

49

CHAPTER 5

Service Registration

T

HIS

CHAPTER

LOOKS

AT

HOW

SERVICES

REGISTER

 themselves with lookup locators
so that they can later be found by clients. From the service locator, the server
will get a

ServiceRegistrar

 object. The server will prepare a description of the
service in a

ServiceItem

 and will then call the

ServiceRegistrar

’s

register()

method with the

ServiceItem

 as a parameter. The

ServiceItem

 can contain addi-
tional information about a service in addition to its type, and this information is
stored in

Entry

 objects.

ServiceRegistrar

A server for a service finds a service locator using either a unicast lookup with a

LookupLocator

 or a multicast search using

LookupDiscovery

. In both cases, a

Service-

Registrar

 object is returned to act as a proxy for the lookup service.
The server then registers the service with the service locator using the

ServiceReg-

istrar

’s

register()

 method:

package net.jini.core.lookup;

public Class ServiceRegistrar {

 public ServiceRegistration register(ServiceItem item,

 long leaseDuration)

 throws java.rmi.RemoteException;

}

The second parameter here,

leaseDuration

, is a request for the length of time
(in milliseconds) the lookup service will keep the service registered. This request
need not be honored—the lookup service may reject it completely, or only grant a
lesser time interval. This is discussed in Chapter 7.

The first parameter is of

ServiceItem

 type.

ServiceItem

The service provider will create a

ServiceItem

 object by using the constructor,
shown here:

package net.jini.core.lookup;

Chapter 5

50

public Class ServiceItem {

 public ServiceID serviceID;

 public java.lang.Object service;

 public Entry[] attributeSets;

 public ServiceItem(ServiceID serviceID,

 java.lang.Object service,

 Entry[] attrSets);

}

Once the service provider has created the

ServiceItem

 object, it is passed into

register()

. The first parameter,

serviceID

, is set to

null

 when the service is regis-
tered for the first time. The lookup service will set a non-null value as it registers
the service. On subsequent registrations or re-registrations, this non-null value
should be used. The

serviceID

 is used as a globally unique identifier for the service.
The second parameter,

service

, is the service object that is being registered.
This object will be serialized and sent to the service locator for storage. When a
client later requests a service, this is the object it will be given. There are several
things to note about the service object:

• The object must be serializable. Some objects, such as the graphical user inter-
face

JTextArea

 object are not serializable at present and so cannot be used.

• The object is created in the service’s JVM. However, when it runs, it will do so
in the client’s JVM, so it may need to be a proxy for the actual service. For
example, the object may be able to show a set of toaster controls, but might
have to send messages across the network to the real toaster service, which
is connected to the physical toaster.

• If the service object is an RMI proxy, then the object in the

ServiceItem

 is
given by the programmer as the

UnicastRemoteObject

 for the proxy stub, not
the proxy itself. The Java runtime substitutes the proxy. This subtlety is
explored in Chapter 6.

The third parameter in the

ServiceItem

 constructor,

attrSets

, is a set of entries
giving information about the service in addition to the service object/service
proxy itself. If there is no additional information, this can be

null

.

Registration

The server attempts to register the service by calling

register()

. This may throw a

java.rmi.RemoteException

, which must be caught. The second parameter to the

Service Registration

5151

register()

 method is a request to the service locator for the length of time to store
the service. The time requested may or may not be honored.

The return value is of type

ServiceRegistration.

ServiceRegistration

The

ServiceRegistration

 object is created by the lookup service and is returned to
run in the service provider. This object acts as a proxy object that will maintain the
state information for the service object exported to the lookup service.

Actually, the

ServiceRegistration

 object can be used to make changes to the
entire

ServiceItem

 stored on the lookup service. The

ServiceRegistration

 object
maintains a

serviceID

 field, which is used to identify the

ServiceItem

 on the lookup
service. The

serviceID

 value can be retrieved by

getServiceID()

 for reuse by the
server if it needs to do so (which it should, so that it can use as the same identifier
for the service across all lookup services). These objects are shown in Figure 5-1.

Other methods can be used to change the entry attributes stored on the
lookup service, such as the following:

void addAttributes(Entry[] attrSets);

void modifyAttributes(Entry[] attrSetTemplates, Entry[] attrSets);

void setAttributes(Entry[] attrSets);

The final public method for the

ServiceRegistration

 class is

getLease()

, which
returns a

Lease

 object that allows renewal or cancellation of the lease. This is dis-
cussed in more detail in Chapter 7.

The major task of the server is then over. It will have successfully exported the
service to a number of lookup services. What the server then does depends on how
long it needs to keep the service alive or registered. If the exported service can do
everything that the service needs to do, and does not need to maintain long-term
registration, then the server can simply exit. More commonly, if the exported service

Figure 5-1. Objects in service registration

ProviderService
Lookup

object registrar

registration

Service

service

Chapter 5

52

object acts as a proxy and needs to communicate back to the service, then the server
can sleep so that it maintains the existence of the service. If the service needs to be
re-registered before timeout occurs, the server can also sleep in this situation.

The SimpleService Program

A unicast server that exports its service and does nothing else is shown in the fol-
lowing

SimpleService

 program:

package basic;

import net.jini.core.discovery.LookupLocator;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceItem;

import net.jini.core.lookup.ServiceRegistration;

import java.io.Serializable;

/**

 * SimpleService.java

 */

public class SimpleService implements Serializable {

 static public void main(String argv[]) {

 new SimpleService();

 }

 public SimpleService() {

 LookupLocator lookup = null;

 ServiceRegistrar registrar = null;

 try {

 lookup = new LookupLocator("jini://localhost");

 } catch(java.net.MalformedURLException e) {

 System.err.println("Lookup failed: " + e.toString());

 System.exit(1);

 }

 try {

 registrar = lookup.getRegistrar();

 } catch (java.io.IOException e) {

 System.err.println("Registrar search failed: " + e.toString());

 System.exit(1);

Service Registration

5353

 } catch (java.lang.ClassNotFoundException e) {

 System.err.println("Registrar search failed: " + e.toString());

 System.exit(1);

 }

 // register ourselves as service, with no serviceID

 // or set of attributes

 ServiceItem item = new ServiceItem(null, this, null);

 ServiceRegistration reg = null;

 try {

 // ask to register for 10,000,000 milliseconds

 reg = registrar.register(item, 10000000L);

 } catch(java.rmi.RemoteException e) {

 System.err.println("Register exception: " + e.toString());

 }

 System.out.println("Service registered");

 // we can exit here if the exported service object can do

 // everything, or we can sleep if it needs to communicate

 // to us or we need to renew a lease later

 //

 // Typically, we will need to renew a lease later

 }

} // SimpleService

Running the SimpleService

The

SimpleService

 program needs to be compiled and run with

jini-core.jar

 in its

CLASSPATH

. When run, it will attempt to connect to the service locator, so obviously
one needs to be running on the machine specified in order for this to happen. Oth-
erwise, it will throw an exception and terminate.

The instance data for the service object is transferred in serialized form
across socket connections. This instance data is kept in this serialized form by
the lookup services. Later, when a client asks for the service to be reconstituted,
it will use this instance data and also will need the class files. At this point, the
class files will also need to be transferred, probably by an HTTP server. There is
no need for additional RMI support services, such as

rmiregistry

 or

rmid

, since
all registration is done by the

register()

method.

Chapter 5

54

Information from the ServiceRegistration

The

ServiceRegistrar

 object’s

register()

 method is used to register the service,
and in doing so returns a

ServiceRegistration

 object. This can be used to give
information about the registration itself. The relevant methods are these:

ServiceID getServiceID();

Lease getLease();

The service ID can be stored by the application if it is going to re-register again
later. The lease object can be used to control the lease granted by the lookup loca-
tor, and it will be discussed in more detail in Chapter 7. For now, we can just use it
to find out how long the lease has been granted for by using its

getExpiration()

method:

long duration = reg.getLease().getExpiration() -

 System.currentTimeMillis();

System.out.println("Lease expires at: " +

 duration +

 " milliseconds from now");

Service ID

A service is unique in all the world. It runs on a particular machine and performs
certain tasks. However, it will probably register itself with many lookup services.
It should have the same “identity” on all of these. In addition, if either the service
or one of these locators crashes or restarts, then this identity should be the same
as before.

The

ServiceID

 plays the role of unique identifier for a service. It is a 128-bit
number generated in a pseudo-random manner and is effectively unique—the
chance that the generator might duplicate this number is vanishingly small. Ser-
vices do not generate this identifier because the actual algorithm is not a public
method of any class. Instead, a lookup service should be used. When a service
needs a new identifier, it should register with a lookup service using a

null

 service
ID. The lookup service will then return a value.

The first time a service starts, it should ask for a service ID from the first
lookup service it registers with. It should reuse this for registration with every
other lookup service from then on. If it crashes and restarts, then it should use the
same service ID again, which means that it should save the ID in persistent storage
and retrieve it on restarting. The previous code is not well-behaved in this respect.

Service Registration

5555

Entries

A server can announce a number of entry attributes when it registers a service
with a lookup service. It does so by preparing an array of

Entry

 objects and passing
them into the

ServiceItem

 used in the

register()

 method of the registrar. There is
no limitation to the amount of information the server can include about the ser-
vice, and it is better if the server gives more information than less; in later searches
by clients, each entry is treated as though it were

OR

’ed with the other entries. In
other words, the more entries that are given by the server, the more information is
available to clients, and the greater the chance of matching a client’s requirements.

For example, suppose we have a coffee machine on the seventh level in room
728 of our building, which is known as both “GP South Building” and “General
Purpose South Building.” Information such as this, and general information about
the coffee machine, can be encapsulated in the convenience classes

Location

 and

Comment from the net.jini.lookup.entry package. If this were on our network as a
service, it would advertise itself as follows:

import net.jini.lookup.entry.Location;

import net.jini.lookup.entry.Comment;

Location loc1 = new Location("7", "728",

 "GP South Building");

Location loc2 = new Location("7", "728",

 "General Purpose South Building");

Comment comment = new Comment("DSTC coffee machine");

Entry[] entries = new Entry[] {loc1, loc2, comment};

ServiceItem item = new ServiceItem(..., ..., entries);

registrar.register(item, ...);

Summary

A service uses the ServiceRegistrar object, which is returned as a proxy from a
locator, to register itself with that locator. The server prepares a ServiceItem that
contains a service object and a set of entries, and the service object may be a proxy
for the real service. The server registers this service and entry information using
the register() method of the ServiceRegistrar object.

Information about a registration is returned as a ServiceRegistration object,
which may be queried for information such as the lease and its duration.

