

161

CHAPTER 11

Join Manager

F

INDING

A

LOOKUP

SERVICE

INVOLVES

 a common series of steps, and convenience
classes for encapsulating this were considered in the last chapter. Subsequent
interaction with the discovered lookup services also involves common steps for
services as they register with the lookup services. A join manager encapsulates
these additional steps into one convenience class for services.

Jini 1.1 JoinManager

A service needs to locate lookup services and register the service with them. Locat-
ing services can be done using the utility classes from Chapter 10. As each lookup
service is discovered, it needs to be registered, and the lease needs to be main-
tained. The

JoinManager

 class performs all of these tasks. There are two constructors:

public class JoinManager {

 public JoinManager(Object obj,

 Entry[] attrSets,

 ServiceIDListener callback,

 DiscoveryManagement discoverMgr,

 LeaseRenewalManager leaseMgr)

 throws IOException;

 public JoinManager(Object obj,

 Entry[] attrSets,

 ServiceID serviceID,

 DiscoveryManagement discoverMgr,

 LeaseRenewalManager leaseMgr)

 throws IOException;

}

The first constructor is used when the service is new and does not have a ser-
vice ID. A

ServiceIDListener

 can be added to note and save the ID. The second
constructor is used when the service already has an ID. The other parameters are
for the service and its entry attributes, a

DiscoveryManagement

 object to set groups
and unicast locators (typically this will be done using a

LookupDiscoveryManager

),
and a lease renewal manager.

Chapter 11

162

The following example uses the

JoinManager

 class to register a

FileClassifier-

Impl

. In the Chapter 8 example of “Uploading a Complete Service” (and other
examples in Chapter 9) the server implemented the

DiscoveryListener

 interface in
order to be informed when new lookup locators were discovered so that the ser-
vice could be registered with each of them. If you use a join manager, there is no
need for a

DiscoveryListener

, since the join manager adds itself as a listener and
handles the registration with the lookup service.

package joinmgr;

import rmi.FileClassifierImpl;

import net.jini.lookup.JoinManager;

import net.jini.core.lookup.ServiceID;

import net.jini.discovery.LookupDiscovery;

import net.jini.core.lookup.ServiceRegistrar;

import java.rmi.RemoteException;

import net.jini.lookup.ServiceIDListener;

import net.jini.lease.LeaseRenewalManager;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.discovery.DiscoveryEvent;

import net.jini.discovery.DiscoveryListener;

/**

 * FileClassifierServer.java

 */

public class FileClassifierServer

 implements ServiceIDListener {

 public static void main(String argv[]) {

 new FileClassifierServer();

 // stay around forever

 Object keepAlive = new Object();

 synchronized(keepAlive) {

 try {

 keepAlive.wait();

 } catch(InterruptedException e) {

 // do nothing

 }

 }

 }

Join Manager

163163

 public FileClassifierServer() {

 JoinManager joinMgr = null;

 try {

 LookupDiscoveryManager mgr =

 new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,

 null /* unicast locators */,

 null /* DiscoveryListener */);

 joinMgr = new JoinManager(new cokeServer.CokeMachine(), // new FileClas-

sifierImpl(), /* service */

 null /* attr sets */,

 this /* ServiceIDListener*/,

 mgr /* DiscoveryManagement */,

 new LeaseRenewalManager());

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 }

 public void serviceIDNotify(ServiceID serviceID) {

 // called as a ServiceIDListener

 // Should save the ID to permanent storage

 System.out.println("got service ID " + serviceID.toString());

 }

} // FileClassifierServer

There are a number of other methods in

JoinManager

 that allow you to modify
the state of a service registration.

Jini 1.0 JoinManager

A version of

JoinManager

 was present in Jini 1.0. At that time it was in the

com.sun

package and no formal specification was given. Classes in the

com.sun

 packages
may be changed in later versions of Jini, or may even disappear completely. In
moving from Jini 1.0 to Jini 1.1, the

JoinManager

 classes were specified and moved
to a new package. This section describes the old version for those still using Jini 1.0.
When possible, such users should switch to Jini 1.1

Chapter 11

164

There are a number of possible constructors for

JoinManager

. This is the
simplest:

JoinManager(java.lang.Object obj,

 Entry[] attrSets,

 ServiceIDListener callback,

 LeaseRenewalManager leaseMgr)

This constructor specifies the service to be managed and its entry attributes.
The

callback

 is a listener object that will have its

serviceIDNotify()

 method called
when a new locator is discovered. This is usually used to find the value of the

ServiceID

 assigned by a lookup locator to a service. The

callback

 argument can be

null

 if the programmer has no interest in saving the

ServiceID

. The

leaseMgr

 can
also be set to

null

 and will then be created as needed.
This constructor will initiate a search for service locators belonging to the

group “public”, which is defined by a group value of the empty string

""

. There is
no constant for this, and the locators from Sun do not appear to belong to this
group, so most applications will need to follow this up immediately with a call to
search for locators belonging to any group:

JoinManager joinMgr = new JoinManager(obj, null, null, null);

joinMgr.setGroups(LookupDiscovery.ALL_GROUPS);

The second constructor is as follows:

JoinManager(java.lang.Object obj,

 Entry[] attrSets,

 java.lang.String[] groups,

 LookupLocator[] locators,

 ServiceIDListener callback,

 LeaseRenewalManager leaseMgr)

This constructor adds

groups

 and

locators

, which allow multicast searches for
locators belonging to certain groups, and also unicast lookups for known locators.

A multicast-only search for any groups would have both additional parame-
ters set to

null

:

JoinManager joinMgr = new JoinManager(obj, null,

 LookupDiscovery.ALL_GROUPS,

 null, null, null);

Join Manager

165165

On the other hand, a unicast lookup for a single known site would be done
like this:

LookupLocator[] locators = new LookupLocator[1];

locators[0] new LookupLocator("http://www.all_about_files.com");

JoinManager joinMgr = new JoinManager(obj, null,

 LookupDiscovery.NO_GROUPS,

 locators, null, null);

(This code ignores exception handling.)

For example, uploading the complete service of the

complete

 package could
be done as follows:

package joinmgr;

import complete.FileClassifierImpl;

import com.sun.jini.lookup.JoinManager;

import net.jini.core.lookup.ServiceID;

import com.sun.jini.lookup.ServiceIDListener;

import com.sun.jini.lease.LeaseRenewalManager;

import net.jini.discovery.LookupDiscovery;

/**

 * FileClassifierServer1_0.java

 */

public class FileClassifierServer1_0 implements ServiceIDListener {

 public static void main(String argv[]) {

 new FileClassifierServer1_0();

 // stay around long enough to receive replies

 try {

 Thread.currentThread().sleep(1000000L);

 } catch(java.lang.InterruptedException e) {

 // do nothing

 }

 }

 public FileClassifierServer1_0() {

 JoinManager joinMgr = null;

Chapter 11

166

 try {

 /* this is one way of doing it

 joinMgr = new JoinManager(new FileClassifierImpl(),

 null,

 this,

 new LeaseRenewalManager());

 joinMgr.setGroups(null);

 */

 /* here is another */

 joinMgr = new JoinManager(new FileClassifierImpl(),

 null,

 LookupDiscovery.ALL_GROUPS,

 null,

 this,

 new LeaseRenewalManager());

 } catch(Exception e) {

 e.printStackTrace();

 System.exit(1);

 }

 }

 public void serviceIDNotify(ServiceID serviceID) {

 System.out.println("got service ID " + serviceID.toString());

 }

} // FileClassifierServer1_0

Getting Information from JoinManager

The

JoinManager

 looks unhelpful in supplying information about the lookup loca-
tors it finds. However, this information is available by a slightly circuitous route. A
service can register a

ServiceIDListener

 to the

JoinManager

. This will be invoked
whenever a new locator is found by its

serviceIDNotify()

 method. A

ServiceID

 is
not particularly useful, so we just ignore it. However, within the

serviceIDNotify()

method we do know that a new service locator has been found, since that is the
only occasion on which it is called.

The

complete set

 of service locators can be found with the

JoinManager

’s

getJoin-

Set()

 method, which returns an array of

ServiceRegistrar

 objects. We have met this
class before: its

getLocator()

 method will return a

LookupLocator

, which has informa-
tion such as the host in

getHost()

. These classes can be put together as follows:

protected JoinManager joinmgr;

...

Join Manager

167167

joinmgr = new JoinManager(service, null,

 this, new LeaseManager());

...

public void serviceIDNotify(ServiceID serviceID) {

 ServiceRegistrar registrars = joinmgr.getJoinSet();

 for (int n = 0; n < registrar.length; n++) {

 LookupLocator locator = registrars[n].getLocator();

 String hostName = locator.getHost();

 ...

 }

}

If you want to find out which is the latest locator to be found, you will have to
cache the previous set and find which is new in the array returned. Each call to

getJoinSet()

 will return a new array.

Summary

A

JoinManager

 can be used by a server to simplify many of the aspects of locating
lookup services, registering one or more services, and renewing leases for them.

