2
A\E 7168ch23.fm Page 351 Friday, August 11,2006 5:10 PM

CHAPTER 23

Transactions

Transactions are a necessary part of many distributed operations. Frequently, two or more
objects will need to synchronize changes of state so that they all occur or none occur. This
happens in situations such as control of ownership, where one party has to give up ownership
at the “same” time as another asserts ownership. What has to be avoided is only one party
performing the action, which could result in either no owners or two owners.

In this chapter, we’ll examine the Jini transaction manager and show how this can be used
to give transaction processing in Jini.

Two-Phase Commit Protocol

The theory of transactions often refers to the ACID properties:
» Atomicity: All the operations of a transaction must take place, or none of them do.

* Consistency: The completion of a transaction must leave the participants in a “consis-
tent” state (whatever that means). For example, the number of owners of a resource
must remain at one.

* Isolation: The activities of one transaction must not affect any other transactions.
* Durability: The results of a transaction must be persistent.

The practice of transactions, however, is that they use the two-phase commit protocol. This
requires that participants in a transaction be asked to vote on a transaction. If all agree to go
ahead, then the transaction commits, which is binding on all the participants. If any partici-
pants abort the transaction during this voting stage, then it forces abortion of the transaction
on all participants.

Jini has adopted the syntax of the two-phase commit method. It is up to the clients and
services within a transaction to observe the ACID properties if they desire. Jini essentially
supplies the mechanism of two-phase commit and leaves the policy of meaning to the partici-
pants in a transaction.

Transactions Overview

Restricting Jini transactions to a two-phase commit model without associating particular
semantics to this means that a transaction can be represented in a simple way: just as a long
identifier. This identifier is obtained from a transaction manager, and it will uniquely label the

351

4~ ~¢e

* 7168ch23.fm Page 352 Friday, August 11,2006 5:10 PM

352 CHAPTER 23 = TRANSACTIONS

transaction to that manager. (It is not guaranteed to be unique between managers, though,
unlike service IDs.) All participants in the transaction communicate with the transaction
manager, using this identifier to label which transaction they belong to.

The participants in a transaction may disappear, and the transaction manager may disap-
pear. So transactions are managed by a lease, which will expire unless it is renewed. When a
transaction manager is asked for a new transaction, it returns a TransactionManager.Created
object, containing the transaction identifier and lease:

public interface TransactionManager {
public static class Created {
public final long id;
public final Lease lease;

A Created object may be passed around between participants in the lease. One of them will
need to look after lease renewals. All the participants will use the transaction identifier in
communication with the transaction manager.

Transaction Manager

A transaction manager looks after the two-phase commit protocol for all the participants in a

transaction. It is responsible for creating a new transaction through its create() method. Any
of the participants may force the transaction to abort with abort(), or they can force the trans-
action to the two-phase commit stage by calling commit ().

public interface TransactionManager {
Created create(long leaseFor) throws ...;
void join(long id, TransactionParticipant part,
long crashCount) throws ...;
void commit(long id) throws ...;
void abort(long id) throws ...;

When a participant joins a transaction, it registers a listener of type TransactionParticipant.
If any participant calls commit (), the transaction manager starts the voting process using all of
these listeners. If all of these are prepared to commit, then the manager moves all of these
listeners to the commit stage. Alternatively, any of the participants may call abort (), which
forces all of the listeners to abort.

4~ ~3

* 7168ch23.fm Page 353 Friday, August 11,2006 5:10 PM

CHAPTER 23 = TRANSACTIONS 353

Transaction Participant

When an object becomes a participant listener in a transaction, it allows the transaction
manager to call various methods:

public interface TransactionParticipant ... {
int prepare(TransactionManager mgr, long id) throws ...;
void commit(TransactionManager mgr, long id) throws ...;
void abort(TransactionManager mgr, long id) throws ...;
int prepareAndCommit(TransactionManager mgr, long id) throws ...;

These methods are triggered by calls made upon the transaction manager. For example, if
one client calls the transaction manager to abort, then it calls all the listeners to abort.

The “normal” mode of operation (i.e., when nothing goes wrong with the transaction) is
for a call to be made on the transaction manager to commit. The manager then enters the two-
phase commit stage where it asks each participant listener to first prepare() and then to either
commit() or abort().

mahalo Transaction Manager

mahalo is a transaction manager supplied by Sun as part of the Jini distribution. It can be used
asis, and it runs as a Jini service, like reggie. If LaunchAll has been used to start reggie, then it
will also have started mahalo.

mahalo implements the service TransactionManager.

Transactions Example

The classic use of transactions is to handle money transfers between accounts. In this case,
there are two accounts, one of which is debited and the other credited. This is not too exciting
as an example, so we will try a more complex situation. A service may decide to charge for its
use. If a client decides this cost is reasonable, it will first credit the service and then request that
the service be performed. The actual accounts will be managed by an accounts service, which
will need to be informed of the credits and debits that occur. A simple accounts model is that the
service gets, say, a customer ID from the client, and passes its own ID and the customer ID to the
accounts service, which manages both accounts. Simple, prone to all sorts of e-commerce
issues that I have no intention of going into, and similar to the way credit cards work!

Figure 23-1 shows the messages in a normal sequence diagram. The client makes a call,
getCost(), to the service, and receives the cost in return. It then makes another call, credit(),
on the service, which makes a call creditDebit() on the accounts before returning. The client
then makes a final call, requestService(), on the service and receives a result.

4~ ~3

* 7168ch23.fm Page 354 Friday, August 11,2006 5:10 PM

354 CHAPTER 23 = TRANSACTIONS

Client Service Accounts

getCost()

cost

credit()

creditDebit()

FPO

requestService()

result

Figure 23-1. Sequence diagram for credit/debit

There are a number of problems with this sequence of actions that can benefit from the
use of a transaction model. The steps of credit() and creditDebit() should certainly be
performed either together or not at all. But in addition there is the issue of the quality of the
service. For example, suppose the client is not happy with the results from the service, and it
would like to reclaim its money or, better yet, not spend it in the first place. If we include the
delivery of the service in the transaction, then there is the opportunity for the client to abort the
transaction before it is committed.

Figure 23-2 shows the larger set of messages in the sequence diagram for “normal” execu-
tion. As before, the client requests the cost from the service. After getting this cost, the client
asks the transaction manager to create a transaction and receives the transaction ID. It then
joins the transaction itself. When it asks the service to credit an amount, the service also joins
the transaction. The service then asks the account to creditDebit() the amount, and as part of
this the account also joins the transaction. The client then requests the service and gets the
result. If all is fine, it then asks the transaction manager to commit (), which triggers the prepare
and commit phase. The transaction manager asks each participant to prepare(), and if it gets
satisfactory replies from each, it then asks each one to commit().

4~ ~3

Alyce Fountain
smallFPO

* 7168ch23.fm Page 355 Friday, August 11,2006 5:10 PM

CHAPTER 23 = TRANSACTIONS 355

Client Service Accounts TxnManager
getCost{)
cost
create()
transactionlD
join{)
creditf) o
jein{)
cred itDebit() o
join{}

FPO

requestServicel)

result
commit(}
preparef)
preparef)
prepare()
commit{)
commit{)
commit{)

Figure 23-2. Sequence diagram for credit/debit with transactions

The points of failure in this transaction include the following:

* The cost may be too high for the client. However, at this stage, the client has not created
or joined a transaction, so it’s not an issue.

* The client may offer too little in the way of payment to the service. The service can signal
this by joining the transaction and then aborting it, which ensures that the client has to
roll back the transaction. (Of course, the service could instead throw a NotEnoughPayment
exception; joining and aborting is used for illustrating transaction possibilities.)

* There may be a time delay between finding the price and asking for the service, and the
price may have gone up in the meantime. The service would then abort the transaction,
forcing the client and the accounts to roll back.

4~ ~3

Alyce Fountain
smallFPO

* 7168ch23.fm Page 356 Friday, August 11,2006 5:10 PM

356 CHAPTER 23 = TRANSACTIONS

» After the service is performed, the client may decide that the result was not good enough
and refuse to pay. Aborting the transaction at this stage would cause the service and
accounts to roll back.

¢ The accounts service may abort the transaction if sufficient client funds are unavailable.

PayableFileClassifierImpl

The service is a version of the familiar file classifier that requires a payment before it will
divulge the MIME type for a file name. A bit unrealistic, perhaps, but that doesn’t matter for
our purposes here. There will be an interface, PayableFileClassifier, which extends the
FileClassifier interface. We will also make it extend the Payable interface, just in case

we want to charge for other services. In line with other interfaces, we’ll extend the
PayableFileClassifier to a RemotePayableFileClassifier and then implement it with
aPayableFileClassifierImpl.

The PayableFileClassifierImpl can use the implementation of the rmi.
FileClassifierImpl, so we will make it extend this class. We also want it to be a participant in
a transaction, so it must implement the TransactionParticipant interface. This leads to the
inheritance diagram of Figure 23-3, which isn’t as complex as it looks.

Remole FileClassifier Payable
i K i
| , T T T -~~~ e
! I
o O Fayabla F P 0
[FileClassitier Remote
I f f
Hemole o ____ ;
FileClassifier I
! I
_______ | 1
: RemolePayabls Transaclion ProxyAcoessor
FileClassifier FileClassitier Participant
[mp f 7 A
I | I
________________ T |
FayableFile
Classifierimpl

Figure 23-3. Class diagram for a transaction participant

A new element in this hierarchy is the interface Payable:

package common;

import java.io.Serializable;

import net.jini.core.transaction.server.TransactionManager;
Vioio

* Payable.java

*/

4~ ~3

Alyce Fountain
smallFPO

* 7168ch23.fm Page 357 Friday, August 11,2006 5:10 PM

CHAPTER 23 = TRANSACTIONS 357

public interface Payable extends Serializable {

void credit(long amount, long accountID,
TransactionManager mgr,
long transactionID)
throws java.rmi.RemoteException;
long getCost() throws java.rmi.RemoteException;
} // Payable

Extending this interface is the PayableFileClassifier interface, which will be used by the
client to search for the service:

package common;

Vioio

* PayableFileClassifier.java

*/

public interface PayableFileClassifier extends FileClassifier, Payable {

} // PayableFileClassifier
with a simple extension to the remote form:

package txn;

import common.PayableFileClassifier;

import java.rmi.Remote;

Vioio

* RemotePayableFileClassifier.java

*/

public interface RemotePayableFileClassifier extends PayableFileClassifier, Remote {

} // RemotePayableFileClasssifier

The implementation of the RemotePayableFileClassifier joins the transaction when
credit() is called. The implementation object is passed the transaction manager as one
parameter to this call. It then finds an Accounts service from a known location (e.g., using
unicast lookup), registers the money transfer, and then performs the service. There is no real
state information kept by this implementation that is altered by the transaction. When asked to
prepare() by the transaction manager, it can just return NOTCHANGED. If there was state, the
prepare() and commit () methods would have more content. The prepareAndCommit() method
may be called by a transaction manager as an optimization, and the version given in this
example follows the specification given in the Jini transaction document.

When the implementation object joins the transaction, it must pass an object that the
transaction can make calls on. Since the transaction manager is running remotely, this means
that the object passed to it must be a proxy, which in turn means that the implementation must
prepare a proxy and pass it to the transaction manager. On the other hand, the server that
contains the service object needs to have a proxy to register the service. You have seen this a
few times before: the service implements ProxyAccessor, which allows the server to get the
proxy from the service.

4~ ~3

* 7168ch23.fm Page 358 Friday, August 11,2006 5:10 PM

358 CHAPTER 23 = TRANSACTIONS

The service implementation is as follows:

package txn;
import common.MIMEType;
import common.Accounts;
import rmi.FileClassifierImpl;
import net.jini.core.transaction.server.TransactionManager;
import net.jini.core.transaction.server.TransactionParticipant;
import net.jini.core.transaction.server.TransactionConstants;
import net.jini.core.transaction.UnknownTransactionException;
import net.jini.core.transaction.CannotJoinException;
import net.jini.core.transaction.CannotAbortException;
import net.jini.core.transaction.server.CrashCountException;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.discovery.Lookuplocator;
import java.rmi.RemoteException;
import java.rmi.RMISecurityManager;
import net.jini.export.ProxyAccessor;
import net.jini.export.*;
import net.jini.jeri.BasicJeriExporter;
import net.jini.jeri.BasicILFactory;
import net.jini.jeri.tcp.TcpServerEndpoint;
Vioio
* PayableFileClassifierImpl.java
*/
public class PayableFileClassifierImpl extends FileClassifierImpl
implements RemotePayableFileClassifier, TransactionParticipant, ProxyAccessor {
protected TransactionManager mgr = null;
protected Accounts accts = null;
protected long crashCount = 0; // ?2?
protected long cost = 10;
protected final long myID = 54321;
protected TransactionParticipant proxy;
public PayableFileClassifierImpl() throws java.rmi.RemoteException {
supex();
System.setSecurityManager(new RMISecurityManager());
try {
Exporter exporter = new BasicJeriExporter(TcpServerEndpoint.getIn-
stance(0),
new BasicILFactory());
proxy = (TransactionParticipant) exporter.export(this);
} catch (Exception e) {

}

4~ ~3

* 7168ch23.fm Page 359 Friday, August 11,2006 5:10 PM

CHAPTER 23 = TRANSACTIONS 359

public void credit(long amount, long accountID,
TransactionManager mgr,
long transactionID) {
System.out.println("crediting");
this.mgr = mgr;
// before findAccounts
System.out.println("Joining txn");
try {
mgr.join(transactionID, proxy, crashCount);
} catch(UnknownTransactionException e) {
e.printStackTrace();
} catch(CannotJoinException e) {
e.printStackTrace();
} catch(CrashCountException e) {
e.printStackTrace();
} catch(RemoteException e) {
e.printStackTrace();

}
System.out.println("Joined txn");
findAccounts();
if (accts == null) {
try {
mgr.abort(transactionID);
} catch(UnknownTransactionException e) {
e.printStackTrace();
} catch(CannotAbortException e) {
e.printStackTrace();
} catch(RemoteException e) {
e.printStackTrace();
}
}
try {

accts.creditDebit(amount, accountID, myID,
transactionID, mgr);
} catch(java.rmi.RemoteException e) {
e.printStackTrace();
}

}
public long getCost() {

return cost;
}
protected void findAccounts() {
// find a known account service
LookupLocator lookup = null;
ServiceRegistrar registrar = null;
try {
lookup = new Lookuplocator("jini://localhost");

4~ ~3

* 7168ch23.fm Page 360 Friday, August 11,2006 5:10 PM

360 CHAPTER 23 = TRANSACTIONS

} catch(java.net.MalformedURLException e) {
System.err.println("Lookup failed: " + e.toString());
System.exit(1);

}

try {
registrar = lookup.getRegistrar();

} catch (java.io.IOException e) {

System.err.println("Registrar search failed: " + e.toString());
System.exit(1);

} catch (java.lang.ClassNotFoundException e) {
System.err.println("Registrar search failed: " + e.toString());
System.exit(1);

}

System.out.println("Registrar found");

Class[] classes = new Class[] {Accounts.class};

ServiceTemplate template = new ServiceTemplate(null, classes,

null);

try {
accts = (Accounts) registrar.lookup(template);

} catch(java.rmi.RemoteException e) {

System.exit(2);

}

}
public MIMEType getMIMEType(String fileName) throws RemoteException {

if (mgr == null) {
// don't process the request
return null;
}
return super.getMIMEType(fileName);
}
public int prepare(TransactionManager mgr, long id) {
System.out.println("Preparing...");
return TransactionConstants.PREPARED;
}
public void commit(TransactionManager mgr, long id) {
System.out.println("committing");
}
public void abort(TransactionManager mgr, long id) {
System.out.println("aborting");
}
public int prepareAndCommit(TransactionManager mgr, long id) {
int result = prepare(mgr, id);
if (result == TransactionConstants.PREPARED) {
commit(mgr, id);
result = TransactionConstants.COMMITTED;
}

return result;

4~ ~3

* 7168ch23.fm Page 361 Friday, August 11,2006 5:10 PM

CHAPTER 23 = TRANSACTIONS 361

}
public Object getProxy() {

return proxy;

}
} // PayableFileClassifierImpl

The server for this implementation uses the variation that it gets the service proxy from the
service. Code to do this was illustrated in the server in Chapter 16 and is not repeated here.

AccountsImpl

Let’s assume that all accounts in this example are managed by a single Accounts service that
knows about all accounts via a long identifier. These accounts should be stored in a permanent
form, there should be proper crash recovery mechanisms, and so on. For simplicity, we will
just have a hash table of accounts, with uncommitted transactions kept in a “pending” list.
When a commit occurs, the pending transaction takes place.

The Accounts service joins the transaction when creditDebit() is called. It is passed the
transaction manager as a parameter in this call. Figure 23-4 shows the AccountsImpl class

diagram.
| |
e e e e e - |
: FPO
ProxyAccessor HemoleAscounis Transaction
g Parlicipant
A 1 L)
e L e e e e e e e e e e e == = El
|
|
Accountsimpl

Figure 23-4. Class diagram for Accounts

The Accounts interface is
Vak
* Accounts. java
*/
package common;
import net.jini.core.transaction.server.TransactionManager;
public interface Accounts {

void creditDebit(long amount, long creditorID,
long debitorID, long transactionID,
TransactionManager tm)
throws java.rmi.RemoteException;

} // Accounts

4~ ~3

Alyce Fountain
smallFPO

* 7168ch23.fm Page 362 Friday, August 11,2006 5:10 PM

362 CHAPTER 23 = TRANSACTIONS

and the implementation is

Vioio

* AccountsImpl.java

*/

package txn;

// import common.Accounts;

import net.jini.core.transaction.server.TransactionManager;
import net.jini.core.transaction.server.TransactionParticipant;
import net.jini.core.transaction.server.TransactionConstants;
import java.util.Hashtable;

import net.jini.export.ProxyAccessor;

import net.jini.export.*;

import net.jini.jeri.BasicJeriExporter;

import net.jini.jeri.BasicILFactory;

import net.jini.jeri.tcp.TcpServerEndpoint;

// debug

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.discovery.Lookuplocator;

// end debug

public class AccountsImpl

implements RemoteAccounts, TransactionParticipant, ProxyAccessor {

protected long crashCount = 0; // value??
protected Hashtable accountBalances = new Hashtable();
protected Hashtable pendingCreditDebit = new Hashtable();
protected TransactionParticipant proxy;
public AccountsImpl() throws java.rmi.RemoteException {
try {
Exporter exporter = new BasicJeriExporter(TcpServerEndpoint.getIn-
stance(0),
new BasicILFactory());
proxy = (TransactionParticipant) exporter.export(this);
} catch (Exception e) {

}
}

public void creditDebit(long amount, long creditorID,
long debitorID, long transactionID,
TransactionManager mgr) {

try {
System.out.println("Trying to join");
mgr.join(transactionID, proxy, crashCount);

} catch(net.jini.core.transaction.UnknownTransactionException e) {
e.printStackTrace();

4~ ~3

* 7168ch23.fm Page 363 Friday, August 11,2006 5:10 PM

CHAPTER 23 = TRANSACTIONS 363

} catch(java.rmi.RemoteException e) {
e.printStackTrace();
} catch(net.jini.core.transaction.server.CrashCountException e) {
e.printStackTrace();
} catch(net.jini.core.transaction.CannotJoinException e) {
e.printStackTrace();
}
System.out.println("joined");
pendingCreditDebit.put(new TransactionPair(mgr,
transactionID),
new CreditDebit(amount, creditorID,
debitorID));
}
public int prepare(TransactionManager mgr, long id) {
System.out.println("Preparing...");
return TransactionConstants.PREPARED;
}
public void commit(TransactionManager mgr, long id) {
System.out.println("committing");
}
public void abort(TransactionManager mgr, long id) {
System.out.println("aborting");
}
public int prepareAndCommit(TransactionManager mgr, long id) {
int result = prepare(mgr, id);
if (result == TransactionConstants.PREPARED) {
commit(mgr, id);
result = TransactionConstants.COMMITTED;
}

return result;
}
class CreditDebit {
long amount;
long creditorID;
long debitorID;
CreditDebit(long a, long c, long d) {
amount = a;
creditorID = c;
debitorID = d;
}
}

class TransactionPair {
TransactionPair(TransactionManager mgr, long id) {

}

}
public Object getProxy() {

- e

* 7168ch23.fm Page 364 Friday, August 11,2006 5:10 PM

364 CHAPTER 23 = TRANSACTIONS

return proxy;

}
} // AccountsImpl

The server for this implementation is standard and so its code is omitted.

Client

The final component in this example is the client that starts the transaction. The simplest code
for the client would just use the blocking lookup() method of ClientLookupManager to find first
the service and then the transaction manager. We use the longer way to show various other
ways of doing things. This implementation uses a nested class that extends Thread. Because of
this, it cannot extend UnicastRemoteObject, and so is not automatically exported. In order to
export itself, it has to call UnicastRemoteObject.exportObject. This must be done before the
call to join the transaction, which expects a remote object.

package client;

import common.PayableFileClassifier;

import common.MIMEType;

import java.rmi.RMISecurityManager;

import net.jini.discovery.lookupDiscovery;

import net.jini.discovery.Discoverylistener;

import net.jini.discovery.DiscoveryEvent;

import net.jini.core.lookup.ServiceRegistrar;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.core.transaction.server.TransactionManager;
import net.jini.core.transaction.server.TransactionConstants;
import net.jini.core.transaction.server.TransactionParticipant;
import net.jini.lease.leaseRenewalManager;

import net.jini.core.lease.lease;

import net.jini.lookup.entry.Name;

import net.jini.core.entry.Entry;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

import net.jini.core.lookup.ServiceTemplate;

import net.jini.discovery.LookupDiscoveryManager;

import net.jini.lookup.ServiceDiscoveryManager;

import net.jini.core.lookup.ServiceItem;

import net.jini.lease.leaseRenewalManager;

import net.jini.export.*;

import net.jini.jeri.BasicJeriExporter;

import net.jini.jeri.BasicILFactory;

import net.jini.jeri.tcp.TcpServerEndpoint;

import java.rmi.server.ExportException;

Vioio

* TestTxn.java

*/

public class TestTxn implements TransactionParticipant {

4~ ~3

* 7168ch23.fm Page 365 Friday, August 11,2006 5:10 PM

CHAPTER 23 = TRANSACTIONS 365

private static final long WAITFOR = 100000L;
long crashCount = 0;
PayableFileClassifier classifier = null;
TransactionManager mgr = null;
long myClientID; // my account ID
public static void main(String argv[]) {
new TestTxn();
// stay around long enough to receive replies
try {
Thread.currentThread().sleep(100000L);
} catch(java.lang.InterruptedException e) {
// do nothing
}

}
public TestTxn() {

System.setSecurityManager (new RMISecurityManager());

classifier = findClassifier();

long cost = 0;

try {
cost = classifier.getCost();

} catch(java.rmi.RemoteException e) {
e.printStackTrace();

}

if (cost > 20) {
System.out.println("Costs too much:
classifier = null;

+ cost);

}

mgr = findTxnMgr();
TransactionManager.Created tcs = null;

System.out.println("Creating transaction");
try {
tcs = mgr.create(Lease.FOREVER);
} catch(java.rmi.RemoteException e) {
mgr = null;
return;
} catch(net.jini.core.lease.LeaseDeniedException e) {
mgr = null;
return;

}

long transactionID = tcs.id;

// join in ourselves
System.out.println("Joining transaction");
// we need to give a proxy to the transaction mgr

4~ ~3

* 7168ch23.fm Page 366 Friday, August 11,2006 5:10 PM

366 CHAPTER 23 = TRANSACTIONS

Exporter exporter = new BasicJeriExporter(TcpServerEndpoint.getInstance(0),
new BasicILFactory());
// export an object of this class
TransactionParticipant proxy = null;
try {
proxy = (TransactionParticipant) exporter.export(this);
} catch (ExportException e) {
e.printStackTrace();
System.exit(1);
}
try {
mgr.join(transactionID, proxy, crashCount);
} catch(net.jini.core.transaction.UnknownTransactionException e) {
e.printStackTrace();
} catch(java.rmi.RemoteException e) {
e.printStackTrace();
} catch(net.jini.core.transaction.server.CrashCountException e) {
e.printStackTrace();
} catch(net.jini.core.transaction.CannotJoinException e) {
e.printStackTrace();

}

new LeaseRenewalManager().renewUntil(tcs.lease,
Lease.FOREVER,
null);
System.out.println("crediting...");
try {
classifier.credit(cost, myClientID,
mgr, transactionID);
} catch(Exception e) {
System.err.println(e.toString());

}

System.out.println("classifying...");
MIMEType type = null;
try {
type = classifier.getMIMEType("filel.txt");
} catch(java.rmi.RemoteException e) {
System.err.println(e.toString());

}

// if we get a good result, commit; else abort

if (type != null) {
System.out.println("Type is " + type.toString());
System.out.println("Calling commit");

try {

4~ ~3

* 7168ch23.fm Page 367 Friday, August 11,2006 5:10 PM

CHAPTER 23 = TRANSACTIONS 367

System.out.println("mgr state " + mgr.getState(transactionID));
mgr.commit(transactionID);

} catch(Exception e) {
e.printStackTrace();

}

} else {
try {
mgr.abort(transactionID);
} catch(java.rmi.RemoteException e) {
} catch(net.jini.core.transaction.CannotAbortException e) {
} catch(net.jini.core.transaction.UnknownTransactionException e) {

}
}

public PayableFileClassifier findClassifier() {
ServiceDiscoveryManager clientMgr = null;
try {
LookupDiscoveryManager mgr =
new LookupDiscoveryManager (LookupDiscovery.ALL GROUPS,
null, // unicast locators
null); // Discoverylistener
clientMgr = new ServiceDiscoveryManager(mgr,
new LeaseRenewalManager());
} catch(Exception e) {
e.printStackTrace();
System.exit(1);
}

Class [] classes = new Class[] {PayableFileClassifier.class};
ServiceTemplate template = new ServiceTemplate(null, classes,
null);
Serviceltem item = null;
// Try to find the service, blocking until timeout if necessary
try {
item = clientMgr.lookup(template,
null, // no filter
WAITFOR); // timeout
} catch(Exception e) {
e.printStackTrace();
System.exit(1);
}
if (item == null) {
// couldn't find a service in time
System.out.println("no service");
System.exit(1);

4~ ~3

* 7168ch23.fm Page 368 Friday, August 11,2006 5:10 PM

368 CHAPTER 23 = TRANSACTIONS

}

// Get the service
PayableFileClassifier classifier = (PayableFileClassifier) item.service;
if (classifier == null) {
System.out.println("Classifier null");
System.exit(1);
}
return classifier;
}
public TransactionManager findTxnMgr() {
ServiceDiscoveryManager clientMgr = null;
try {
LookupDiscoveryManager mgr =
new LookupDiscoveryManager(LookupDiscovery.ALL GROUPS,
null, // unicast locators
null); // Discoverylistener
clientMgr = new ServiceDiscoveryManager(mgr,
new LeaseRenewalManager());
} catch(Exception e) {
e.printStackTrace();
System.exit(1);
}

Class [] classes = new Class[] {TransactionManager.class};
ServiceTemplate template = new ServiceTemplate(null, classes,
null);

ServiceItem item = null;
// Try to find the service, blocking until timeout if necessary
try {

item = clientMgr.lookup(template,

null, // no filter
WAITFOR); // timeout

} catch(Exception e) {

e.printStackTrace();

System.exit(1);
}
if (item == null) {

// couldn't find a service in time

System.out.println("no service");

System.exit(1);
}
// Get the service
TransactionManager mgr = (TransactionManager) item.service;
if (mgr == null) {

System.out.println("Mgr null");

System.exit(1);

- e

* 7168ch23.fm Page 369 Friday, August 11,2006 5:10 PM

CHAPTER 23 = TRANSACTIONS

return mgr;

}

public int prepare(TransactionManager mgr, long id) {
System.out.println("Preparing...");
return TransactionConstants.PREPARED;

}

public void commit(TransactionManager mgr, long id) {
System.out.println("committing");

}

public void abort(TransactionManager mgr, long id) {
System.out.println("aborting");

}

public int prepareAndCommit(TransactionManager mgr, long id) {
int result = prepare(mgr, id);
if (result == TransactionConstants.PREPARED) {
commit(mgr, id);
result = TransactionConstants.COMMITTED;
}

return result;

}
} // TestTxn

Summary

Transactions are needed to coordinate changes of state across multiple clients and services.
The Jini transaction model uses a simple model of transactions, with semantics details left to
the clients and services. The Jini distribution supplies a transaction manager that can be used
to assist the process.

—

369

ﬁ

P
» 7168ch23.fm Page 370 Friday, August 11,2006 5:10 PM

|
2

