of the classes in jini-core.jar will
belong to this same protection domain.)

Security

187187

Information about protection domains and code sources can be found by code
such as this, which can be placed anywhere after the registrar object is found:

java.security.ProtectionDomain domain = registrar.

 getClass().getProtectionDomain();

 java.security.CodeSource codeSource = domain.getCodeSource();

Information about the digital signatures attached to code can be found by code
like this, which can also be placed anywhere after the registrar object is found:

Object [] signers = registrar.getClass().getSigners();

 if (signers == null) {

 System.out.println("No signers");

 } else {

 System.out.println("Signers");

 for (int m = 0; m < signers.length; m++)

 System.out.println(signers[m].toString());

 }

By default, no class files or jar files have digital signatures attached. Digital sig-
natures can be created using keytool (part of the standard Java distribution). These
signatures are stored in a keystore. From there, they can be used to sign classes
and jar files using jarsigner, exported to other keystores, and generally be spread
around. Certificates don’t mean anything unless you believe that they really do
guarantee that they refer to the “real” person, and certificate authorities, such as
VeriSign, provide validation techniques for this.

This description has been horribly brief and is mainly intended as a reminder
for those who already understand this stuff. If you want to experiment, you can do
as I did and just create certificates as needed, using keytool, although there was no
independent authority to verify them. A good explanation of this topic is given by
Bill Venners at http://www.artima.com/insidejvm/ed2/ch03Security1.html.

Signing Standard Files

None of the Java files in the standard distribution are signed. None of the files in
the Jini distribution are signed either. For most of these it probably won’t matter,
since they are local files.

However, all of the Jini jar files ending in -dl.jar are downloaded to clients
and services across the network and are Sun implementations of “well-known”
interfaces. For example, the ServiceRegistrar object that you get from the discov-
ery process (described in Chapter 3) has its class files defined in reggie-dl.jar, as a
com.sun.jini.reggie.RegistrarImpl_Stub object. Hostile code implementing the

Chapter 12

188

ServiceRegistrar interface can be written quite easily. If there is the possibility that
hostile versions of lookup services (or other Sun-supplied services) may be set
running on your network, then you should only accept implementations of Ser-
viceRegistrar if they are signed by an authority you trust.

Signing Other Services

Interfaces to services such as printers will eventually be decided upon, and will
become “well known.” There should be no need to sign these interface files for
security reasons, but an authority may wish to sign them for, say, copyright rea-
sons. Any implementations of these interfaces are a different matter. Just like the
cases above, these implementation class files will come to client machines from
other machines on the local or even remote networks. These are the files that can
have malicious implementations. If this is a possibility, you should only accept
implementations of the interfaces if they are signed by an authority you trust.

Permissions

Permissions are granted to protection domains based on their codesource, which
consists of the codebase and a set of digital signatures. In the Sun implementation,
this is done in the policy files, by grant blocks:

grant codeBase "url" signedBy "signer" {

 ...

}

When code executes, it belongs to the protection domains of all classes on the
call stack above it. So, for example, when the ServiceRegistration object in the com-
plete.FileClassifierServer is executing the register() method, the following
classes are on the call stack:

• The com.sun.jini.reggie.RegistrarImpl_Stub class from reggie-dl.jar

• The complete.FileClassifierServer class, from the call discovered()

• Core Jini classes that have called the discovered() method

• Classes from the Java system core that are running the application

The permissions for executing code are generally the intersection of all the
permissions of the protection domains it is running in. Classes in the Java system

Security

189189

core grant all permissions, but if you restrict the permissions granted to your own
application code to core Jini classes, or to code that comes across the network, you
restrict what an executing method can do.

For example, if multicast request permission is not granted to the Jini core
classes, then discovery cannot take place. This permission needs to be granted to
the application code and also to the Jini core classes.

It may not be immediately apparent which protection domains are active at
any point. For example, in the earlier call of

registrar.getClass().getProtectionDomain()

I fell into the assumption that the reggie-dl.jar domain was active because the
method was called on the registrar object. But it wasn’t. While the getClass()
call is made on the registrar, this completes and returns a Class object so that
the call is made on this object, which by then is just running in the three domains:
the system, the application, and the core Jini classes domains, but not the reg-
gie-dl.jar domain.

There are two exceptions to the intersection rule. The first is that the RMI
security manager grants SocketPermission to connect back to the codebase host for
remote classes. The second is that methods may call the AccessController.doPriv-
ileged() method. This essentially prunes the class call stack, discarding all classes
below this one for the duration of the call, and it is done to allow permissions
based on this class’s methods, even though the permissions may not be granted by
classes earlier in the call chain. This allows some methods to continue to work
even though the application has not granted the permission, and it means that the
application does not have to generally grant permissions required only by a small
subset of code.

For example, the Socket class needs access to file permissions in order to allow
methods such as getOutputStream() to function. By using doPrivileged(), the class
can limit the “security breakout” to particular methods in a controlled manner. If
you are running with security access debugging turned on, this explains how a
large number of accesses are granted even though the application has not given
many of the permissions.

Putting It Together

Adding all the bits of information presented in this chapter together leads to secu-
rity policy files that restrict possible attacks:

1. Grant permissions to application code based on the codesource. If you
suspect these classes could be tampered with, sign them as well.

Chapter 12

190

2. Grant permission to Jini core classes based on the codesource. These may
be signed if need be.

3. Grant permission to downloaded code only if it is signed by an authority
you trust. Even then, grant only the minimum permission needed to per-
form the service’s task.

4. Don’t grant any other permissions to other code.

A policy file based on these principles might look like this:

keystore "file:/home/jan/.keystore", "JKS";

// Permissions for downloaded classes

grant signedBy "Jan" {

 permission java.net.SocketPermission "137.92.11.117:1024-",

"connect,accept,resolve";

};

// Permissions for the Jini classes

grant codeBase "file:/home/jan/tmpdir/jini1_1/lib/-" signedBy "Jini" {

 // The Jini classes shouldn't require more than these

 permission java.util.PropertyPermission "net.jini.discovery.*", "read";

 permission net.jini.discovery.DiscoveryPermission "*";

 // multicast request address

 permission java.net.SocketPermission "224.0.1.85", "connect,accept";

 // multicast announcement address

 permission java.net.SocketPermission "224.0.1.84", "connect,accept";

 // RMI and HTTP

 permission java.net.SocketPermission "127.0.0.1:1024-", "connect,accept";

 permission java.net.SocketPermission "*.canberra.edu.au:1024-",

"connect,accept";

 permission java.net.SocketPermission "137.92.11.*:1024-",

"connect,accept,resolve";

 permission java.net.SocketPermission "130.102.176.*:1024-",

"connect,accept,resolve";

 permission java.net.SocketPermission "130.102.176.249:1024-",

"connect,accept,resolve";

 // permission java.net.SocketPermission "137.92.11.117:1024-",

"connect,accept,resolve";

 // debugging

Security

191191

 permission java.lang.RuntimePermission "getProtectionDomain";

};

// Permissions for the application classes

grant codeBase "file:/home/jan/projects/jini/doc/-" {

 permission java.util.PropertyPermission "net.jini.discovery.*", "read";

 permission net.jini.discovery.DiscoveryPermission "*";

 // multicast request address

 permission java.net.SocketPermission "224.0.1.85", "connect,accept";

 // multicast announcement address

 permission java.net.SocketPermission "224.0.1.84", "connect,accept";

 // RMI and HTTP

 permission java.net.SocketPermission "127.0.0.1:1024-", "connect,accept";

 permission java.net.SocketPermission "*.canberra.edu.au:1024-",

"connect,accept";

 permission java.net.SocketPermission "137.92.11.*:1024-",

"connect,accept,resolve";

 permission java.net.SocketPermission "130.102.176.*:1024-",

"connect,accept,resolve";

 permission java.net.SocketPermission "130.102.176.249:1024-",

"connect,accept,resolve";

 // permission java.net.SocketPermission "137.92.11.117:1024-",

"connect,accept,resolve";

 // debugging

 permission java.lang.RuntimePermission "getProtectionDomain";

 // Add in any file, etc, permissions needed by the application classes

};

Summary

You have to pay attention to security when running in a distributed environment,
and Jini enforces security by using the JDK 1.2 security model. This chapter has
considered the range of security mechanisms possible, from turning security off
through to paranoiac mode. It should be noted that this does not cover issues such
as encryption or non-repudiation. These are still under development for later ver-
sions of Jini.

