
387

■ ■ ■

C H A P T E R 2 5

Activation

Many of the examples in earlier chapters use RMI/Jeri proxies for services. These services
live within a server whose principal task is to keep the service alive and registered with lookup
services. If the server fails to renew leases, then lookup services will eventually discard the
proxy; if the server fails to keep itself and its service alive, then the service will not be available
when a client wants to use it.

This results in a server and a service that most of the time will be idle, probably swapped
out to disk, but still using virtual memory. Java memory requirements on the server side can be
enormous. From JDK 1.2 onward, an extension to RMI called activation allows an idle object to
be in a “dormant” state and brought to life when needed. In this way, the object does not
occupy virtual memory while idle. Of course, another process needs to be alive to restore such
objects, and RMI supplies the daemons rmid (in Jini 1.2) and phoenix (in Jini 2.0) to manage
this. In effect, rmid/phoenix acts as another virtual memory manager as it stores information
about dormant Java objects in its own files and restores them from there as needed.

There are serious limitations to rmid and phoenix: they are Java program themselves, and
when running they also use enormous amounts of memory. So it only makes sense to use them
when you expect to be running a number of largely idle services on the same machine. When a
service is brought to life, or activated, a new JVM may be started to run the object. This again
increases memory use.

If memory use is the only concern, then a variety of other systems, such as echidna, which
run multiple applications within a single JVM, may be adequate to solve memory issues.
However, RMI activation is also designed to work with distributed objects, and it allows JVMs
to hold remote references to objects that are no longer active. Instead of throwing a remote
exception on trying to access these objects, the activation system tries to resurrect the object
using rmid or phoenix to give a valid (and new) reference. Of course, if it fails to do this, it will
throw an exception anyway.

The standard RMI activation system is supported by Jini 2.0, in the same way as it supports
JRMP. But with the advent of Jeri, Jini 2.0 has a new version of activation with the phoenix acti-
vation server, which we’ll cover in the next section. In the rest of the chapter, we’ll look at how
to build and servers and services that use the activation system. We also look at more subtle
issues such as nonlazy activation and how a system that is “reborn” each time can save state. If
a service uses activation, then it will probably not be present to renew leases or to be discovered.
We look at two additional Jini services, a LeaseRenewalService and a LookupDiscovertService,
which can overcome these problems.

7168ch25.fm Page 387 Thursday, August 17, 2006 11:34 AM

388 C H A P T E R 2 5 ■ A C T I V A T I O N

The phoenix Activation Server
phoenix replaces rmid in Jini 2.0. It comes in a variety of versions, depending on the protocol it
supports. For example, if the services use Jeri, then phoenix should be configured to use Jeri
also. Similarly, if the services use JRMP, then so should phoenix.

phoenix can be started by using the ServiceStarter or by shell scripts/batch files. Example
scripts are given in the Jini distribution under the source/vob/jive/src/com/sun/jini/example/
hello/scripts/ directory. For example, here is the shell script jeri-phoenix.sh, which starts
the Jeri version of phoenix under Unix:

host=`hostname`
java -Djava.security.manager= \
 -Djava.security.policy=config/phoenix.policy \
 -Djava.rmi.server.codebase=http://$host:8080/phoenix-dl.jar \
 -DserverHost=$host \
 -jar lib/phoenix.jar \
 config/jeri-phoenix.config

And here is the batch file jrmp-phoenix.bat, which starts the Jeri version of phoenix under
Windows:

java -Djava.security.manager= ^
 -Djava.security.policy=config\phoenix.policy ^
 -Djava.rmi.server.codebase=http://%computername%:8080/phoenix-dl.jar ^
 -DserverHost=%computername% ^
 -jar lib\phoenix.jar ^
 config\jrmp-phoenix.config

Each script file references a configuration script. A typical script such as config/jeri-
phoenix.config contains the following:

com.sun.jini.phoenix {
 persistenceDirectory = "lib${/}phoenix-log";
 groupConfig = new String[] { "config${/}jeri-phoenix-group.config" };
}

which states the directory to store the activation log files and also a group configuration file,
such as jeri-phoenix-group.config.

This file defines the protocol that will be used by phoenix (here, Jeri):

import com.sun.jini.phoenix.AccessILFactory;
import net.jini.jeri.BasicJeriExporter;
import net.jini.jeri.tcp.TcpServerEndpoint;
com.sun.jini.phoenix {
 instantiatorExporter =
 new BasicJeriExporter(TcpServerEndpoint.getInstance(0),
 new AccessILFactory());
}

7168ch25.fm Page 388 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 389

There is a little trap in running phoenix: it will create a new virtual machine for each
different group. This new virtual machine will require several files, such as phoenix-init.jar,
in its classpath. So it is not enough to specify phoenix.jar for phoenix—the phoenix-init.jar
file must be in the classpath for any virtual machines created by phoenix, and this must be done
for each activatable service. An alternative to explicitly setting the classpath is to copy the
phoenix-init.jar file to the Java jre lib directory (as you probably did with jsk-policy.jar),
but this approach is not really recommended. If the classpath is not set up, then when phoenix
starts a new JVM, you will see errors such as the following:

Group-01: class not found ActivationInitGroup

The Sun documentation recommends including sharedvm.jar in the classpath, and the
directory for this .jar file should also contain phoenix-init.jar and jsk-platform.jar.

A Service Using Activation
The major concepts in activation are the activatable object itself (which extends java.rmi.
activation.Activatable) and the environment in which it runs, an ActivationGroup. A JVM
may have an activation group associated with it. If an object needs to be activated and there is
already a JVM running its group, then it is restarted within that JVM. Otherwise, a new JVM is
started. An activation group may hold a number of cooperating objects.

In this section, we’ll look in turn at building a service, building a server, and how to run
these using the activation system.

Service
Making an object into an activatable object requires registering the object with the activation
system by exporting it and using a special two-argument constructor that will be called when
the object needs to be reconstructed. The constructor looks like this:

public ActivatableImpl(ActivationID id, MarshalledObject data)
 throws RemoteException {
 ...
}

■Note The use of the marshalled data is discussed later in this chapter.

There is an important conceptual change from nonactivatable services. In a nonactivat-
able service, the server is able to create the service. In an activation system, the original server
could have terminated and will not be available to start the service; instead, the activation
server is responsible for starting the service. But the service still has to be exported, and it can’t
rely on the activation server to do that (e.g., it would have no knowledge of the protocol, such
as Jeri, JRMP, or IIOP), so the service has to export itself. That is, within the constructor, the
service must find an exporter and export itself. This is a change from “standard” activation as

7168ch25.fm Page 389 Thursday, August 17, 2006 11:34 AM

390 C H A P T E R 2 5 ■ A C T I V A T I O N

used in Jini 1.2, where many things were hidden from the programmer and it was not necessary
to pay attention to the exporter.

That change in turn raises a problem: in a nonactivatable service, the server creates the
service, gets a proxy by exporting the service, and then does things like register the proxy with
lookup services. But if the export operation is buried within the service constructor, then a
server cannot readily access it. This is the role of the ProxyAccessor interface: it supplies a
method that a server can call on the service to give the proxy. Unless the service can do every-
thing itself, it will usually need to implement this interface. (An exception to this occurs when
the service is its own proxy; it just needs to be Serializable in that case.)

With these changes in place, the file classifier becomes

package activation;
import net.jini.export.*;
import net.jini.jeri.BasicJeriExporter;
import net.jini.jeri.BasicILFactory;
import net.jini.jeri.tcp.TcpServerEndpoint;
import net.jini.activation.ActivationExporter;
import net.jini.jrmp.JrmpExporter;
import java.rmi.activation.ActivationID;
import java.rmi.MarshalledObject;
import net.jini.export.ProxyAccessor;
import common.MIMEType;
import common.FileClassifier;
import rmi.RemoteFileClassifier;
import java.rmi.Remote;
/**
 * FileClassifierImpl.java
 */
public class FileClassifierImpl implements RemoteFileClassifier,
 ProxyAccessor {
 private Remote proxy;
 public MIMEType getMIMEType(String fileName)
 throws java.rmi.RemoteException {
 if (fileName.endsWith(".gif")) {
 return new MIMEType("image", "gif");
 } else if (fileName.endsWith(".jpeg")) {
 return new MIMEType("image", "jpeg");
 } else if (fileName.endsWith(".mpg")) {
 return new MIMEType("video", "mpeg");
 } else if (fileName.endsWith(".txt")) {
 return new MIMEType("text", "plain");
 } else if (fileName.endsWith(".html")) {
 return new MIMEType("text", "html");
 } else
 // fill in lots of other types,
 // but eventually give up and
 return new MIMEType(null, null);
 }

7168ch25.fm Page 390 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 391

 public FileClassifierImpl(ActivationID activationID, MarshalledObject data)
 throws java.rmi.RemoteException {
 Exporter exporter =
 new ActivationExporter(activationID,
 new BasicJeriExporter(TcpServerEndpoint.getInstance(0),
 new BasicILFactory(),
 false, true));

 proxy = (Remote) exporter.export(this);
 }
 // Implementation for ProxyAccessor
 public Object getProxy() {
 return proxy;
 }
} // FileClassifierImpl

This listing makes explicit use of an exporter. Later we’ll consider how managing the
exporter could be done using a configuration.

Server
The server doesn’t actually start the service—that is the task of a process such as phoenix. The
server has to set up the parameters for the service so that phoenix will know how to handle it.
These parameters may include the following:

• The activation group(s) the service will belong to.

• The security policy to run services in a particular activation group.

• The classpath for phoenix to run the service in a new JVM. Note that this classpath
cannot be one that is relative to the server, since it will be used by phoenix.

• The codebase for the client to find the service (needed if the service registers itself with
lookup services).

A service is run within an activation group. When a group is run in a new virtual machine,
it may need explicit command-line options (such as setting the classpath or the stack size) and
properties (such as a security policy). Of course, properties can be set as command-line argu-
ments, too, but Java allows them to be set separately. For example, the command-line
arguments can be set as follows:

String[] options = {"-classpath",
 "activation.FileClassifierServer.jar"};
CommandEnvironment commEnv =
 new CommandEnvironment(null, options);

The group parameters are set using an ActivationGroupDesc, which takes both a
Properties list and a CommandEnvironment:

7168ch25.fm Page 391 Thursday, August 17, 2006 11:34 AM

392 C H A P T E R 2 5 ■ A C T I V A T I O N

String[] options = {"-classpath",
 "activation.FileClassifierServer.jar"};
ActivationGroupDesc.CommandEnvironment commEnv =
 new CommandEnvironment(null, options);
Properties props = new Properties();
props.put("java.security.policy",
 SECURITY_POLICY_FILE);
props.put("java.rmi.server.codebase",
 "http://192.168.1.13/classes/activation.FileClassifierServer-dl.jar");
ActivationGroupDesc group = new ActivationGroupDesc(props, commEnv);

■Note Although the classpath shown references only the classes required for the server, in practice you
may need to add more. For example, phoenix requires phoenix-init.jar, and other Jini class files

may be required, too. The easiest way to work out what is required is to run the server and

observe what phoenix complains about. Alternatively, include sharedvm.jar, which points to all

likely .jar files that may be required by Sun’s tools.

The next steps are to register the group and get a group ID from that. Then an activation
description for the service is constructed that includes the group ID and the name of the
service’s class file. (Two other parameters are discussed later.) This service can then be regis-
tered with phoenix. At this point, the service is with phoenix, but it has not been initialized, so
its constructor has not been called and there is no proxy for it. This means the service cannot
yet be registered with a lookup service and cannot yet be found by any client. How, then, can
you force it to be constructed? At this point, the server has an activation ID for the service from
the registration. It uses this to ask phoenix to activate the service with the activate() method.
The code looks like this:

ActivationGroupDesc group = new ActivationGroupDesc(props, commEnv);
ActivationGroupID groupID = actSys.registerGroup(group);
ActivationGroup.createGroup(groupID, group, 0);
String codebase = "...";
MarshalledObject data = null;
ActivationDesc desc = null;
desc = new ActivationDesc(groupID,
 "activation.FileClassifierImpl",
 codebase, data, true);
ActivationID aid = actSys.registerObject(desc);
Remote proxy = (Remote) aid.activate(true);

The server now has a proxy that it can register with lookup services. The server can termi-
nate, since any calls on the service will be handled by phoenix, which will construct the service
whenever a call to that service is made by a client. (I’ll address later how the registration with
lookup services is kept alive. If this server terminates, then it cannot do any lease renewals.)

7168ch25.fm Page 392 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 393

The file classifier server that uses an activatable service is as follows:

package activation;
//import rmi.RemoteFileClassifier;
import java.rmi.Remote;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceRegistration;
import net.jini.core.lease.Lease;
import java.rmi.RMISecurityManager;
import java.rmi.MarshalledObject;
import java.rmi.activation.ActivationDesc;
import java.rmi.activation.ActivationGroupDesc;
import java.rmi.activation.ActivationGroupDesc.CommandEnvironment;
import java.rmi.activation.Activatable;
import java.rmi.activation.ActivationGroup;
import java.rmi.activation.ActivationGroupID;
import java.rmi.activation.ActivationSystem;
import java.rmi.activation.ActivationID;
import java.util.Properties;
import java.rmi.activation.UnknownGroupException;
import java.rmi.activation.ActivationException;
import java.rmi.RemoteException;
/**
 * FileClassifierServer.java
 */
public class FileClassifierServer implements DiscoveryListener {
 static final protected String SECURITY_POLICY_FILE =
 "/home/httpd/html/java/jini/tutorial/policy.all";
 static final protected String CODEBASE =
 "http://192.168.1.13/classes/activation.FileClassifierServer-dl.jar";

 // protected FileClassifierImpl impl;
 protected Remote proxy;

 public static void main(String argv[]) {
 new FileClassifierServer(argv);
 // stick around while lookup services are found
 try {
 Thread.sleep(100000L);
 } catch(InterruptedException e) {
 // do nothing
 }
 // the server doesn't need to exist anymore
 System.exit(0);

7168ch25.fm Page 393 Thursday, August 17, 2006 11:34 AM

394 C H A P T E R 2 5 ■ A C T I V A T I O N

 }
 public FileClassifierServer(String[] argv) {
 // install suitable security manager
 System.setSecurityManager(new RMISecurityManager());
 ActivationSystem actSys = null;
 try {
 actSys = ActivationGroup.getSystem();
 } catch(ActivationException e) {
 e.printStackTrace();
 System.exit(1);
 }
 // Install an activation group
 String[] options = {"-classpath",
 "activation.FileClassifierServer-act.jar:phoenix-
init.jar:jini-ext.jar"};
 CommandEnvironment commEnv =
 new CommandEnvironment(null, options);
 Properties props = new Properties();
 props.put("java.security.policy",
 SECURITY_POLICY_FILE);
 ActivationGroupDesc group = new ActivationGroupDesc(props, commEnv);
 ActivationGroupID groupID = null;
 try {
 groupID = actSys.registerGroup(group);
 } catch(RemoteException e) {
 e.printStackTrace();
 System.exit(1);
 } catch(ActivationException e) {
 e.printStackTrace();
 System.exit(1);
 }
 String codebase = CODEBASE;
 MarshalledObject data = null;
 ActivationDesc desc = null;
 desc = new ActivationDesc(groupID,
 "activation.FileClassifierImpl",
 codebase, data, true);
 ActivationID aid = null;
 try {
 aid = actSys.registerObject(desc);
 } catch(RemoteException e) {
 e.printStackTrace();
 System.exit(1);
 } catch(ActivationException e) {
 e.printStackTrace();
 System.exit(1);
 }

7168ch25.fm Page 394 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 395

 try {
 proxy = (Remote) aid.activate(true);
 } catch(UnknownGroupException e) {
 e.printStackTrace();
 System.exit(1);
 } catch(ActivationException e) {
 e.printStackTrace();
 System.exit(1);
 } catch(RemoteException e) {
 e.printStackTrace();
 System.exit(1);
 }

 LookupDiscovery discover = null;
 try {
 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);
 } catch(Exception e) {
 System.err.println(e.toString());
 System.exit(1);
 }
 discover.addDiscoveryListener(this);
 }

 public void discovered(DiscoveryEvent evt) {
 ServiceRegistrar[] registrars = evt.getRegistrars();
 for (int n = 0; n < registrars.length; n++) {
 ServiceRegistrar registrar = registrars[n];
 // export the proxy service
 ServiceItem item = new ServiceItem(null,
 proxy,
 null);
 ServiceRegistration reg = null;
 try {
 reg = registrar.register(item, Lease.FOREVER);
 } catch(java.rmi.RemoteException e) {
 System.err.print("Register exception: ");
 e.printStackTrace();
 // System.exit(2);
 continue;
 }
 try {
 System.out.println("service registered at " +
 registrar.getLocator().getHost());
 } catch(Exception e) {
 }
 }
 }

7168ch25.fm Page 395 Thursday, August 17, 2006 11:34 AM

396 C H A P T E R 2 5 ■ A C T I V A T I O N

 public void discarded(DiscoveryEvent evt) {
 }
} // FileClassifierServer

Running the Service
The service and the server must be compiled as usual. Nonactivatable services just require
classes for the client and for the server. For activatable services, it is more complex: classes are
required for the client, for the start-up server, and for phoenix.

The classes that are required by the client must be copied to an HTTP server. In this case,
it is only the class file rmi/RemoteFileClassifier.class, if a protocol such as Jeri is used with
proxy generation at runtime. If JRMP was used, the rmic compiler would need to be run on
activation/FileClassifierImpl.class and the resultant proxy would also need to be copied to
the HTTP server.

The classes needed by the start-up server are the file classifier server and the classes it
needs. This gets a bit tricky. The server doesn’t actually create the service at any time, so it
doesn’t need the class file for FileClassifierImpl. But when it activates the service, phoenix
will create the service and return a proxy for it. This proxy will implement
RemoteFileClassifier. So the server will need the class files to support a RemoteFileClassifier
even though it doesn’t explicitly create one. The files could be either in the server’s classpath or
in its codebase. This server uses the codebase as information in the proxy when it registers the
service with a lookup service, so you don’t want to put extra stuff in there for downloading to a
client. Instead, the class files may be better off in the server’s classpath.

• common/MIMEType.class

• common/FileClassifier.class

• rmi/RemoteFileClassifier.class

• activation/FileClassifierServer.class

Finally, the classes needed by phoenix are FileClassifierImpl and the classes it depends
on, but not the start-up server:

• common/MIMEType.class

• common/FileClassifier.class

• rmi/RemoteFileClassifier.class

• activation/FileClassifierImpl.class

Before starting the service provider, a phoenix process must be set running on the same
machine as the service provider. An HTTP server must be running on a machine as specified by
the codebase property on the service. The service provider can then be started. This will register
the service with phoenix and copy a proxy object to any lookup services found. The server can
then terminate (as mentioned earlier, this causes the service’s lease to expire, but techniques
to handle this are described later).

In summary, typically three processes are involved in getting an activatable service
running:

7168ch25.fm Page 396 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 397

• The service provider, which specifies information about the service to phoenix.

• phoenix, which must be running on the same machine as the service provider and must
be started before the service provider. It creates the service on demand.

• An HTTP server, which can be on a different machine and is pointed to by the codebase.

While the service remains registered with lookup services, clients can download its proxy.
The service will be created on demand by phoenix. You need to run the server only once, since
phoenix keeps information about the service in it own log files.

An Ant file to build, deploy, and run the service (but not phoenix) is activation.
FileClassifierServer.xml:

<project name="activation.FileClassifierServer" default="usage">
 <!-- Inherits properties
 jini.home
 jini.jars
 src
 dist
 build
 httpd.classes
 -->
 <!-- files for this project -->
 <property name="src.files"
 value="common/MIMEType.java,
 common/FileClassifier.java,
 rmi/RemoteFileClassifier.java,
 activation/FileClassifierImpl.java
 activation/FileClassifierServer.java
 "/>
 <property name="class.files"
 value="
 common/MIMEType.class,
 common/FileClassifier.class,
 activation/FileClassifierServer.class
 "/>
 <property name="class.files.dl"
 value="
 rmi/RemoteFileClassifier.class
 "/>
 <property name="class.files.act"
 value="common/MIMEType.class,
 common/FileClassifier.class,
 rmi/RemoteFileClassifier.class,
 activation/FileClassifierImpl.class
 "/>
 <!-- <property name="no-dl" value="false"/> -->
 <!-- derived names - may be changed -->

7168ch25.fm Page 397 Thursday, August 17, 2006 11:34 AM

398 C H A P T E R 2 5 ■ A C T I V A T I O N

 <property name="jar.file"
 value="${ant.project.name}.jar"/>
 <property name="jar.file.dl"
 value="${ant.project.name}-dl.jar"/>
 <property name="jar.file.act"
 value="${ant.project.name}-act.jar"/>
 <property name="main.class"
 value="${ant.project.name}"/>
 <property name="codebase"
 value="http://${localhost}/classes/${jar.file.dl}"/>
 <property name="jini.jars.start" value="${jini.jars}:${jini.home}/lib/
start.jar"/>
 <!-- targets -->
 <target name="all" depends="compile"/>
 <target name="compile">
 <javac destdir="${build}" srcdir="${src}"
 classpath="${jini.jars.start}"
 target="1.2"
 includes="${src.files}">
 </javac>
 </target>
 <target name="dist" depends="compile"
 description="generate the distribution">
 <jar jarfile="${dist}/${jar.file}"
 basedir="${build}"
 includes="${class.files}"/>
 <jar jarfile="${dist}/${jar.file.act}"
 basedir="${build}"
 includes="${class.files.act}"/>
 <antcall target="dist-jar-dl"/>
 </target>
 <target name="dist-jar-dl" unless="no-dl">
 <jar jarfile="${dist}/${jar.file.dl}"
 basedir="${build}"
 includes="${class.files.dl}"/>
 </target>
 <target name="build" depends="dist,compile"/>
 <target name="run" depends="build">
 <java classname="${main.class}"
 fork="true"
 classpath="${jini.jars}:${dist}/${jar.file}">
 <jvmarg value="-Djava.security.policy=${res}/policy.all"/>
 <jvmarg value="-Djava.rmi.server.codebase=${codebase}"/>
 </java>
 </target>
 <target name="deploy" depends="dist" unless="no-dl">
 <copy file="${dist}/${jar.file.dl}"

7168ch25.fm Page 398 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 399

 todir="${httpd.classes}"/>
 <copy file="${dist}/${jar.file}"
 todir="${httpd.classes}"/>
 </target>
</project>

Nonlazy Services
The services just discussed are lazy services, meaning they are activated on demand when their
methods are called. This reduces memory use at the expense of starting up a new JVM when
required. Some services need to be continuously alive, but can still benefit from the log mech-
anism of phoenix. If phoenix crashes and is restarted, or the machine is rebooted and phoenix
restarts, then it is able to use its log files to restart any “active” services registered with it, as well
as restore lazy services on demand. Putting even active services under the activation system
can help programmers avoid messing around with boot configuration files, by just ensuring
that phoenix is started on reboot.

Maintaining State
An activatable object is created afresh each time a method is called on it, using its two-
argument constructor. As a result, the object is created in the same state on each activation.
However, method calls on objects (apart from get...() methods) usually result in a change of
state of the object. Activatable objects will need some way of reflecting this change on each
activation, and this is typically done by saving and restoring state using a disk file.

When an object is activated, one of the parameters passed to it is a MarshalledObject
instance. This is the same object that was passed to the activation system in the ActivationDesc
parameter to ActivationSystem.registerObject(). This object does not change between
different activations, so it cannot hold changing state, but only data that is fixed for all activa-
tions. A simple use for MarshalledObject is to hold the name of a file that can be used for state.
Then on each activation, the object can restore state by reading stored information, and on
each subsequent method call that changes state, the information in the file can be overwritten.

The mutable file classifier, which was discussed in Chapter 16, can be sent addType() and
removeType() messages. It begins with a given set of MIME type/file extension mappings. State
here is very simple: it just stores all the file extensions and their corresponding MIME type in a
Map. If you turn this service into an activatable object, you store the state by just storing the
map. The state can be saved to disk using ObjectOutputStream.writeObject() and retrieved by
ObjectInputStream.readObject(). More complex cases might require more complex storage
methods.

The very first time a mutable file classifier starts on a particular host, it should build its
initial state file. A variety of methods that can be used to achieve this. For example, if the state
file does not exist, then the first activation could detect this and construct the initial state at
that time. Alternatively, a method such as init() could be defined, to be called once after the
object has been registered with the activation system.

The “normal” way of instantiating an object—through a constructor—doesn’t work too
well with activatable objects. If a constructor for a class doesn’t start by calling another
constructor with this(...) or super(...), then the no-argument superclass constructor
super() is called. But the class Activatable doesn’t have a no-args constructor, so you can’t

7168ch25.fm Page 399 Thursday, August 17, 2006 11:34 AM

400 C H A P T E R 2 5 ■ A C T I V A T I O N

subclass from Activatable and have a constructor such as FileClassifierMutable(String
stateFile) that doesn’t use the activation system. You can avoid this problem by not inheriting
from Activatable, and register explicitly with the activation system with the following, for
example:

public FileClassifierMutable(ActivationID id,
 MarshalledObject data) throws java.rmi.RemoteException {
 Activatable.exportObject(this, id, 0); // continue with
 instantiation

This is a bit clumsy in use, as you create an object solely to build up initial state, and then
discard it because the activation system will re-create it on demand.

The technique adopted in this example is to create initial state if the attempt to restore
state from the state file fails for any reason as the object is activated. This is done in the
restoreMap() method, which is called from the constructor FileClassifierMutable
(ActivationID id, MarshalledObject data). The name of the file is extracted from the
marshalled object passed in as a parameter.

package activation;
import java.io.*;
import java.rmi.activation.Activatable;
import java.rmi.activation.ActivationID;
import java.rmi.MarshalledObject;
import java.rmi.Remote;
import java.rmi.activation.ActivationID;
import net.jini.core.event.RemoteEventListener;
import net.jini.core.event.RemoteEvent;
import net.jini.core.event.EventRegistration;
import java.rmi.RemoteException;
import net.jini.core.event.UnknownEventException ;
import net.jini.export.ProxyAccessor;
import net.jini.export.*;
import net.jini.jeri.BasicJeriExporter;
import net.jini.jeri.BasicILFactory;
import net.jini.jeri.tcp.TcpServerEndpoint;
import net.jini.activation.ActivationExporter;
import javax.swing.event.EventListenerList;
import common.MIMEType;
import common.MutableFileClassifier;
import mutable.RemoteFileClassifier;
import java.util.Map;
import java.util.HashMap;
/**
 * FileClassifierMutable.java
 */
public class FileClassifierMutable implements RemoteFileClassifier,
 ProxyAccessor {
 private Remote proxy;

7168ch25.fm Page 400 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 401

 /**
 * Map of String extensions to MIME types
 */
 private Map map = new HashMap();
 /**
 * Permanent storage for the map while inactive
 */
 private String mapFile;
 /**
 * Listeners for change events
 */
 private EventListenerList listenerList = new EventListenerList();
 public MIMEType getMIMEType(String fileName)
 throws java.rmi.RemoteException {
 System.out.println("Called with " + fileName);
 MIMEType type;
 String fileExtension;
 int dotIndex = fileName.lastIndexOf('.');
 if (dotIndex == -1 || dotIndex + 1 == fileName.length()) {
 // can't find suitable suffix
 return null;
 }
 fileExtension= fileName.substring(dotIndex + 1);
 type = (MIMEType) map.get(fileExtension);
 return type;
 }
 public void addType(String suffix, MIMEType type)
 throws java.rmi.RemoteException {
 map.put(suffix, type);
 fireNotify(MutableFileClassifier.ADD_TYPE);
 saveMap();
 }
 public void removeType(String suffix)
 throws java.rmi.RemoteException {
 if (map.remove(suffix) != null) {
 fireNotify(MutableFileClassifier.REMOVE_TYPE);
 saveMap();
 }
 }
 public EventRegistration addRemoteListener(RemoteEventListener listener)
 throws java.rmi.RemoteException {
 listenerList.add(RemoteEventListener.class, listener);
 return new EventRegistration(0, this, null, 0);
 }
 // Notify all listeners that have registered interest for
 // notification on this event type. The event instance
 // is lazily created using the parameters passed into
 // the fire method.

7168ch25.fm Page 401 Thursday, August 17, 2006 11:34 AM

402 C H A P T E R 2 5 ■ A C T I V A T I O N

 protected void fireNotify(long eventID) {
 RemoteEvent remoteEvent = null;

 // Guaranteed to return a non-null array
 Object[] listeners = listenerList.getListenerList();

 // Process the listeners last to first, notifying
 // those that are interested in this event
 for (int i = listeners.length - 2; i >= 0; i -= 2) {
 if (listeners[i] == RemoteEventListener.class) {
 RemoteEventListener listener = (RemoteEventListener) listeners[i+1];
 if (remoteEvent == null) {
 remoteEvent = new RemoteEvent(this, eventID,
 0L, null);
 }
 try {
 listener.notify(remoteEvent);
 } catch(UnknownEventException e) {
 e.printStackTrace();
 } catch(RemoteException e) {
 e.printStackTrace();
 }
 }
 }
 }
 /**
 * Restore map from file.
 * Install default map if any errors occur
 */
 public void restoreMap() {
 try {
 FileInputStream istream = new FileInputStream(mapFile);
 ObjectInputStream p = new ObjectInputStream(istream);
 map = (Map) p.readObject();

 istream.close();
 } catch(Exception e) {
 e.printStackTrace();
 // restoration of state failed, so
 // load a predefined set of MIME type mappings
 map.put("gif", new MIMEType("image", "gif"));
 map.put("jpeg", new MIMEType("image", "jpeg"));
 map.put("mpg", new MIMEType("video", "mpeg"));
 map.put("txt", new MIMEType("text", "plain"));
 map.put("html", new MIMEType("text", "html"));

 this.mapFile = mapFile;

7168ch25.fm Page 402 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 403

 saveMap();
 }
 }
 /**
 * Save map to file.
 */
 public void saveMap() {
 try {
 FileOutputStream ostream = new FileOutputStream(mapFile);
 ObjectOutputStream p = new ObjectOutputStream(ostream);
 p.writeObject(map);
 p.flush();
 ostream.close();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 public FileClassifierMutable(ActivationID activationID,
 MarshalledObject data)
 throws java.rmi.RemoteException {
 Exporter exporter =
 new ActivationExporter(activationID,
 new BasicJeriExporter(TcpServerEndpoint.getInstance(0),
 new BasicILFactory(),
 false, true));

 proxy = (Remote) exporter.export(this);
 try {
 mapFile = (String) data.get();
 } catch(Exception e) {
 e.printStackTrace();
 }
 restoreMap();
 }
 // Implementation for ProxyAccessor
 public Object getProxy() {
 return proxy;
 }
} // FileClassifierMutable

The difference between the server for this service and the previous one is that you now
have to prepare a marshalled object for the state file and register it with the activation system.
Here the file name is hard-coded, but it could be given as a command-line argument (like
services such as reggie do). I provide only the section of code relating to the marshalled object
as that is all that changes from the previous server.

7168ch25.fm Page 403 Thursday, August 17, 2006 11:34 AM

404 C H A P T E R 2 5 ■ A C T I V A T I O N

static final protected String CODEBASE =
 "http://192.168.1.13/classes/activation.FileClassifierServer-dl.jar";
 static final protected String LOG_FILE = "/tmp/file_classifier";
 String codebase = CODEBASE;
 MarshalledObject data = null;
 // set a log file for the service
 try {
 data = new MarshalledObject(LOG_FILE);
 } catch(java.io.IOException e) {
 e.printStackTrace();
 }
 ActivationDesc desc = null;
 desc = new ActivationDesc(groupID,
 "activation.FileClassifierImpl",
 codebase, data, true);

An Ant file for this server is activation.FileClassifierServerMutable.xml. It differs from
the previous Ant file in the files used, so only these are given:

 <!-- files for this project -->
 <property name="src.files"
 value="common/MIMEType.java,
 common/FileClassifier.java,
 rmi/RemoteFileClassifier.java,
 mutable/RemoteFileClassifier.java,
 activation/FileClassifierMutable.java
 activation/FileClassifierServerMutable.java
 "/>
 <property name="class.files"
 value="
 common/MIMEType.class,
 common/FileClassifier.class,
 activation/FileClassifierServerMutable.class
 "/>
 <property name="class.files.dl"
 value="
 rmi/RemoteFileClassifier.class
 "/>
 <property name="class.files.act"
 value="common/MIMEType.class,
 common/FileClassifier.class,
 rmi/RemoteFileClassifier.class,
 activation/FileClassifierMutable.class
 "/>

The example presented here uses a simple way to store state. Sun uses a far more complex
system in many of its services, such as reggie: a reliable log, in package com.sun.jini.
reliableLog. Note that this package is not a part of standard Jini, so it may change or even be

7168ch25.fm Page 404 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 405

removed in later versions of Jini, but there is nothing to stop you from using it if you need a
robust storage mechanism.

Using a Configuration
The service implementations shown in the chapter so far have hard-coded the protocol Jeri. In
general this is not a good idea, as a runtime configuration should specify this. The code to find
an exporter should be handled by looking in a configuration, as shown in Chapter 19.

The start-up server will see the configuration file, typically a file name, as a command-line
parameter. Previously for nonactivatable services, the server was able to extract the exporter
directly from the configuration and use it to export the service. But as you have seen, it is now
the responsibility of the service itself to define and use an exporter. The problem is how to get
the command-line parameters from the start-up server into the service’s constructor.

This problem can be solved by using the marshalled data discussed in the last section, but
instead of using it for state, we can place the command-line arguments from the server into the
marshalled data and so pass the configuration into the client.

The changes to the service are to add in configuration code to the constructor:

package activation;
import net.jini.export.*;
import net.jini.jeri.BasicJeriExporter;
import net.jini.jeri.BasicILFactory;
import net.jini.jeri.tcp.TcpServerEndpoint;
import net.jini.activation.ActivationExporter;
import net.jini.jrmp.JrmpExporter;
import java.rmi.activation.ActivationID;
import java.rmi.MarshalledObject;
import net.jini.export.ProxyAccessor;
import net.jini.config.Configuration;
import net.jini.config.ConfigurationException;
import net.jini.config.ConfigurationProvider;
import common.MIMEType;
import common.FileClassifier;
import rmi.RemoteFileClassifier;
import java.rmi.Remote;
/**
 * FileClassifierConfig.java
 */
public class FileClassifierConfig implements RemoteFileClassifier,
 ProxyAccessor {
 private Remote proxy;
 public MIMEType getMIMEType(String fileName)
 throws java.rmi.RemoteException {
 if (fileName.endsWith(".gif")) {
 return new MIMEType("image", "gif");
 } else if (fileName.endsWith(".jpeg")) {
 return new MIMEType("image", "jpeg");

7168ch25.fm Page 405 Thursday, August 17, 2006 11:34 AM

406 C H A P T E R 2 5 ■ A C T I V A T I O N

 } else if (fileName.endsWith(".mpg")) {
 return new MIMEType("video", "mpeg");
 } else if (fileName.endsWith(".txt")) {
 return new MIMEType("text", "plain");
 } else if (fileName.endsWith(".html")) {
 return new MIMEType("text", "html");
 } else
 // fill in lots of other types,
 // but eventually give up and
 return new MIMEType(null, null);
 }
 public FileClassifierConfig(ActivationID activationID, MarshalledObject data)
 throws java.rmi.RemoteException {
 // The marshalled object should be an array of strings
 // holding a configuration
 String[] args = null;
 try {
 args = (String[]) data.get();
 } catch(Exception e) {
 // empty
 }
 Exporter defaultExporter =
 new ActivationExporter(activationID,
 new BasicJeriExporter(TcpServerEndpoint.getInstance(0),
 new BasicILFactory(),
 false, true));
 Exporter exporter = defaultExporter;
 try {
 Configuration config = ConfigurationProvider.getInstance(args);
 exporter = (Exporter) config.getEntry("JeriExportDemo",
 "exporter",
 Exporter.class);
 } catch(ConfigurationException e) {
 // empty
 }
 proxy = (Remote) exporter.export(this);
 }
 // Implementation for ProxyAccessor
 public Object getProxy() {
 return proxy;
 }
} // FileClassifierConfig

The start-up server marshalls the command-line arguments and passes them into the acti-
vation description. I provide only the code showing the use of the marshalled object:

7168ch25.fm Page 406 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 407

 static final protected String CODEBASE =
 "http://192.168.1.13/classes/activation.FileClassifierServer-dl.jar";
 String codebase = CODEBASE;
 MarshalledObject data = null;
 // marshall the command-line args for the service
 try {
 data = new MarshalledObject(argv);
 } catch(IOException e) {
 e.printStackTrace();
 System.exit(1);
 }
 ActivationDesc desc = null;
 desc = new ActivationDesc(groupID,
 "activation.FileClassifierImpl",
 codebase, data, true);

An Ant file for this server is activation.FileClassifierServerConfig.xml. It differs from
the Ant file given earlier only in the files used.

 <!-- files for this project -->
 <property name="src.files"
 value="common/MIMEType.java,
 common/FileClassifier.java,
 rmi/RemoteFileClassifier.java,
 activation/FileClassifierConfig.java
 activation/FileClassifierServerConfig.java
 "/>
 <property name="class.files"
 value="
 common/MIMEType.class,
 common/FileClassifier.class,
 activation/FileClassifierServerConfig.class
 "/>
 <property name="class.files.dl"
 value="
 rmi/RemoteFileClassifier.class
 "/>
 <property name="class.files.act"
 value="common/MIMEType.class,
 common/FileClassifier.class,
 rmi/RemoteFileClassifier.class,
 activation/FileClassifierConfig.class
 "/>

7168ch25.fm Page 407 Thursday, August 17, 2006 11:34 AM

408 C H A P T E R 2 5 ■ A C T I V A T I O N

LeaseRenewalService
Activatable objects are one example of services that are not continuously alive. Mobile services,
such as those exist on mobile phones, are another. These services are brought to life on
demand (as activatable objects), or join the network on occasion. These services raise a
number of problems, one of which we skirted around in the last section: how do you renew
leases when the object is not alive?

Activatable objects are brought back to life when methods are invoked on them. The
expiration of a lease does not cause any methods to be invoked. There is no “lease-expiring
event” generated that could cause a listener method to be invoked, either. It is true that a
ServiceRegistrar such as reggie will generate an event when a lease changes status, but this
is a “service removed” event rather than a “service about to be removed” event—it is too late.

If a server is alive, then it can use a LeaseRenewalManager to keep leases alive, but first, the
renewal manager works by sleeping and waking up just in time to renew the leases, and
second, if the server exits, then no LeaseRenewalManager will continue to run.

Jini supplies a lease renewal service that partly avoids these problems. Since it runs as a
service, it has an independent existence; it does not depend on the server for any other service.
It can act like a LeaseRenewalManager in keeping track of leases registered with it and renewing
them as needed. In general, it can keep leases alive without waking the service itself, which can
slumber until activated by clients calling methods.

But how long should the LeaseRenewalService keep renewing leases for a service? The
LeaseRenewalManager utility has a simple solution: keep renewing while the server for that
service is alive. If the server dies, taking down a service, then it will also take down the
LeaseRenewalManager running in the same JVM, so leases will expire as expected after an
interval.

This mechanism won’t work for LeaseRenewalService, however, because the managed
service can disappear without the LeaseRenewalService knowing about it. So the lease renewal
must be done on a leased basis itself! The LeaseRenewalService will renew leases for a service
only for a particular amount of time, specified by a lease. The service will still have to renew its
lease, even though it is with a LeaseRenewalService instead of a bunch of lookup services. The
lease granted by this service should be of a much longer duration than those granted by the
lookup services for this to be of value.

Activatable services can only be woken by calling one of their methods. The
LeaseRenewalService accomplishes this by generating renewal events in advance and calling a
notify() method on a listener. If the listener is the activatable object, the LeaseRenewalService
will wake it up so that it can perform the renewal. If the phoenix process managing the service
has died or is unavailable, then the event will not be delivered and the LeaseRenewalService
can remove this service from its renewal list.

This approach is not quite satisfactory for other types of “dormant” services such as might
exist on mobile phones, since there is no equivalent of phoenix to handle activation. Instead,
the mobile phone service might determine that it will connect once a day and renew the lease,
as long as the LeaseRenewalService agrees to keep the lease for at least a day. This is still nego-
tiable, in that the service asks for a duration and the LeaseRenewalService replies with a value
that might not be so long. Still, it should be better than dealing with the lookup services, which
may ask for renewals as often as every five minutes.

7168ch25.fm Page 408 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 409

In the sections that follow, we’ll discuss the norm service, Sun’s implementation of a
LeaseRenewalService.

 Then we look at how a client can use this service to renew leases.

The norm Service
Jini 1.1 supplied an implementation of LeaseRenewalService called norm. This was a nonlazy
activatable service that required rmid to be running. In Jini 2.0, it has been extended to be much
more flexible and is controlled by various configurations:

• JRMP

• Transient

• Persistent

• Activatable (requires an activation server such as phoenix)

• Jeri

• Transient

• Persistent

• Activatable (requires an activation server such as phoenix)

■Note These options are all documented in the Jini documentation doc/api/com/sun/jini/norm/
package-summary.html#examples.

For example, use this to run the transient Jeri version for suitable values of config_dir and
install_dir:

java -Djava.security.policy=config_dir/jsk-all.policy \
 -jar install_dir/lib/start.jar \
 config_dir/start-transient-norm.config

The policy file could contain the following:

grant codebase "file:install_dir/lib/*" {
 permission java.security.AllPermission;
};

The start-transient-norm.config file should contain this:

import com.sun.jini.start.NonActivatableServiceDescriptor;
import com.sun.jini.start.ServiceDescriptor;
com.sun.jini.start {
 private static codebase = "http://your_host:http_port/norm-dl.jar";
 private static policy = "config_dir/jsk-all.policy";

7168ch25.fm Page 409 Thursday, August 17, 2006 11:34 AM

410 C H A P T E R 2 5 ■ A C T I V A T I O N

 private static classpath = "install_dir/lib/norm.jar";
 private static config = "config_dir/transient-norm.config";
 static serviceDescriptors = new ServiceDescriptor[] {
 new NonActivatableServiceDescriptor(
 codebase, policy, classpath,
 "com.sun.jini.norm.TransientNormServerImpl",
 new String[] { config })
 };
}

This file points to the transient-norm.config file, which in turn contains the following:

com.sun.jini.norm {
 initialLookupGroups = new String[] { "your.group" };
}

Note that there is no mention of Jeri in any of these files—presumably it is a default (the
JRMP version contains a definition of serverExporter as a JRMPExporter).

The norm service will maintain a set of leases for a period of up to two hours. The reggie
lookup service grants leases for only five minutes, so that using this service increases the
amount of time between renewing leases by a factor of over twenty.

Using the LeaseRenewalService
The norm service exports an object of type LeaseRenewalService that is defined by the interface:

package net.jini.lease;
public interface LeaseRenewalService {
 LeaseRenewalSet createLeaseRenewalSet(long leaseDuration)
 throws java.rmi.RemoteException;
}

The leaseDuration is a requested value in milliseconds for the lease service to manage a set
of leases. The lease service creates a lease for this request, and in order for it to continue to
manage the set beyond the lease’s expiration, the lease must be renewed before expiration.
Because the service may be inactive around the time of expiration, the LeaseRenewalSet can be
asked to register a listener object that will receive an event containing the lease, which will acti-
vate a dormant listener so that it can renew the lease in time. If the lease for the LeaseRenewalSet
is allowed to lapse, then eventually all the leases for the services it was managing will also
expire, making the services unavailable.

The LeaseRenewalSet returned from createLeaseRenewalSet has interfaces including the
following:

package net.jini.lease;
public interface LeaseRenewalSet {
 public void renewFor(Lease leaseToRenew,
 long membershipDuration)
 throws RemoteException;
 public EventRegistration setExpirationWarningListener(
 RemoteEventListener listener,

7168ch25.fm Page 410 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 411

 long minWarning,
 MarshalledObject handback)
 throws RemoteException;

}

The renewFor() method adds a new lease to the set being looked after. The
LeaseRenewalSet will keep renewing the lease until either the requested membershipDuration
expires or the lease on the whole LeaseRenewalSet expires (or an exception happens, such as a
lease being refused).

Setting an expiration warning listener means that its notify() method will be called at
least minWarning milliseconds before the lease for the set expires. The event argument to this
will actually be an ExpirationWarningEvent:

package net.jini.lease;
public class ExpirationWarningEvent extends RemoteEvent {
 Lease getLease();
}

This allows the listener to get the lease for the LeaseRenewalSet and (probably) renew it. A
simple activatable class that can renew the lease is as follows:

/**
 * @version 1.1
 */
package activation;
import java.rmi.Remote;
import java.rmi.activation.ActivationID;
import java.rmi.MarshalledObject;
import net.jini.core.event.RemoteEvent;
import net.jini.core.event.RemoteEventListener;
import net.jini.core.lease.Lease;
import net.jini.lease.ExpirationWarningEvent;
import net.jini.export.*;
import net.jini.jeri.BasicJeriExporter;
import net.jini.jeri.BasicILFactory;
import net.jini.jeri.tcp.TcpServerEndpoint;
import net.jini.activation.ActivationExporter;
public class RenewLease implements RemoteEventListener,
 ProxyAccessor {

 private Remote proxy;
 public RenewLease(ActivationID activationID, MarshalledObject data)
 throws java.rmi.RemoteException {
 Exporter exporter =
 new ActivationExporter(activationID,
 new BasicJeriExporter(TcpServerEndpoint.getInstance(0),
 new BasicILFactory(),
 false, true));

7168ch25.fm Page 411 Thursday, August 17, 2006 11:34 AM

412 C H A P T E R 2 5 ■ A C T I V A T I O N

 proxy = (Remote) exporter.export(this);
 }

 public void notify(RemoteEvent evt) {
 System.out.println("expiring... " + evt.toString());
 ExpirationWarningEvent eevt = (ExpirationWarningEvent) evt;
 Lease lease = eevt.getRenewalSetLease();
 try {
 // This is short, for testing. Try 2+ hours
 lease.renew(20000L);
 } catch(Exception e) {
 e.printStackTrace();
 }
 System.out.println("Lease renewed for " +
 (lease.getExpiration() -
 System.currentTimeMillis()));
 }
 public Object getProxy() {
 return proxy;
 }
}

The server will need to register the service and export it as an activatable object. This is
done in exactly the same way as in the first example of this chapter. In addition, it will need to

1. Register the lease listener (such as the previous RenewLease) with the activation system
as an activatable object.

2. Find a LeaseRenewalService from a lookup service.

3. Register all leases from lookup services with the LeaseRenewalService. Since it may find
lookup services before it finds the renewal service, it will need to keep a list of lookup
services found before finding the service, in order to register them with it.

package activation;
import rmi.RemoteFileClassifier;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceRegistration;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.event.RemoteEvent;
import net.jini.core.event.RemoteEventListener;
import net.jini.core.lease.Lease;
import net.jini.lease.LeaseRenewalService;
import net.jini.lease.LeaseRenewalSet;

7168ch25.fm Page 412 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 413

import java.rmi.RMISecurityManager;
import java.rmi.MarshalledObject;
import java.rmi.activation.ActivationDesc;
import java.rmi.activation.ActivationGroupDesc;
import java.rmi.activation.ActivationGroupDesc.CommandEnvironment;
import java.rmi.activation.Activatable;
import java.rmi.activation.ActivationGroup;
import java.rmi.activation.ActivationGroupID;
import java.rmi.activation.ActivationID;
import java.rmi.MarshalledObject;
import java.util.Properties;
import java.util.Vector;
import java.rmi.activation.UnknownGroupException;
import java.rmi.activation.ActivationException;
import java.rmi.RemoteException;
/**
 * FileClassifierServer.java
 */
public class FileClassifierServerLease
 implements DiscoveryListener {
 static final protected String SECURITY_POLICY_FILE =
 "/home/jan/projects/jini/doc/policy.all";
 // Don't forget the trailing '/'!
 static final protected String CODEBASE = "http://localhost/classes/";

 protected RemoteFileClassifier proxy;
 protected RemoteEventListener leaseProxy;
 // Lease renewal management
 protected LeaseRenewalSet leaseRenewalSet = null;
 // List of leases not yet managed by a LeaseRenewalService
 protected Vector leases = new Vector();
 public static void main(String argv[]) {
 new FileClassifierServerLease(argv);
 // stick around while lookup services are found
 try {
 Thread.sleep(10000L);
 } catch(InterruptedException e) {
 // do nothing
 }
 // the server doesn't need to exist anymore
 System.exit(0);
 }
 public FileClassifierServerLease(String[] argv) {
 // install suitable security manager
 System.setSecurityManager(new RMISecurityManager());
 // Install an activation group
 Properties props = new Properties();

7168ch25.fm Page 413 Thursday, August 17, 2006 11:34 AM

414 C H A P T E R 2 5 ■ A C T I V A T I O N

 props.put("java.security.policy",
 SECURITY_POLICY_FILE);
 ActivationGroupDesc.CommandEnvironment ace = null;
 ActivationGroupDesc group = new ActivationGroupDesc(props, ace);
 ActivationGroupID groupID = null;
 try {
 groupID = ActivationGroup.getSystem().registerGroup(group);
 } catch(RemoteException e) {
 e.printStackTrace();
 System.exit(1);
 } catch(ActivationException e) {
 e.printStackTrace();
 System.exit(1);
 }

 try {
 ActivationGroup.createGroup(groupID, group, 0);
 } catch(ActivationException e) {
 e.printStackTrace();
 System.exit(1);
 }

 String codebase = CODEBASE;
 MarshalledObject data = null;
 ActivationDesc desc = null;
 ActivationDesc descLease = null;
 try {
 desc = new ActivationDesc("activation.FileClassifierImpl",
 codebase, data);
 descLease = new ActivationDesc("activation.RenewLease",
 codebase, data);
 } catch(ActivationException e) {
 e.printStackTrace();
 System.exit(1);
 }
 try {
 proxy = (RemoteFileClassifier) Activatable.register(desc);
 leaseProxy = (RemoteEventListener) Activatable.register(descLease);
 } catch(UnknownGroupException e) {
 e.printStackTrace();
 System.exit(1);
 } catch(ActivationException e) {
 e.printStackTrace();
 System.exit(1);
 } catch(RemoteException e) {
 e.printStackTrace();
 System.exit(1);

7168ch25.fm Page 414 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 415

 }

 LookupDiscovery discover = null;
 try {
 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);
 } catch(Exception e) {
 System.err.println(e.toString());
 System.exit(1);
 }
 discover.addDiscoveryListener(this);
 }
 public void discovered(DiscoveryEvent evt) {
 ServiceRegistrar[] registrars = evt.getRegistrars();
 RemoteFileClassifier service;
 for (int n = 0; n < registrars.length; n++) {
 ServiceRegistrar registrar = registrars[n];
 // export the proxy service
 ServiceItem item = new ServiceItem(null,
 proxy,
 null);
 ServiceRegistration reg = null;
 try {
 reg = registrar.register(item, Lease.FOREVER);
 } catch(java.rmi.RemoteException e) {
 System.err.print("Register exception: ");
 e.printStackTrace();
 // System.exit(2);
 continue;
 }
 try {
 System.out.println("service registered at " +
 registrar.getLocator().getHost());
 } catch(Exception e) {
 }
 Lease lease = reg.getLease();
 // if we have a lease renewal manager, use it
 if (leaseRenewalSet != null) {
 try {
 leaseRenewalSet.renewFor(lease, Lease.FOREVER);
 } catch(RemoteException e) {
 e.printStackTrace();
 }
 } else {
 // add to the list of unmanaged leases
 leases.add(lease);
 // see if this lookup service has a lease renewal manager
 findLeaseService(registrar);

7168ch25.fm Page 415 Thursday, August 17, 2006 11:34 AM

416 C H A P T E R 2 5 ■ A C T I V A T I O N

 }
 }
 }
 public void findLeaseService(ServiceRegistrar registrar) {
 System.out.println("Trying to find a lease service");
 Class[] classes = {LeaseRenewalService.class};
 ServiceTemplate template = new ServiceTemplate(null, classes,
 null);
 LeaseRenewalService leaseService = null;
 try {
 leaseService = (LeaseRenewalService) registrar.lookup(template);
 } catch(RemoteException e) {
 e.printStackTrace();
 return;
 }
 if (leaseService == null) {
 System.out.println("No lease service found");
 return;
 }
 try {
 // This time is unrealistically small - try 10000000L
 leaseRenewalSet = leaseService.createLeaseRenewalSet(20000);
 System.out.println("Found a lease service");
 // register a timeout listener
 leaseRenewalSet.setExpirationWarningListener(leaseProxy, 5000,
 null);
 // manage all the leases found so far
 for (int n = 0; n < leases.size(); n++) {
 Lease ll = (Lease) leases.elementAt(n);
 leaseRenewalSet.renewFor(ll, Lease.FOREVER);
 }
 leases = null;
 } catch(RemoteException e) {
 e.printStackTrace();
 }
 Lease renewalLease = leaseRenewalSet.getRenewalSetLease();
 System.out.println("Lease expires in " +
 (renewalLease.getExpiration() -
 System.currentTimeMillis()));
 }
 public void discarded(DiscoveryEvent evt) {
 }
} // FileClassifierServerLease

An Ant file to build, deploy, and run the service is activation.
FileClassifierServerLease.xml. It only differs from the previous Ant files in the files used.

7168ch25.fm Page 416 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 417

 <property name="src.files"
 value="
 common/MIMEType.java,
 common/FileClassifier.java,
 rmi/RemoteFileClassifier.java,
 activation/FileClassifierImpl.java
 activation/RenewLease.java
 activation/FileClassifierServerLease.java
 "/>
 <property name="class.files"
 value="
 common/MIMEType.class,
 common/FileClassifier.class,
 activation/FileClassifierServerLease.class
 "/>
 <property name="class.files.dl"
 value="
 rmi/RemoteFileClassifier.class
 "/>
 <property name="class.files.act"
 value="common/MIMEType.class,
 common/FileClassifier.class,
 rmi/RemoteFileClassifier.class,
 activation/RenewLease.class
 activation/FileClassifierImpl.class
 "/>

In order to run the server, the following need to be running:

• reggie to run as a lookup service.

• phoenix to act as an activation server for the FileClassifier service and also for the
RenewLease service.

• norm as a lease renewal service. Each lease will be registered with this service, and it will
have the RenewLease as listener for expiration events.

The server starts, finds lookup services, and registers the service with each of them. Each
lease that it gets is also registered with the lease renewal service, and the listener is also regis-
tered. The server then terminates. The lease renewal service renews leases with the lookup
service. When the lease renewal set is about to expire, it wakes up the lease renewal listener,
which renews the set. Note that since the listener is activatable, this “wake-up” is performed by
the activation server phoenix. Trace messages from the listener thus appear in whatever
window the activation server is run from.

LookupDiscoveryService
It is easy enough for a server to discover all of the lookup services within reach at the time it is
started, using LookupDiscovery. While the server continues to stay alive, any new lookup

7168ch25.fm Page 417 Thursday, August 17, 2006 11:34 AM

418 C H A P T E R 2 5 ■ A C T I V A T I O N

services that start will also be found by LookupDiscovery. But if the server terminates, which it
will for activatable services, then these extra lookup services will probably never be found. This
results in the service not being registered with them, which could mean in turn that clients may
not find it. This is analogous to leases not being renewed if the server terminates.

In Jini 1.1, there is a LookupDiscoveryService that can be used to continuously monitor the
state of lookup services. It will monitor these on behalf of a service that will most likely want to
register with each new lookup service as it starts. If the service is an activatable one, the server
that would have done this will have terminated, as its role would have just been to register the
service with phoenix.

When there is a change to lookup services, the LookupDiscoveryService needs to notify an
object about this by sending it a remote event (actually of type RemoteDiscoveryEvent). But
again, we do not want to have a process sitting around waiting for such notification, so the
listener object will probably also be an activatable object.

The LookupDiscoveryService interface has the following specification:

public interface LookupDiscoveryService {
 LookupDiscoveryRegistration register(String[] groups,
 LookupLocator[] locators,
 RemoteEventListener listener,
 MarshalledObject handback,
 long leaseDuration);
}

Calling the register() method will begin a multicast search for the groups and a unicast
lookup for the locators. The registration is leased and will need to be renewed before expiration
(a lease renewal service can be used for this). Note that the listener cannot be null—this is
simple sanity checking, because if the listener were null, then the service could never do
anything useful!

A lookup service in one of the groups can start or terminate, or it can change its group
membership in such a way that it now does (or doesn’t) meet the group criteria. A lookup
service in the locators list can also start or stop. Any of these changes will generate
RemoteDiscoveryEvent events and call the notify() method of the listener. The event interface
includes the following:

package net.jini.discovery;
public interface RemoteDiscoveryEvent {
 ServiceRegistrar[] getRegistrars();
 boolean isDiscarded();
 ...
}

The list of registrars is the set that triggered the event. The isDiscarded() method is used
to check if it is a “discovered” lookup service or a “discarded” lookup service. An initial event is
not posted when the listener is registered; the set of lookup services that are initially found can
be retrieved from the LookupDiscoveryRegistration object returned from the register()
method, by its getRegistrars()method.

7168ch25.fm Page 418 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 419

The fiddler Service
The Jini 1.1 release includes an implementation of the lookup discovery service called fiddler.
This service has been modified in Jini 2.0 to be more flexible. It can be run in three modes,
using either Jeri (the default) or JRMP:

• Transient

• Persistent

• Activatable (requires phoenix to be running)

Information about how to run fiddler in each mode is given in the Jini download, under
file:///usr/local/jini2_0/doc/api/com/sun/jini/fiddler/package-summary.html.

To run fiddler in transient mode using Jeri over TCP, execute a command line such as the
following:

java \
 -Djava.security.manager= \
 -Djava.security.policy=fiddler-start-transient.policy \
 -jar jini_install_dir/lib/start.jar \
 config/fiddler-start-transient.config

where fiddler-start-transient.policy could be the same as policy.all.
The contents of fiddler-start-transient.config could be as follows:

import com.sun.jini.start.NonActivatableServiceDescriptor;
import com.sun.jini.start.ServiceDescriptor;
com.sun.jini.start {
 private static serviceCodebase =
 new String("http://myHost:8080/fiddler-dl.jar");
 private static servicePolicyFile =
 new String("example_install_dir${/}policy${/}jeri-transient-fiddler.pol-
icy");
 private static serviceClasspath =
 new String("jini_install_dir${/}lib${/}fiddler.jar");
 private static serviceImplName =
 new String("com.sun.jini.fiddler.TransientFiddlerImpl");
 private static serviceConfig =
 new String("example_install_dir${/}config${/}jeri-transient-fiddler.con-
fig");
 private static serviceArgsArray = new String[] { serviceConfig };
 private static nonActivatableServiceDescriptor =
 new NonActivatableServiceDescriptor(serviceCodebase,
 servicePolicyFile,
 serviceClasspath,
 serviceImplName,
 serviceArgsArray);
 static serviceDescriptors =
 new ServiceDescriptor[] { nonActivatableServiceDescriptor };
}//end com.sun.jini.start

7168ch25.fm Page 419 Thursday, August 17, 2006 11:34 AM

420 C H A P T E R 2 5 ■ A C T I V A T I O N

The configuration file jeri-transient-fiddler.config would contain this:

import net.jini.jeri.BasicILFactory;
import net.jini.jeri.BasicJeriExporter;
import net.jini.jeri.tcp.TcpServerEndpoint;
com.sun.jini.fiddler {
 private invocationLayerFactory = new BasicILFactory();
 serverExporter = new BasicJeriExporter(TcpServerEndpoint.getInstance(0),
 invocationLayerFactory,
 false,
 true);
 initialLookupGroups = new String[] {"myGroup.myCompany.com"};
}//end com.sun.jini.fiddler

Using the LookupDiscoveryService
An activatable service can make use of a lease renewal service to look after the leases for lookup
services discovered. It can find these lookup services by means of a lookup discovery service.
The logic to manage these two services could be a little tricky, as we attempt to find two
different services. We can simplify for this example by just doing a sequential search using a
ServiceDiscoveryManager.

While lease management can be done by the lease renewal service, the lease renewal set
will also be leased and will need to be renewed on occasion. The lease renewal service can call
an activatable RenewLease object to do this, as in the last section.

The lookup discovery service is also a leased service—it will only report changes to lookup
services while its own lease is current. So the lease from this service will have to be managed by
the lease renewal service, in addition to the leases for any lookup services discovered.

The primary purpose of the lookup discovery service is to call the notify() method of
some object when information about lookup services changes. This object should also be an
activatable object. We define a DiscoveryChange object with the notify() method to handle
changes in lookup services. If a lookup service has disappeared, we don’t worry about it. If a
lookup service has been discovered, we want to register the service with it, and then manage
the resultant lease. This means that the DiscoveryChange object must know both the service to
be registered and the lease renewal service. This is static data, so these two objects can be
passed in an array of two objects as the MarshalledObject to the activation constructor. The
class itself can be implemented as follows:

package activation;
import java.rmi.activation.Activatable;
import java.rmi.activation.ActivationID;
import java.rmi.MarshalledObject;
import net.jini.core.event.RemoteEvent;
import net.jini.core.event.RemoteEventListener;
import net.jini.core.lease.Lease;
import net.jini.lease.ExpirationWarningEvent;
import net.jini.core.lookup.ServiceItem;

7168ch25.fm Page 420 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 421

import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceRegistration;
import net.jini.lease.LeaseRenewalSet;
import net.jini.discovery.RemoteDiscoveryEvent;
import java.rmi.RemoteException;
import net.jini.discovery.LookupUnmarshalException;
import rmi.RemoteFileClassifier;
public class DiscoveryChange extends Activatable
 implements RemoteEventListener {
 protected LeaseRenewalSet leaseRenewalSet;
 protected RemoteFileClassifier service;

 public DiscoveryChange(ActivationID id, MarshalledObject data)
 throws java.rmi.RemoteException {
 super(id, 0);
 Object[] objs = null;
 try {
 objs = (Object []) data.get();
 } catch(ClassNotFoundException e) {
 e.printStackTrace();
 } catch(java.io.IOException e) {
 e.printStackTrace();
 }
 service = (RemoteFileClassifier) objs[0];
 leaseRenewalSet= (LeaseRenewalSet) objs[1];
 }

 public void notify(RemoteEvent evt) {
 System.out.println("lookups changing... " + evt.toString());
 RemoteDiscoveryEvent revt = (RemoteDiscoveryEvent) evt;
 if (! revt.isDiscarded()) {
 // The event is a discovery event
 ServiceItem item = new ServiceItem(null, service, null);
 ServiceRegistrar[] registrars = null;
 try {
 registrars = revt.getRegistrars();
 } catch(LookupUnmarshalException e) {
 e.printStackTrace();
 return;
 }
 for (int n = 0; n < registrars.length; n++) {
 ServiceRegistrar registrar = registrars[n];

 ServiceRegistration reg = null;
 try {
 reg = registrar.register(item, Lease.FOREVER);
 leaseRenewalSet.renewFor(reg.getLease(), Lease.FOREVER);

7168ch25.fm Page 421 Thursday, August 17, 2006 11:34 AM

422 C H A P T E R 2 5 ■ A C T I V A T I O N

 } catch(java.rmi.RemoteException e) {
 System.err.println("Register exception: " + e.toString());
 }
 }
 }
 }
}

The server must install an activation group, and then find activation proxies for the service
itself and also for our lease renewal object. After this, it can use a ClientLookupManager to find
the lease service, and register our lease renewal object with it. Now that it has a proxy for the
service object, and also a lease renewal service, it can create the marshalled data for the lookup
discovery service and register this with phoenix. Now we can find the lookup discovery service
and register our discovery change listener, DiscoveryChange, with it. At the same time, we have
to register the service with all the lookup services the lookup discovery service finds on initial-
ization. This all leads to the following code:

package activation;
import rmi.RemoteFileClassifier;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.LookupDiscoveryService;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.discovery.LookupDiscoveryManager;
import net.jini.discovery.LookupDiscoveryRegistration;
import net.jini.discovery.LookupUnmarshalException;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceRegistration;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.event.RemoteEvent;
import net.jini.core.event.RemoteEventListener;
import net.jini.core.lease.Lease;
import net.jini.lease.LeaseRenewalService;
import net.jini.lease.LeaseRenewalSet;
import net.jini.lease.LeaseRenewalManager;
import net.jini.lookup.ServiceDiscoveryManager;
import java.rmi.RMISecurityManager;
import java.rmi.activation.ActivationDesc;
import java.rmi.activation.ActivationGroupDesc;
import java.rmi.activation.ActivationGroupDesc.CommandEnvironment;
import java.rmi.activation.Activatable;
import java.rmi.activation.ActivationGroup;
import java.rmi.activation.ActivationGroupID;
import java.rmi.activation.ActivationID;
import java.rmi.MarshalledObject;
import java.rmi.activation.UnknownGroupException;
import java.rmi.activation.ActivationException;

7168ch25.fm Page 422 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 423

import java.rmi.RemoteException;
import java.util.Properties;
import java.util.Vector;
/**
 * FileClassifierServerDiscovery.java
 */
public class FileClassifierServerDiscovery
 /* implements DiscoveryListener */ {
 private static final long WAITFOR = 10000L;
 static final protected String SECURITY_POLICY_FILE =
 "/home/jan/projects/jini/doc/policy.all";
 // Don't forget the trailing '/'!
 static final protected String CODEBASE = "http://localhost/classes/";

 protected RemoteFileClassifier serviceProxy;
 protected RemoteEventListener leaseProxy,
 discoveryProxy;
 // Services
 protected LookupDiscoveryService discoveryService = null;
 protected LeaseRenewalService leaseService = null;
 // Lease renewal management
 protected LeaseRenewalSet leaseRenewalSet = null;
 // List of leases not yet managed by a LeaseRenewalService
 protected Vector leases = new Vector();
 protected ServiceDiscoveryManager clientMgr = null;
 public static void main(String argv[]) {
 new FileClassifierServerDiscovery();
 // stick around while lookup services are found
 try {
 Thread.sleep(20000L);
 } catch(InterruptedException e) {
 // do nothing
 }
 // the server doesn't need to exist anymore
 System.exit(0);
 }
 public FileClassifierServerDiscovery() {
 // install suitable security manager
 System.setSecurityManager(new RMISecurityManager());
 installActivationGroup();
 serviceProxy = (RemoteFileClassifier)
 registerWithActivation("activation.FileClassifierImpl", null);

 leaseProxy = (RemoteEventListener)
 registerWithActivation("activation.RenewLease", null);
 initClientLookupManager();
 findLeaseService();

7168ch25.fm Page 423 Thursday, August 17, 2006 11:34 AM

424 C H A P T E R 2 5 ■ A C T I V A T I O N

 // the discovery change listener needs to know the service
 // and the lease service
 Object[] discoveryInfo = {serviceProxy, leaseRenewalSet};
 MarshalledObject discoveryData = null;
 try {
 discoveryData = new MarshalledObject(discoveryInfo);
 } catch(java.io.IOException e) {
 e.printStackTrace();
 }
 discoveryProxy = (RemoteEventListener)
 registerWithActivation("activation.DiscoveryChange",
 discoveryData);
 findDiscoveryService();
 }
 public void installActivationGroup() {
 Properties props = new Properties();
 props.put("java.security.policy",
 SECURITY_POLICY_FILE);
 ActivationGroupDesc.CommandEnvironment ace = null;
 ActivationGroupDesc group = new ActivationGroupDesc(props, ace);
 ActivationGroupID groupID = null;
 try {
 groupID = ActivationGroup.getSystem().registerGroup(group);
 } catch(RemoteException e) {
 e.printStackTrace();
 System.exit(1);
 } catch(ActivationException e) {
 e.printStackTrace();
 System.exit(1);
 }

 try {
 ActivationGroup.createGroup(groupID, group, 0);
 } catch(ActivationException e) {
 e.printStackTrace();
 System.exit(1);
 }
 }
 public Object registerWithActivation(String className, MarshalledObject data) {
 String codebase = CODEBASE;
 ActivationDesc desc = null;
 Object proxy = null;
 try {
 desc = new ActivationDesc(className,
 codebase, data);
 } catch(ActivationException e) {
 e.printStackTrace();

7168ch25.fm Page 424 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 425

 System.exit(1);
 }
 try {
 proxy = Activatable.register(desc);
 } catch(UnknownGroupException e) {
 e.printStackTrace();
 System.exit(1);
 } catch(ActivationException e) {
 e.printStackTrace();
 System.exit(1);
 } catch(RemoteException e) {
 e.printStackTrace();
 System.exit(1);
 }
 return proxy;
 }
 public void initClientLookupManager() {
 LookupDiscoveryManager lookupDiscoveryMgr = null;
 try {
 lookupDiscoveryMgr =
 new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,
 null /* unicast locators */,
 null /* DiscoveryListener */);
 clientMgr = new ServiceDiscoveryManager(lookupDiscoveryMgr,
 new LeaseRenewalManager());
 } catch(Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 }
 public void findLeaseService() {
 leaseService = (LeaseRenewalService) findService(LeaseRenewalService.class);
 if (leaseService == null) {
 System.out.println("Lease service null");
 }
 try {
 leaseRenewalSet = leaseService.createLeaseRenewalSet(20000);
 leaseRenewalSet.setExpirationWarningListener(leaseProxy, 5000,
 null);
 } catch(RemoteException e) {
 e.printStackTrace();
 }
 }
 public void findDiscoveryService() {
 discoveryService = (LookupDiscoveryService) findService(LookupDiscoverySer-
vice.class);
 if (discoveryService == null) {

7168ch25.fm Page 425 Thursday, August 17, 2006 11:34 AM

426 C H A P T E R 2 5 ■ A C T I V A T I O N

 System.out.println("Discovery service null");
 }
 LookupDiscoveryRegistration registration = null;
 try {
 registration =
 discoveryService.register(LookupDiscovery.ALL_GROUPS,
 null,
 discoveryProxy,
 null,
 Lease.FOREVER);
 } catch(RemoteException e) {
 e.printStackTrace();
 }
 // manage the lease for the lookup discovery service
 try {
 leaseRenewalSet.renewFor(registration.getLease(), Lease.FOREVER);
 } catch(RemoteException e) {
 e.printStackTrace();
 }
 // register with the lookup services already found
 ServiceItem item = new ServiceItem(null, serviceProxy, null);
 ServiceRegistrar[] registrars = null;
 try {
 registrars = registration.getRegistrars();
 } catch(RemoteException e) {
 e.printStackTrace();
 return;
 } catch(LookupUnmarshalException e) {
 e.printStackTrace();
 return;
 }
 for (int n = 0; n < registrars.length; n++) {
 ServiceRegistrar registrar = registrars[n];
 ServiceRegistration reg = null;
 try {
 reg = registrar.register(item, Lease.FOREVER);
 leaseRenewalSet.renewFor(reg.getLease(), Lease.FOREVER);
 } catch(java.rmi.RemoteException e) {
 System.err.println("Register exception: " + e.toString());
 }
 }
 }
 public Object findService(Class cls) {
 Class [] classes = new Class[] {cls};
 ServiceTemplate template = new ServiceTemplate(null, classes,
 null);
 ServiceItem item = null;

7168ch25.fm Page 426 Thursday, August 17, 2006 11:34 AM

C H A P T E R 2 5 ■ A C T I V A T I O N 427

 try {
 item = clientMgr.lookup(template,
 null, /* no filter */
 WAITFOR /* timeout */);
 } catch(Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 if (item == null) {
 // couldn't find a service in time
 System.out.println("No service found for " + cls.toString());
 return null;
 }
 return item.service;
 }
} // FileClassifierServerDiscovery

To run this example, you need to perform the following steps:

1. Run the lookup service reggie.

2. Run the activation server phoenix.

3. Run the lease renewal service norm.

4. Run the lookup discovery service fiddler.

5. Run the server. This will terminate, hopefully after finding the services and registering
the DiscoveryChange with the lookup discovery service, and register the leases for the
service and the discovery service.

 An Ant file to build, deploy, and run the service is activation.
FileClassifierServerDiscovery.xml. It only differs from the previous Ant files in the files used.

 <!-- files for this project -->
 <property name="src.files"
 value="common/MIMEType.java,
 common/FileClassifier.java,
 rmi/RemoteFileClassifier.java,
 activation/FileClassifierImpl.java
 activation/FileClassifierServer.java
 "/>
 <property name="class.files"
 value="
 common/MIMEType.class,
 common/FileClassifier.class,
 activation/FileClassifierServer.class
 "/>
 <property name="class.files.dl"

7168ch25.fm Page 427 Thursday, August 17, 2006 11:34 AM

428 C H A P T E R 2 5 ■ A C T I V A T I O N

 value="
 rmi/RemoteFileClassifier.class
 "/>
 <property name="class.files.act"
 value="common/MIMEType.class,
 common/FileClassifier.class,
 rmi/RemoteFileClassifier.class,
 activation/FileClassifierImpl.class
 "/>

Summary
Some objects may not always be available, either because of mobility issues or because they are
activatable objects. This chapter has dealt with activatable objects, and also with some of the
special services that are needed to properly support these transient objects.

7168ch25.fm Page 428 Thursday, August 17, 2006 11:34 AM

