
301

■ ■ ■

C H A P T E R 2 2

Advanced Security

Prior to version 2.0, Jini used the standard Java security mechanism. This mechanism was
designed to deal with code downloaded from a remote location, and it was put in place to limit
the foreign code in a local virtual machine. In this capability-based security model, the client
grants to foreign code the capability to perform certain activities. So, for example, foreign code
cannot write to the local file system unless this particular permission has been granted.
Chapter 14 covered this topic in detail.

But what Chapter 14 ignored is a range of issues concerning the network transport, for
example:

• Integrity: Have the classes and instance data reached the client in the form they started,
or has someone corrupted them along the way?

• Authentication: Did the data come from whom you expected, or did it come from
someone else? The client may need to authenticate itself to the server, or vice versa.

• Authorization: Once you know from whom the data came, what rights will you grant it?
(This was covered in Chapter 14.)

• Confidentiality: Has the data been encrypted so that others cannot read it?

These are standard network security concerns; however, Jini gives them some special
wrinkles. For example, instance data for a proxy may be sent from a server to a client either
directly or via a lookup server. In addition to the instance data, class files often have to be
loaded, and these may come from a third-party HTTP server. There are even subtleties in
where a service may be running: an activatable service doesn’t run in the server that started it,
but in a third-party activation service.

In this chapter, we’ll discuss the topics of integrity, authentication, and confidentiality,
and see how these are managed within Jini.

Invocation Constraints
The security considerations act as constraints on normal execution; something that might have
been allowed will be restricted. For example, a client may enforce the constraint that commu-
nications be encrypted. A client might not want to know many details of how encryption has
been done (that sort of detail can be left to the middleware itself). But if encryption hasn’t been
done, then the client will just not accept the communication.

7168ch22.fm Page 301 Friday, August 11, 2006 4:25 PM

302 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

Jini 2.0 defines a set of objects that specify constraints on behavior. These objects don’t
specify how a constraint is implemented, but what the constraint is. Some of these constraints
are as follows:

• Integrity.YES: Detect when message contents (both requests and replies) have been
altered by third parties and, if message contents have been altered, refuse to process the
message and throw an exception.

• Integrity.NO: Do not detect when message contents have been altered by third parties.

■Note In between YES and NO is “DON’T CARE”. There is no specific object to express this constraint (or
lack of it). If you don’t care whether it is checked or not, then you don’t specify either a YES or NO constraint—
just don’t mention the constraint at all.

• Confidentiality.YES: Transmit message contents so that they cannot easily be inter-
preted by third parties (typically by using encryption).

• Confidentiality.NO: Transmit message contents in the clear (no use of encryption).

■Note Similarly, in between YES and NO is “DON’T CARE”. There is no specific object to express this
constraint (or lack of it). You just don’t use either the YES or NO object to mean that you don’t care if it is confi-
dential or not. This is common to all constraints.

• ClientAuthentication.YES: The client must authenticate to the server.

• ClientAuthentication.NO: Do not authenticate the client to the server. This has a special
meaning in that the client will refuse to say who it is—the client remains anonymous.
This may be important for applications where participants wish to preserve their
privacy.

• ServerAuthentication.YES: Authenticate the server to the client.

• ServerAuthentication.NO: Do not authenticate the server to the client, so that the server
remains anonymous.

The Javadoc for InvocationConstraint lists all its subclasses, and within each of these
subclasses are constant objects such as the preceding.

Each InvocationConstraint can potentially limit client or server activity. We can make up
two sets of constraints: mandatory constraints that must be satisfied and preferred constraints
that should be satisfied if they do not conflict with a mandatory one. For example, if both
Integrity.YES and Integrity.No are specified as mandatory, then any call must fail. If,
however, one is specified as mandatory and the other as preferred, then the mandatory one
must be satisfied.

7168ch22.fm Page 302 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 303

An InvocationConstraints (note the plural) takes a set of mandatory and a set of preferred
constraints. These can be specified as collections or arrays to a constructor.

class InvocationConstraints {
 InvocationConstraints(Collection reqs, Collection prefs);
 InvocationConstraints(InvocationConstraint[] reqs,
 InvocationConstraint[] prefs);
 InvocationConstraints(InvocationConstraint req,
 InvocationConstraint pref);
 ...
}

Method Constraints
Whenever a method call is made, constraint checks should be made. For example, a bank
method withdraw() should always authenticate the caller. It should be done on each call, not
just once—a certificate that is valid for one call may not be valid the next time a call is made.

The MethodConstraints interface allows each method to have its own set of constraints.
For example, a method that sends credit card details might require encryption, whereas a
“browse” request would not. The BasicMethodConstraints class is usually used to implement
this interface. In setting constraints, all methods can be set to use the same set of constraints,
or constraints can be set up on a per-method basis.

class BasicMethodConstraints {
 BasicMethodConstraints(InvocationConstraints constraints);
 BasicMethodConstraints(BasicMethodConstraints.MethodDesc[] descs);
 ...
}

Logging
Security is difficult to get right, and it’s hard to debug. The Logger is your friend here (see
Chapter 20 for details on logging). Security is handled by the net.jini.security.Security,
which writes to three loggers:

• net.jini.security.integrity

• net.jini.security.trust

• net.jini.security.policy

The following sample code gets logging information from the client:

 static final String TRUST_LOG = "net.jini.security.trust";
 static final String INTEGRITY_LOG = "net.jini.security.integrity";
 static final String POLICY_LOG = "net.jini.security.policy";
 static final Logger trustLogger = Logger.getLogger(TRUST_LOG);
 static final Logger integrityLogger = Logger.getLogger(INTEGRITY_LOG);
 static final Logger policyLogger = Logger.getLogger(POLICY_LOG);

7168ch22.fm Page 303 Friday, August 11, 2006 4:25 PM

304 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

 private static FileHandler trustFh;
 private static FileHandler integrityFh;
 private static FileHandler policyFh;
 private static void installLoggers() {
 try {
 // this handler will save ALL log messages in the file
 trustFh = new FileHandler("log.client.trust.txt");
 integrityFh = new FileHandler("log.client.integrity.txt");
 policyFh = new FileHandler("log.client.policy.txt");
 // the format is simple rather than XML
 trustFh.setFormatter(new SimpleFormatter());
 integrityFh.setFormatter(new SimpleFormatter());
 policyFh.setFormatter(new SimpleFormatter());
 trustLogger.addHandler(trustFh);
 integrityLogger.addHandler(integrityFh);
 policyLogger.addHandler(policyFh);
 trustLogger.setLevel(java.util.logging.Level.ALL);
 integrityLogger.setLevel(java.util.logging.Level.ALL);
 policyLogger.setLevel(java.util.logging.Level.ALL);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

Protocols
A range of different protocols are available to shift data around the network, including TCP,
HTTP (which, of course, is layered above TCP), and protocols designed with security in mind,
such as HTTPS, SSL (now officially TLS), and others. I’ll cover TCP and SSL in the sections that
follow.

TCP
A service implements TCP by using a BasiJeriExporter with a TCP server. Typically, the
exporter will be defined in a configuration file such as the following:

import net.jini.jeri.BasicILFactory;
import net.jini.jeri.BasicJeriExporter;
import net.jini.jeri.tcp.TcpServerEndpoint;
security.FileClassifierServer {
 /* class name for the service */
 serviceName = "rmi.FileClassifierImpl";
 exporter = new BasicJeriExporter(TcpServerEndpoint.getInstance(0),
 new BasicILFactory());
}

TCP does not support any of the security mechanisms of this chapter. So we use it as a
“bad example” once and then no longer consider it.

7168ch22.fm Page 304 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 305

SSL
The server can use Jeri over SSL, with a configuration such as config/security/
jeri-ssl-minimal.config:

/* Configuration source file for an SSL server */
import java.security.Permission;
import net.jini.constraint.BasicMethodConstraints;
import net.jini.core.constraint.InvocationConstraint;
import net.jini.core.constraint.InvocationConstraints;
import net.jini.core.constraint.Integrity;
import net.jini.jeri.*;
import net.jini.jeri.ssl.*;
security.FileClassifierServer {
 /* class name for the service */
 serviceName = "rmi.FileClassifierImpl";
 /* Exporter for the server proxy */
 exporter =
 /* Use secure exporter */
 new BasicJeriExporter(
 /* Use SSL transport */
 SslServerEndpoint.getInstance(0),
 new BasicILFactory(
 /* Require integrity for all methods */
 new BasicMethodConstraints(
 new InvocationConstraints(
 (InvocationConstraint[]) null,
 (InvocationConstraint[]) null)),
 /* No Permission */
 null
)
);
}

SSL is designed to support encryption using a secret key mechanism following open nego-
tiation. It can also support authentication of both the client and server using public key
certificates.

Proxy Preparer
When a client gets a proxy from a server, the server may already have placed some constraints
on it. But any of these constraints are those that the server requires, not those that the client
may require, so the client has to set its own constraints on the service proxy. It does this by
creating a new proxy from the original by adding in its own constraints. The classes the client
uses for setting its own constraints are described by both an interface and sample implemen-
tations. The interface is ProxyPreparer:

7168ch22.fm Page 305 Friday, August 11, 2006 4:25 PM

306 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

interface ProxyPreparer {
 Object prepareProxy(Object proxy)
 throws RemoteException;
}

And an implementation is BasicProxyPreparer:

class BasicProxyPreparer {
 BasicProxyPreparer();
 BasicProxyPreparer(boolean verify,
 MethodConstraints methodConstraints,
 Permission[] permissions);
 BasicProxyPreparer(boolean verify,
 Permission[] permissions);
}

The second constructor is the one most likely to be used by a client: get a proxy from a
service, create a basic proxy preparer with constraints and permissions (and whether or not to
verify the proxy; see the later section “Client with Proxy Verification”), and use this to prepare
a new proxy with the constraints and permissions. The new proxy is then used for all calls on
the service.

A client that finds a file classifier and prepares a new service proxy, taking the proxy
preparer from a configuration file, is as follows:

package client;
import common.FileClassifier;
import common.MIMEType;
import java.rmi.RMISecurityManager;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import java.rmi.RemoteException;
import net.jini.security.BasicProxyPreparer;
import net.jini.security.ProxyPreparer;
import net.jini.config.Configuration;
import net.jini.config.ConfigurationException;
import net.jini.config.ConfigurationProvider;
import java.util.logging.*;
/**
 * TestFileClassifierProxyPreparer.java
 */
public class TestFileClassifierProxyPreparer implements DiscoveryListener {
 private Configuration config;
 static final String TRUST_LOG = "net.jini.security.trust";
 static final String INTEGRITY_LOG = "net.jini.security.integrity";
 static final String POLICY_LOG = "net.jini.security.policy";
 static final Logger trustLogger = Logger.getLogger(TRUST_LOG);

7168ch22.fm Page 306 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 307

 static final Logger integrityLogger = Logger.getLogger(INTEGRITY_LOG);
 static final Logger policyLogger = Logger.getLogger(POLICY_LOG);
 private static FileHandler trustFh;
 private static FileHandler integrityFh;
 private static FileHandler policyFh;
 public static void main(String argv[])
 throws ConfigurationException {
 installLoggers();
 new TestFileClassifierProxyPreparer(argv);
 // stay around long enough to receive replies
 try {
 Thread.currentThread().sleep(100000L);
 } catch(java.lang.InterruptedException e) {
 // do nothing
 }
 }
 public TestFileClassifierProxyPreparer(String[] argv)
 throws ConfigurationException {
 config = ConfigurationProvider.getInstance(argv);
 System.setSecurityManager(new RMISecurityManager());
 LookupDiscovery discover = null;
 try {
 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);
 } catch(Exception e) {
 System.err.println(e.toString());
 System.exit(1);
 }
 discover.addDiscoveryListener(this);
 }
 private static void installLoggers() {
 try {
 // this handler will save ALL log messages in the file
 trustFh = new FileHandler("log.client.trust.txt");
 integrityFh = new FileHandler("log.client.integrity.txt");
 policyFh = new FileHandler("log.client.policy.txt");
 // the format is simple rather than XML
 trustFh.setFormatter(new SimpleFormatter());
 integrityFh.setFormatter(new SimpleFormatter());
 policyFh.setFormatter(new SimpleFormatter());
 trustLogger.addHandler(trustFh);
 integrityLogger.addHandler(integrityFh);
 policyLogger.addHandler(policyFh);
 trustLogger.setLevel(java.util.logging.Level.ALL);
 integrityLogger.setLevel(java.util.logging.Level.ALL);
 policyLogger.setLevel(java.util.logging.Level.ALL);
 } catch(Exception e) {
 e.printStackTrace();

7168ch22.fm Page 307 Friday, August 11, 2006 4:25 PM

308 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

 }
 }
 public void discovered(DiscoveryEvent evt) {
 ServiceRegistrar[] registrars = evt.getRegistrars();
 Class [] classes = new Class[] {FileClassifier.class};
 FileClassifier classifier = null;
 ServiceTemplate template = new ServiceTemplate(null, classes,
 null);

 for (int n = 0; n < registrars.length; n++) {
 System.out.println("Lookup service found");
 ServiceRegistrar registrar = registrars[n];
 try {
 classifier = (FileClassifier) registrar.lookup(template);
 } catch(java.rmi.RemoteException e) {
 e.printStackTrace();
 System.exit(4);
 continue;
 }
 if (classifier == null) {
 System.out.println("Classifier null");
 continue;
 }
 System.out.println("Getting the proxy");
 // Get the proxy preparer
 ProxyPreparer preparer = null;
 try {
 preparer =
 (ProxyPreparer) config.getEntry(
 "client.TestFileClassifierProxyPreparer",
 "preparer", ProxyPreparer.class,
 new BasicProxyPreparer());
 } catch(ConfigurationException e) {
 e.printStackTrace();
 preparer = new BasicProxyPreparer();
 }
 // Prepare the new proxy
 System.out.println("Preparing the proxy");
 try {
 classifier = (FileClassifier) preparer.prepareProxy(classifier);
 } catch(RemoteException e) {
 e.printStackTrace();
 System.exit(3);
 } catch(java.lang.SecurityException e) {
 e.printStackTrace();
 System.exit(6);
 }

7168ch22.fm Page 308 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 309

 // Use the service to classify a few file types
 System.out.println("Calling the proxy");
 MIMEType type;
 try {
 String fileName;
 fileName = "file1.txt";
 type = classifier.getMIMEType(fileName);
 printType(fileName, type);
 fileName = "file2.rtf";
 type = classifier.getMIMEType(fileName);
 printType(fileName, type);
 fileName = "file3.abc";
 type = classifier.getMIMEType(fileName);
 printType(fileName, type);
 } catch(java.rmi.RemoteException e) {
 System.out.println("Failed to call method");
 System.err.println(e.toString());
 System.exit(5);
 continue;
 }
 // success
 System.exit(0);
 }
 }
 private void printType(String fileName, MIMEType type) {
 System.out.print("Type of " + fileName + " is ");
 if (type == null) {
 System.out.println("null");
 } else {
 System.out.println(type.toString());
 }
 }
 public void discarded(DiscoveryEvent evt) {
 // empty
 }
} // TestFileClassifier

A minimal configuration file for this client is config/security/preparer-minimal.config:

import java.security.Permission;
import net.jini.core.constraint.InvocationConstraint;
import net.jini.core.constraint.InvocationConstraints;
import net.jini.core.constraint.Integrity;
import net.jini.security.BasicProxyPreparer;
import net.jini.constraint.BasicMethodConstraints;
client.TestFileClassifierProxyPreparer {
 preparer =
 new BasicProxyPreparer(

7168ch22.fm Page 309 Friday, August 11, 2006 4:25 PM

310 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

 /* Don't verify the proxy. */
 false,
 /* No constraints */
 new BasicMethodConstraints(
 new InvocationConstraints(
 (InvocationConstraint[]) null,
 (InvocationConstraint[]) null
)
),
 new Permission[] {}
);
}

This file can be run directly with the following:

 java ... client.TestFileClassifierProxyPreparer \
 config/security/preparer-minimal.config

Or it can be run from the Ant build files with this:

 ant run -DrunFile=client.TestFileClassifierProxyPreparer \
 -Dconfig=config/security/preparer-minimal.config

This client will run successfully with any service that does not impose any constraints on
the client. So, for example, it will run with any service of the earlier chapters that does not
impose any constraints at all. However, using this configuration, it will not run with some of
the examples later in this chapter that do impose client-side constraints.

File Classifier Server
A file classifier server using configuration was presented in Chapter 19. The version here is
almost the same, with the addition of placing the service name in the configuration (since we
might need to run different versions of the service for different security requirements).

package config;
import java.rmi.RMISecurityManager;
import java.rmi.Remote;
import java.rmi.RemoteException;
import java.rmi.server.ExportException;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceRegistration;
import net.jini.core.lease.Lease;
import net.jini.core.lookup.ServiceID ;
import net.jini.lease.LeaseListener;
import net.jini.lease.LeaseRenewalEvent;

7168ch22.fm Page 310 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 311

import net.jini.lease.LeaseRenewalManager;
import net.jini.config.Configuration;
import net.jini.config.ConfigurationException;
import net.jini.config.ConfigurationProvider;
import net.jini.lookup.JoinManager;
import net.jini.id.UuidFactory;
import net.jini.id.Uuid;
import net.jini.discovery.LookupDiscoveryManager;
import net.jini.export.Exporter;
import rmi.RemoteFileClassifier;
import rmi.FileClassifierImpl;
import java.io.*;
/**
 * FileClassifierServerConfig.java
 */
public class FileClassifierServerConfig implements LeaseListener {

 private LeaseRenewalManager leaseManager = new LeaseRenewalManager();
 private ServiceID serviceID = null;
 private RemoteFileClassifier impl;
 private File serviceIdFile;
 private Configuration config;
 public static void main(String args[]) {
 FileClassifierServerConfig s = new FileClassifierServerConfig(args);

 // keep server running forever to
 // - allow time for locator discovery and
 // - keep re-registering the lease
 Object keepAlive = new Object();
 synchronized(keepAlive) {
 try {
 keepAlive.wait();
 } catch(java.lang.InterruptedException e) {
 // do nothing
 }
 }
 }
 public FileClassifierServerConfig(String[] args) {
 System.setSecurityManager(new RMISecurityManager());
 try {
 config = ConfigurationProvider.getInstance(args);
 } catch(ConfigurationException e) {
 System.err.println("Configuration error: " + e.toString());
 System.exit(1);
 }
 Exporter exporter = null;
 try {

7168ch22.fm Page 311 Friday, August 11, 2006 4:25 PM

312 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

 exporter = (Exporter)
 config.getEntry("config.FileClassifierServerConfig",
 "exporter",
 Exporter.class);
 } catch(ConfigurationException e) {
 e.printStackTrace();
 System.exit(1);
 }
 // Create the service and its proxy
 try {
 impl = new rmi.FileClassifierImpl();
 } catch(RemoteException e) {
 e.printStackTrace();
 System.exit(1);
 }
 Remote proxy = null;
 try {
 proxy = exporter.export(impl);
 } catch(ExportException e) {
 e.printStackTrace();
 System.exit(1);
 }
 // register proxy with lookup services
 JoinManager joinMgr = null;
 try {
 LookupDiscoveryManager mgr =
 new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,
 null, // unicast locators
 null); // DiscoveryListener
 joinMgr = new JoinManager(proxy, // service proxy
 null, // attr sets
 serviceID,
 mgr, // DiscoveryManager
 new LeaseRenewalManager());
 } catch(Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 }
 void getServiceID() {
 // Make up our own
 Uuid id = UuidFactory.generate();
 serviceID = new ServiceID(id.getMostSignificantBits(),
 id.getLeastSignificantBits());
 }
 public void serviceIDNotify(ServiceID serviceID) {

7168ch22.fm Page 312 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 313

 // called as a ServiceIDListener
 // Should save the id to permanent storage
 System.out.println("got service ID " + serviceID.toString());
 }
 public void discarded(DiscoveryEvent evt) {
 }
 public void notify(LeaseRenewalEvent evt) {
 System.out.println("Lease expired " + evt.toString());
 }

} // FileClassifierServerConfig

This server can be run using a configuration file such as a standard Jeri over TCP configu-
ration config/security/jeri-tcp.config:

import net.jini.jeri.BasicILFactory;
import net.jini.jeri.BasicJeriExporter;
import net.jini.jeri.tcp.TcpServerEndpoint;
security.FileClassifierServer {
 /* class name for the service */
 serviceName = "rmi.FileClassifierImpl";
 exporter = new BasicJeriExporter(TcpServerEndpoint.getInstance(0),
 new BasicILFactory());
}

This file can be run from the command line as follows:

 java ... security.FileClassifierServer \
 config/security/jeri-tcp.config

Or it can be run from the Ant build files with this:

 ant run -DrunFile=security.FileClassifierServer \
 -Dconfig=config/security/jeri-tcp.config

The server with the rmi.FileClassifierImpl and config/security/jeri-tcp.config
configuration has no security features and will be discarded by a client that imposes any
constraints. However, if you change the service class or configuration file, the server can meet
various client requirements.

To build the server and run it with various configuration files, I use the Ant file
security.FileClassifierServer.xml. This configuration file is a bit trickier than ones
presented earlier in that it needs to set different parameters for different situations. For
example, in the following section, “Integrity,” ordinary HTTP URLs can be used, but in the later
section called “Proxy Trust,” a different type of URL, HTTPMD, must be used. The URL used is
controlled by various command-line defines, which can run specialized targets such as httpmd
if the Ant file is run with a command-line define of -Ddo.trust=yes. This sets the property
codebase.httpd to an HTTPMD URL. Otherwise, the target is not run and a default value of this
property as an HTTP URL is used.

7168ch22.fm Page 313 Friday, August 11, 2006 4:25 PM

314 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

The Ant file is as follows:

<!--
 Project name must be the same as the file name, which must
 be the same as the main.class. Builds jar files with the
 same name.
 -->

<project name="security.FileClassifierServer">
 <!-- Inherits properties from ../build.xml:
 jini.home
 jini.jars
 src
 dist
 build
 httpd.classes
 localhost
 -->
 <!-- Files for this project -->
 <!-- Source files for the server -->
 <property name="src.files"
 value="
 common/MIMEType.java,
 common/FileClassifier.java,
 complete/FileClassifierImpl.java,
 rmi/RemoteFileClassifier.java,
 rmi/FileClassifierImpl.java,
 security/FileClassifierImpl.java,
 security/FileClassifierServer.java
 "/>
 <!-- Class files to run the server -->
 <property name="class.files"
 value="
 common/MIMEType.class,
 common/FileClassifier.class,
 complete/FileClassifierImpl.class,
 rmi/RemoteFileClassifier.class,
 rmi/FileClassifierImpl.class,
 security/FileClassifierImpl.class,
 security/FileClassifierServer.class
 "/>
 <!-- Class files for the client to download -->
 <property name="class.files.dl"
 value="
 common/MIMEType.class,
 common/FileClassifier.class,
 complete/FileClassifierImpl.class
 rmi/RemoteFileClassifier.class,

7168ch22.fm Page 314 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 315

 security/FileClassifierImpl.class,
 "/>
 <!-- Uncomment if no class files downloaded to the client -->
 <!-- <property name="no-dl" value="true"/> -->
 <!-- derived names - may be changed -->
 <property name="jar.file"
 value="${ant.project.name}.jar"/>
 <property name="jar.file.dl"
 value="${ant.project.name}-dl.jar"/>
 <property name="main.class"
 value="${ant.project.name}"/>
 <property name="codebase"
 value="http://${localhost}/classes/${jar.file.dl}"/>
 <!-- targets -->
 <target name="all" depends="compile"/>
 <target name="compile">
 <javac destdir="${build}" srcdir="${src}"
 classpath="${jini.jars}"
 includes="${src.files}">
 </javac>
 </target>
 <target name="dist" depends="compile"
 description="generate the distribution">
 <jar jarfile="${dist}/${jar.file}"
 basedir="${build}"
 includes="${class.files}"/>
 <antcall target="dist-jar-dl"/>
 </target>
 <target name="dist-jar-dl" unless="no-dl">
 <jar jarfile="${dist}/${jar.file.dl}"
 basedir="${build}"
 includes="${class.files.dl}"/>
 </target>
 <target name="build" depends="dist,compile"/>
 <!-- run the "httpmd" target only if ant is run with -Ddo.trust=yes.
 This is used to calculate an HTTPMD URL for the "run" target -->
 <target name="httpmd" if="do.trust" depends="deploy">
 <!-- do a calculation of the MD5 hash and the HTTPMD codebase -->
 <java classname="PrintDigest"
 fork="true"
 failonerror="false"
 classpath="${jini.jars}:."
 dir="."
 outputproperty="hash">
 <arg value="${codebase}"/>
 </java>
 <property name="codebase.httpmd"

7168ch22.fm Page 315 Friday, August 11, 2006 4:25 PM

316 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

 value="httpmd://${localhost}/classes/${jar.file.dl};md5=${hash}"/>
 </target>
 <target name="run" depends="httpmd,build,deploy">
 <!-- sets the codebase.httpmd to default codebase
 if not already set by the "httpmd" target
 -->
 <property name="codebase.httpmd"
 value="${codebase}"/>
 <!-- now we can run with an HTTP or HTTPMD codebase -->
 <java classname="${main.class}"
 fork="true"
 classpath="${jini.jars}:${dist}/${jar.file}">
 <jvmarg value="-Djava.security.policy=${res}/policy.all"/>
 <jvmarg value="-Djava.rmi.server.codebase=${codebase.httpmd}"/>
 <jvmarg value="-Djava.protocol.handler.pkgs=net.jini.url"/>
 <arg value="${config}"/>
 </java>
 </target>
 <target name="deploy" depends="dist" unless="no-dl">
 <copy file="${dist}/${jar.file.dl}"
 todir="${httpd.classes}"/>
 </target>
</project>

Integrity
Integrity ensures that each method call sent from the client to the server gets to its destination
in its original form—that is, it is not altered in any way, and similarly, replies are not altered.
Integrity does not guarantee privacy (that is the role of confidentiality); anyone can look at the
messages. It also does not guarantee that the entity you are sending messages to is the one you
think it is (that is the role of authentication).

In the sections that follow, we’ll examine how integrity is enforced in the client, TCP
server, and SSL server.

Client
A client can enforce integrity by requiring that the proxy support the Integrity.YES constraint.
With the earlier example client, this can be done by using the config/security/
preparer-integrity.config configuration file:

import java.security.Permission;
import net.jini.core.constraint.InvocationConstraint;
import net.jini.core.constraint.InvocationConstraints;
import net.jini.core.constraint.Integrity;
import net.jini.security.BasicProxyPreparer;
import net.jini.constraint.BasicMethodConstraints;
client.TestFileClassifierProxyPreparer {

7168ch22.fm Page 316 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 317

 preparer =
 new BasicProxyPreparer(
 /* Don't verify the proxy. */
 false,
 /*
 * Require integrity for all methods.
 */
 new BasicMethodConstraints(
 new InvocationConstraints(
 new InvocationConstraint[] {
 Integrity.YES
 },
 null
)
),
 new Permission[] {}
);
}

To run the client using this configuration, use the following:

 java ... client.TestFileClassifierProxyPreparer \
 config/security/preparer-integrity.config

or

 ant run -DrunFile=client.TestFileClassifierProxyPreparer \
 -Dconfig=config/security/preparer-integrity.config

instead of

 java ... client.TestFileClassifierProxyPreparer \
 config/security/preparer-minimal.config

or

 ant run -DrunFile=client.TestFileClassifierProxyPreparer \
 -Dconfig=config/security/preparer-minimal.config

Note that only the configuration file has changed.

TCP Server
TCP does not support integrity checking. Using TCP, we can expect integrity to fail. The server
can use Jeri over TCP, with a configuration such as config/security/jeri-tcp.config:

import net.jini.jeri.BasicILFactory;
import net.jini.jeri.BasicJeriExporter;
import net.jini.jeri.tcp.TcpServerEndpoint;
security.FileClassifierServer {

7168ch22.fm Page 317 Friday, August 11, 2006 4:25 PM

318 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

 /* class name for the service */
 serviceName = "rmi.FileClassifierImpl";
 exporter = new BasicJeriExporter(TcpServerEndpoint.getInstance(0),
 new BasicILFactory());
}

This configuration can be run as follows:

 java ... security.FileClassifierServer config/security/jeri-tcp.config

Or it can be run from the Ant file as follows:

 ant run -DrunFile=security.FileClassifierServer \
 -Dconfig=config/security/jeri-tcp.config

The client can find the service and create a new proxy for it. But when it tries to call a
method through this proxy, integrity checking will fail. This shows by the client throwing an
exception:

java.rmi.ConnectIOException: I/O exception connecting to
BasicObjectEndpoint[e42fc746-e7c7-444b-bbc9-b124217439c4,
TcpEndpoint[127.0.0.1:43084]]; nested exception is:
 net.jini.io.UnsupportedConstraintException:
 cannot satisfy constraint: Integrity.YES

This exception is thrown when the client attempts to call any method on the proxy. In the
preceding example, it occurs in the first method call to the proxy:

type = classifier.getMIMEType(fileName)

Not only does TCP fail to support integrity checking, but it also fails to support any of the
other security mechanisms of this chapter. We will not consider it any further in this chapter.

SSL Server
SSL (or TLS) supports integrity checking. The server can use Jeri over SSL, with a configuration
such as config/security/jeri-ssl-minimal.config:

import java.security.Permission;
import net.jini.constraint.BasicMethodConstraints;
import net.jini.core.constraint.InvocationConstraint;
import net.jini.core.constraint.InvocationConstraints;
import net.jini.core.constraint.Integrity;
import net.jini.jeri.*;
import net.jini.jeri.ssl.*;
security.FileClassifierServer {
 /* class name for the service */
 serviceName = "rmi.FileClassifierImpl";
 /* Exporter for the server proxy */
 exporter =
 /* Use secure exporter */

7168ch22.fm Page 318 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 319

 new BasicJeriExporter(
 /* Use SSL transport */
 SslServerEndpoint.getInstance(0),
 new BasicILFactory(
 /* Require integrity for all methods */
 new BasicMethodConstraints(
 new InvocationConstraints(
 (InvocationConstraint[]) null,
 (InvocationConstraint[]) null)),
 /* No Permission */
 null
)
);
}

This configuration can be run as follows:

 java ... security.FileClassifierServer config/security/jeri-ssl-minimal.config

Or it can be run from the Ant file as follows:

 ant run -DrunFile=security.FileClassifierServer \
 -Dconfig=config/security/jeri-ssl-minimal.config

The service used here is the RMI service discussed in Chapter 11, rmi.FileClassifierImpl:

package rmi;
import common.MIMEType;
import common.FileClassifier;
/**
 * FileClassifierImpl.java
 */
public class FileClassifierImpl implements RemoteFileClassifier {

 public MIMEType getMIMEType(String fileName)
 throws java.rmi.RemoteException {
 System.out.println("Called with " + fileName);
 if (fileName.endsWith(".gif")) {
 return new MIMEType("image", "gif");
 } else if (fileName.endsWith(".jpeg")) {
 return new MIMEType("image", "jpeg");
 } else if (fileName.endsWith(".mpg")) {
 return new MIMEType("video", "mpeg");
 } else if (fileName.endsWith(".txt")) {
 return new MIMEType("text", "plain");
 } else if (fileName.endsWith(".html")) {
 return new MIMEType("text", "html");
 } else

7168ch22.fm Page 319 Friday, August 11, 2006 4:25 PM

320 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

 // fill in lots of other types,
 // but eventually give up and
 return new MIMEType(null, null);
 }
 public FileClassifierImpl() throws java.rmi.RemoteException {
 // empty constructor required by RMI
 }

} // FileClassifierImpl

To satisfy integrity, the service needs no changes—integrity is supplied by the SSL
protocol. This service/server/configuration combination works with no exceptions thrown.

This section was a kind of “teaser”: Look how easy it is to implement advanced security! Just
add a constraint to the client and use an appropriate protocol for the service! The following
sections look at other aspects of security, and it does get a little more complex.

Proxy Verification
When a client finds a service, it goes through several stages. First, it prepares a service descrip-
tion and asks lookup services if they have any services matching that description. If they do,
then the lookup service downloads a MarshalledObject for the service. This object basically
contains two things: the instance data for the service and a URL for the class files of the service.

The service places class or .jar files on the HTTP server. The client gets these files from the
HTTP server. In Jini 1.2, both the service and client trust the HTTP server. For a secure system,
this trust should be demonstrable. The client needs to able to verify that the class files it got
from the server are the class files that the service put there. This can be done in many ways, but
the Jini team has come up with a neat approach, called HTTPMD.

HTTPMD
There is no integrity or other security aspects involved in getting files from an HTTP server. The
standard way of ensuring security uses a protocol such as HTTPS, but this protocol is quite
heavyweight and not really suited to the purpose of proxy verification. While we can get a veri-
fied document from an HTTPS server, we still don’t know whether or not to trust that server!

What we want to get from an HTTP server is a .jar file for the classes that are provided by
the service. Only the service knows if the classes are correct or not. That is, it doesn’t really
matter whether or not the HTTP server can be trusted; what matters is that we can get informa-
tion from the service to verify the .jar file.

A common way of checking that two files are identical is to use a hash of each file. A hash
is a number (often 128 bits) that is calculated from the file contents. Hash algorithms are
designed with two properties:

• If two files have the same hash, then it is “almost certain” that they are the same file (i.e.,
have the same contents).

• Given a hash value, it is “nearly impossible” to create a file with that hash value.

7168ch22.fm Page 320 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 321

So a service can put a .jar file on an HTTP server and a client can download it. If the hash
calculated by the client is the same as the service thinks it should be, then the client can be
“almost certain” that it has the correct file.

There are many hash algorithms. Popular ones are

• Message-Digest algorithm 5 (MD5)

• Secure Hash Algorithm (SHA)

When you get a marshalled object from a lookup service, it contains the URL for the class
files. This URL was inserted by the service. If the URL contained the hash for the class files, then
it would be possible for a client to verify that it had obtained the correct files. (Of course, this
assumes that the lookup service and HTTP server are not in collusion to deliver false hash
values—see the section “Proxy Verifier” for information about trusting the lookup service.)

Jini defines an HTTP + Message Digest (HTTPMD) URL that adds the hash value as
component of the URL. The scheme is changed from “http” to “httpmd” and the hash is added
as an extra component, along with a statement of the hash algorithm. For example, using the
MD5 hash algorithm, a URL of

http:jan.netcomp.monash.edu.au/classes/FileClassifierServer-dl.jar

would change to

httpmd:jan.netcomp.monash.edu.au/
classes/FileClassifierServer-dl.jar;\ md5=7ef2019216d0e9069308cec29b779bc0

The service can specify such a URL in its java.rmi.server.codebase property. But there is
a small hiccup involved: this is a nonstandard protocol that is not recognized by the standard
JVM. There is, however, a standard mechanism for adding new handlers to a JVM. The process
for doing this is described by Brian Maso in the article “A New Era for Java Protocol Handlers”
at http://java.sun.com/developer/onlineTraining/protocolhandlers.

The HTTPMD handler is part of the Jini package, and it only needs to be installed into the
JVM. This is done by defining an appropriate property:

java -Djava.protocol.handler.pkgs=net.jini.url ...

which looks for the net.jini.url.httpmd.Handler class whenever it needs to handle an
HTTPMD document.

Calculating HTTPMD URLs
Many operating systems have tools available for calculating message digests. For example,
most Linux distributions include the md5sum command for MD5 digests and shasum for SHA
digests. Use of such tools is operating system-specific, and they must be run by hand or auto-
matically from some sort of script.

A message digest class in the java.security package can be used in a platform-indepen-
dent way. However, it won’t directly handle an HTTPMD URL. Jini 2.0 includes the HttpmdUtil
class, which will calculate digests from a URL and has two methods:

7168ch22.fm Page 321 Friday, August 11, 2006 4:25 PM

322 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

class HttpmdUtil {
 static String computeDigest(URL url,
 String algorithm);
 static String computeDigestCodebase(String sourceDirectory,
 String codebase);
}

The first method is useful if you already have a .jar file installed in an HTTP server and
wish to calculate its digest. So, for example, you could call

HttpmdUtil.computeDigest("http://localhost/classes/ClassFiles.jar", "MD5");

The resulting digest could be appended to a new URL of type HTTPMD. Note that for this
mechanism to be valid, the program using it must trust the HTTP server!

A simple program to calculate and print the hash value of a URL using this mechanism is
PrintDigest:

 import net.jini.url.httpmd.HttpmdUtil;
import java.net.URL;
public class PrintDigest {
 public static void main(String[] args) {
 if (args.length == 0) {
 System.out.println("");
 return;
 }
 String codebase = args[0];
 try {
 System.out.println(HttpmdUtil.computeDigest(
 new URL(codebase),
 "MD5"));
 } catch(Exception e) {
 System.out.println(codebase);
 }
 }
}

I use this program in my Ant files, which assume a local trusted HTTP server.
The second method is useful before deployment of the .jar file to an HTTP server. It

returns a new URL for a given URL with a new digest value. For example, the call

HttpmdUtil.computeDigestCodebase("dist",
 "httpmd://localhost/classes/ClassFiles.jar;md5=0");

strips the scheme, host, and digest value from the URL and appends the directories and
.jar file name to the given directory. In this case, it calculates the digest for the local file
dist/classes/ClassFiles.jar. It then rebuilds the URL as, for example, httpmd://localhost/
classes/ClassFiles.jar;md5=.... This only involves local trust. However, it does rely on a
consistent directory convention between local files and HTTP URLs—and I didn’t obey that
convention.

7168ch22.fm Page 322 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 323

A third technique is given in the Jini “hello” example: source/vob/jive/src/com/sun/jini/
example/hello. This sophisticated method is not for the fainthearted. It installs a new
RMIClassLoaderSpi called MdClassAnnotationProvider. The getClassAnnotation() method of
this class uses the second method of the HttpmdUtil to generate an HTTPMD URL on demand
from an HTTP URL.

reggie and HTTPMD
The standard setup for reggie does not recognize the HTTPMD protocol. I’m not sure why it is
looking inside the marshalled objects for this, but it will cause an exception to be thrown in
services if it does not understand it. There is an easy fix to this problem: add the property -
Djava.protocol.handler.pkgs=net.jini.url to the command that starts reggie.

Proxy Verifier
When the client gets a proxy for a service, it gets a marshalled object with instance data and a
URL for the class files. Assuming that the URL has not been tampered with, it can download the
class files from an HTTP server. If it is an HTTPMD URL, then the client can verify that the class
files are correct—as long as it trusts the proxy. This is a tricky problem: how do you verify that
the proxy is correct when you have a (possibly) false and misleading proxy? Moreover, this
possibly antagonistic proxy is the only way you have of talking to the service.

The only entity that can really verify that the proxy is correct is the original service. So, can
you send the proxy to the service and get it to tell you? Well, no: if you ask the untrusted proxy
to send itself for verification to the service, then it might just lie and claim that, yes, it has done
so. What you have to do is get an object from the service that can perform verification locally—
under the client’s eyes, as it were.

The mechanism adopted by Jini to resolve this issue is to use several levels of proxy: the
(untrusted) service proxy is asked to deliver a “bootstrap” proxy that can deliver a verifier. This
verifier is the object that will deliver the verdict on whether the proxy can be trusted, so it must
be trustworthy itself. Jini ensures this by insisting that the class files for the verifier are local to
the client and so are trusted just like any other local code.

The client needs to have a list of local verifiers that it trusts just because they are local. A
standard set is given in the Jini library jsk-platform.jar. This .jar file contains the following
verifiers:

• ConstraintTrustVerifier

• BasicJeriTrustVerifier

• SslTrustVerifier

• KerberosTrustVerifier

• ProxyTrustVerifier

• ConstrainableLookupLocatorTrustVerifier

• DiscoveryConstraintTrustVerifier

7168ch22.fm Page 323 Friday, August 11, 2006 4:25 PM

324 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

Client with Proxy Verification
To require trust from a service, the client must do three things:

1. Include jsk-platform.jar in its classpath to get a set of proxy verifiers.

2. Install an HTTPMD handler with the runtime property java.protocol.handler.pkgs=
net.jini.url.

3. Specify trust checking by setting the first argument of BasicProxyPreparer to true. A
configuration file to require trust checking (and nothing else) is config/security/
preparer-trust.config:

import java.security.Permission;
import net.jini.core.constraint.InvocationConstraint;
import net.jini.core.constraint.InvocationConstraints;
import net.jini.core.constraint.Integrity;
import net.jini.security.BasicProxyPreparer;
import net.jini.constraint.BasicMethodConstraints;
client.TestFileClassifierProxyPreparer {
 preparer =
 new BasicProxyPreparer(
 /* Verify the proxy. */
 true,
 /* No constraints */
 new BasicMethodConstraints(
 new InvocationConstraints(
 new InvocationConstraint[] {
 },
 null
)
),
 new Permission[] {}
);
}

A command line to run this client is as follows:

java ... client.TestFileClassifierProxyPreparer \
 config/security/preparer-trust.config

Here is the command line using Ant:

ant run -DrunFile=client.TestFileClassifierProxyPreparer \
 -Dconfig=config/security/preparer-trust.config

7168ch22.fm Page 324 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 325

SSL Trusted Server
SSL will allow trust checking to be performed by the following mechanisms:

• The service does not need to be adapted, and it can still be the rmi.FileClassifierImpl
shown previously.

• The server needs to install an HTTPMD handler with the runtime property
java.protocol.handler.pkgs=net.jini.url.

• The security.FileClassiferServer-dl.jar file needs to be created with the contents
common/MIMEType.class, common/FileClassifier.class, rmi/RemoteFileClassifier.
class, and rmi/FileClassifierImpl.class, and copied to an HTTP server.

• A hash needs to be performed on the security.FileClassiferServer-dl.jar file. In this
book, we use the HttpmdUtil to calculate this as explained earlier (we trust the local
HTTP server).

• The codebase should be an HTTPMD URL, including the hash value from the previous item.

The service does not need to specify anything other than that it uses SSL for transport
(the server supplies the HTTPMD codebase). The server can use the config/security/
jeri-ssl-minimal.config configuration:

import java.security.Permission;
import net.jini.constraint.BasicMethodConstraints;
import net.jini.core.constraint.InvocationConstraint;
import net.jini.core.constraint.InvocationConstraints;
import net.jini.core.constraint.Integrity;
import net.jini.jeri.*;
import net.jini.jeri.ssl.*;
security.FileClassifierServer {
 /* class name for the service */
 serviceName = "rmi.FileClassifierImpl";
 /* Exporter for the server proxy */
 exporter =
 /* Use secure exporter */
 new BasicJeriExporter(
 /* Use SSL transport */
 SslServerEndpoint.getInstance(0),
 new BasicILFactory(
 /* Require integrity for all methods */
 new BasicMethodConstraints(
 new InvocationConstraints(
 (InvocationConstraint[]) null,
 (InvocationConstraint[]) null)),
 /* No Permission */
 null
)
);
}

7168ch22.fm Page 325 Friday, August 11, 2006 4:25 PM

326 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

A command line to run this server is as follows:

java ... -Djava.rmi.server.codebase=httpmd://... \
 security.FileClassiferServer \
 config/security/jeri-ssl-minimal.config

Here’s the command from Ant:

ant run -DrunFile=security.FileClassiferServer \
 -Dconfig=config/security/jeri-ssl-minimal.config \
 -Ddo.trust=yes

This server/configuration will handle a client that requires trust verification. If the trust
logger file for the client is examined, it will contain lines such as the following:

FINE: trust verifiers [net.jini.constraint.ConstraintTrustVerifier...]
Aug 16, 2004 9:59:35 PM net.jini.security.Security$Context isTrustedObject
FINE: net.jini.jeri.ssl.SslTrustVerifier@df1832 trusts
 SslEndpoint[127.0.0.1:39693]
Aug 16, 2004 9:59:35 PM net.jini.security.Security$Context isTrustedObject
FINE: net.jini.jeri.BasicJeriTrustVerifier@1a116c9 trusts
 BasicObjectEndpoint[...,SslEndpoint[...]]
Aug 16, 2004 9:59:35 PM net.jini.security.Security$Context isTrustedObject
FINE: net.jini.constraint.ConstraintTrustVerifier@1d1e730 trusts
 InvocationConstraints[reqs: {}, prefs: {}]
Aug 16, 2004 9:59:35 PM net.jini.security.Security$Context isTrustedObject
FINE: net.jini.constraint.ConstraintTrustVerifier@1d1e730 trusts
 BasicMethodConstraints{default => null}
Aug 16, 2004 9:59:35 PM net.jini.security.Security$Context isTrustedObject
FINE: net.jini.jeri.BasicJeriTrustVerifier@1a116c9 trusts
 Proxy[RemoteFileClassifier,
 BasicInvocationHandler[BasicObjectEndpoint[...]]

This code shows that the SslTrustVerifier trusts the SslEndpoint, and because of that, the
BasicJeriTrustVerifier trusts the BasicObjectEndpoint, which contains the SslEndpoint.
Trust is also applied to the constraints, after which the proxy is declared to be trusted.

It is important to note the limits of what has been achieved in this section. You have down-
loaded a proxy that you can trust—but whose proxy is it? You have been assured that the code
you received has not been tampered with by anyone else, but you could still be getting code
from “Antagonistic Alice.” All that you know at this point is that you have the code that Alice
intended to send to you, and that “Mallory in the Middle” hasn’t tampered with it!

Errors
In this section, we’ll look at some errors you might encounter when attempting to use proxy
verification.

If you forget to include jsk-platform.jar in the client’s classpath, then it won’t be able to
find the standard verifiers and won’t be able to verify any proxies. The client will throw a
SecurityException:

7168ch22.fm Page 326 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 327

java.lang.SecurityException: object is not trusted:
 Proxy[RemoteFileClassifier,BasicInvocationHandler[
 BasicObjectEndpoint[1c4c3ec0-f91e-46a6-827b-626575702a07,
 SslEndpoint[127.0.0.1:56641]]]]
 at net.jini.security.Security.verifyObjectTrust(Security.java:268)
 at net.jini.security.BasicProxyPreparer.verify(BasicProxyPreparer.java:309)

The trust logger will also show the following:

FINE: trust verifiers []
Aug 16, 2004 5:54:27 PM net.jini.security.Security$Context isTrustedObject
FAILED: no verifier trusts Proxy[RemoteFileClassifier,BasicInvocationHandler[Bas
icObjectEndpoint[1c4c3ec0-f91e-46a6-827b-626575702a07,SslEndpoint[127.0.0.1:5664
1]]]]

with the failure caused by an empty verifiers list.
If the server uses HTTP URLs instead of HTTPMD URLs, then the client is unable to

perform an integrity check. This will result in the client throwing a SecurityException:

java.lang.SecurityException: URL does not provide integrity:
 http://192.168.1.13/classes/security.FileClassifierServer-dl.jar
 at net.jini.security.Security.verifyCodebaseIntegrity(Security.java:343)

The integrity logger will also show the following:

FINE: integrity verifiers [net.jini.url.httpmd.HttpmdIntegrityVerifier@1b5998f,
 net.jini.url.https.HttpsIntegrityVerifier@17494c8,
 net.jini.url.file.FileIntegrityVerifier@d3db51]
Aug 16, 2004 6:01:27 PM net.jini.security.Security verifyCodebaseIntegrity
FAILED: no verifier verifies
 http://192.168.1.13/classes/security.FileClassifierServer-dl.jar

It is necessary to install the HTTPMD handler in the server, in the client, and in reggie. If
you do not install the handler in the server, then the discovery logger reports this:

INFO: exception occurred during unicast discovery
 java.net.MalformedURLException: unknown protocol: httpmd
 at java.net.URL.>init<(URL.java:544)

If you leave the handler out of the client, it throws an exception during service discovery:

java.rmi.UnmarshalException: error unmarshalling return; nested exception is:
 java.net.MalformedURLException: unknown protocol: httpmd
 at com.sun.jini.reggie.RegistrarProxy.lookup(RegistrarProxy.java:130)

If you do not install the HTTPMD handler in reggie, then when the server runs, it gets an
error thrown from reggie, which shows in a message from the JoinManager logger:

7168ch22.fm Page 327 Friday, August 11, 2006 4:25 PM

328 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

INFO: JoinManager - failure
java.rmi.ServerException: RemoteException in server thread; nested exception is:
 java.rmi.UnmarshalException: unmarshalling method/arguments;
 nested exception is:
 java.net.MalformedURLException: unknown protocol: httpmd
 at net.jini.jeri.BasicInvocationDispatcher.dispatch(...)

Confidentiality
A conversation is confidential if no one else can overhear it, or even if someone else can hear
the conversation but cannot understand it. Typically, applications use encryption to ensure
that messages cannot be read by others. Either a client or a server can specify confidentiality,
and we’ll look at both methods in this section.

Client
A client specifies confidentiality by making adding a Confidentiality.YES constraint to the
proxy preparer. For example, the config/security/preparer-conf.config configuration file
can contain the following:

import java.security.Permission;
import net.jini.core.constraint.InvocationConstraint;
import net.jini.core.constraint.InvocationConstraints;
import net.jini.core.constraint.Confidentiality;
import net.jini.security.BasicProxyPreparer;
import net.jini.constraint.BasicMethodConstraints;
client.TestFileClassifierProxyPreparer {
 preparer =
 new BasicProxyPreparer(
 /* Don't verify the proxy. */
 false,
 /*
 * Require integrity for all methods.
 */
 new BasicMethodConstraints(
 new InvocationConstraints(
 new InvocationConstraint[] {
 Confidentiality.YES
 },
 null
)
),
 new Permission[] {}
);
}

7168ch22.fm Page 328 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 329

To run the client using this configuration, use this:

 java ... client.TestFileClassifierProxyPreparer \
 config/security/preparer-conf.config

or this:

 ant run -DrunFile=client.TestFileClassifierProxyPreparer \
 -Dconfig=config/security/preparer-conf.config

Note that only the configuration file has changed.

SSL Confidential Server
SSL supports confidentiality. Indeed, that is the major purpose behind its design. So all that is
needed is for a server to specify that it is using SSL, which can be done using the earlier config/
security/jeri-ssl-minimal.config configuration file:

import java.security.Permission;
import net.jini.constraint.BasicMethodConstraints;
import net.jini.core.constraint.InvocationConstraint;
import net.jini.core.constraint.InvocationConstraints;
import net.jini.core.constraint.Integrity;
import net.jini.jeri.*;
import net.jini.jeri.ssl.*;
security.FileClassifierServer {
 /* class name for the service */
 serviceName = "rmi.FileClassifierImpl";
 /* Exporter for the server proxy */
 exporter =
 /* Use secure exporter */
 new BasicJeriExporter(
 /* Use SSL transport */
 SslServerEndpoint.getInstance(0),
 new BasicILFactory(
 /* Require integrity for all methods */
 new BasicMethodConstraints(
 new InvocationConstraints(
 (InvocationConstraint[]) null,
 (InvocationConstraint[]) null)),
 /* No Permission */
 null
)
);
}

A command line to run this server is as follows:

java ... security.FileClassiferServer \
 config/security/jeri-ssl-minimal.config

7168ch22.fm Page 329 Friday, August 11, 2006 4:25 PM

330 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

Here’s the command from Ant:

ant run -DrunFile=security.FileClassiferServer \
 -Dconfig=config/security/jeri-ssl-minimal.config

Mix and Match
So far we have tried the following security combinations:

• preparer-minimal.config and jeri-tcp.config: No security on either side. This combi-
nation works the same way as examples in earlier chapters without security.

• preparer-integrity.config and jeri-tcp.config: This combination fails due to lack of
support by TCP for integrity checking.

• preparer-integrity.config and jeri-ssl-minimal.config: This combination succeeds
because SSL supports integrity checking.

• preparer-trust.config and jeri-ssl-minimal.config with HTTPMD URLs: This combi-
nation works because SSL supports trust of messages and the HTTPMD URLs allow the
client to trust the HTTP server.

• preparer-conf.config and jeri-ssl-minimal.config: This combination works because
SSL supports confidentiality through encryption.

We can try variations on these combinations—for example, a client that requires trust and
integrity with a server that requires encryption. This is just an additive process: add in the extra
constraints to the appropriate configuration and ensure that the client or server has the correct
runtime to handle the constraints. The client configuration in this case is config/security/
preparer-trust-integrity.config:

import java.security.Permission;
import net.jini.core.constraint.InvocationConstraint;
import net.jini.core.constraint.InvocationConstraints;
import net.jini.core.constraint.Integrity;
import net.jini.security.BasicProxyPreparer;
import net.jini.constraint.BasicMethodConstraints;
client.TestFileClassifierProxyPreparer {
 preparer =
 new BasicProxyPreparer(
 /* Verify the proxy. */
 true,
 /* No constraints */
 new BasicMethodConstraints(
 new InvocationConstraints(
 new InvocationConstraint[] {
 Integrity.YES
 },

7168ch22.fm Page 330 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 331

 null
)
),
 new Permission[] {}
);
}

And the server configuration is config/security/jeri-ssl-conf.config:

import java.security.Permission;
import net.jini.constraint.BasicMethodConstraints;
import net.jini.core.constraint.InvocationConstraint;
import net.jini.core.constraint.InvocationConstraints;
import net.jini.core.constraint.Confidentiality;
import net.jini.jeri.*;
import net.jini.jeri.ssl.*;
security.FileClassifierServer {
 /* class name for the service */
 serviceName = "rmi.FileClassifierImpl";
 /* Exporter for the server proxy */
 exporter =
 /* Use secure exporter */
 new BasicJeriExporter(
 /* Use SSL transport */
 SslServerEndpoint.getInstance(0),
 new BasicILFactory(
 /* Require confidentiality for all methods */
 new BasicMethodConstraints(
 new InvocationConstraints(Confidentiality.YES, null)),
 /* No Permission */
 null
)
);
}

These configurations can be run as follows:

java ... client.TestFileClassifierProxyPreparer \
 config/security/preparer-trust-integrity.config
java ... -Djava.rmi.server.codebase=httpmd://... \
 security.FileClassiferServer \
 config/security/jeri-ssl-conf.config

They can be run from Ant as follows:

ant run -DrunFile=client.TestFileClassifierProxyPreparer \
 -Dconfig=config/security/preparer-trust-integrity.config
ant run -DrunFile=security.FileClassiferServer \
 -Dconfig=config/security/jeri-ssl-.config \
 -Ddo.trust=yes

7168ch22.fm Page 331 Friday, August 11, 2006 4:25 PM

332 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

This combination works satisfactorily. The client logs are indicative of what has happened.
The trust logger shows the following (with much text elided):

FINE: HttpmdIntegrityVerifier verifies httpmd://...
FINE: trust verifiers [...]
FINE: SslTrustVerifier trusts SslEndpoint[...]
FINE: BasicJeriTrustVerifier trusts BasicObjectEndpoint[...]
FINE: ConstraintTrustVerifier trusts Confidentiality.YES
FINE: ConstraintTrustVerifier trusts
 InvocationConstraints[reqs: {Confidentiality.YES}, prefs: {}]
FINE: ConstraintTrustVerifier trusts
 BasicMethodConstraints{default =>
 InvocationConstraints[reqs: {Confidentiality.YES}, prefs: {}]}
FINE: BasicJeriTrustVerifier trusts Proxy[...]

This code shows that the HttpmdIntegrityVerifier trusts the HTTPMD URL; the
SslTrustVerifier trusts the SslEndpoint; the ConstraintTrustVerifier trusts Confidentiality,
and hence the ConstraintTrustVerifier trusts the BasicMethodConstraints; and so on, until
finally, the BasicJeriTrustVerifier trusts the proxy.

Similarly, the integrity log shows this:

FINE: integrity verifiers [...]
FINE: HttpmdIntegrityVerifier verifies httpmd://...

The HttpmdIntegrityVerifier verifies the HTTPMD URL.
By way of contrast, if the client is run with one constraint, and the server is run with its

opposite, then the constraints cannot be satisfied. For example, if the client has set
Confidentiality.NO and the server has set Confidentiality.YES, then the client will throw an
exception:

java.rmi.ConnectIOException: I/O exception connecting to
 BasicObjectEndpoint[...,SslEndpoint[...]]; nested exception is:
 net.jini.io.UnsupportedConstraintException: Constraints not supported:
 InvocationConstraints[reqs: {Confidentiality.NO,
 Confidentiality.YES}, prefs: {}]

Identity Management
If you want to give different individuals different access rights, then you need to be able to
verify each individual’s identity. This means that they must have some way of expressing what
their identity is in a form that you will recognize. People (and things) may have a number of
identities: the father of a particular person, staff ID number, driver’s license number, name,
and so on. Essentially, these are different labels for one entity. The terminology adopted is that
the entity is called a subject, and in Java this is represented by the Subject class in the
javax.security.auth package. The different identities for a subject are called principals, and
they too have a Java class: Principal.

A subject authenticates itself to a service using a principal and information to verify itself
as that principal. For example, you log into a computer using your user name as principal and

7168ch22.fm Page 332 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 333

password for verification, but other mechanisms could be used. A credential is used to authen-
ticate a subject to later services. In the computer world, these include be X.509 certificates and
Kerberos tickets.

In this section, we’ll look at how Jini clients and services can have and demonstrate their
identity.

Java Authentication and Authorization Service (JAAS)
A white paper describing JAAS is titled “User Authentication and Authorization in the Java Plat-
form” and can be found at https://java.sun.com/javase/6/docs/technotes/guides/
security/jaas/acsac.html. For further information also see the “Java Authentication and
Authorization Service (JAAS) Reference Guide,” which should be in the Java distribution direc-
tory docs/guide/security/jaas/JAASRefGuide.html, and “JAAS Authentication” at http://
java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/AcnOnly.html.

JAAS is a framework for verifying common identities, including the following:

• Java Naming and Directory Interface (JNDI)

• Keystore

• Kerberos

• Windows NT

• Unix

Information on these can be found at http://java.sun.com/j2se/1.4.2/docs/guide/
security/jgss/tutorials/LoginConfigFile.html.

JAAS augments the standard Java security model by adding support for principals, so secu-
rity access is granted not only on the properties of the code itself (signed, etc.), but also on the
principals running the code.

To use JAAS, you first need to create a LoginContext. This picks up information from a
configuration file to decide which principal it is authenticating as, and how to do it. The config-
uration file is similar in concept to the Jini configuration files, but the syntax is different and the
contents depend upon the mechanism used.

Once you have a context, you attempt to login(). If successful, you are then a recognized
entity and are a subject with identity. As a subject, you may be able to do more things than if
you have no identity. For example, in an SSL interaction, you will be able to present certificates
for this identity if required. And the situation is similar with Kerberos: if challenged, you have
an identity and a ticket credential to prove it.

You then add the JAAS security checks to code by running it as the privileged subject, like so:

 LoginContext loginContext =
 new LoginContext("...");
 if (loginContext == null) {
 // do some action without JAAS security
 } else {
 loginContext.login();
 Subject.doAsPrivileged(
 loginContext.getSubject(),

7168ch22.fm Page 333 Friday, August 11, 2006 4:25 PM

334 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 // do the same action, but now
 // as a particular subject
 return null;
 }
 },
 null);
 }

Keystores
A keystore is a place to store certain types of credentials, such as X.509 certificates, which are
used by SSL. A keystore is manipulated by the keytool command. Conventionally, your own
private (and associated public keys) are stored in a keystore... file, while public keys from
others are stored in a truststore... file.

You can create private keys for the client as follows:

 keytool -keystore keystore.client -genkey

This will prompt for X.509 information, which assumes that you are an individual working
for an organization:

Enter keystore password: client
What is your first and last name?
 [Unknown]: Client
What is the name of your organizational unit?
 [Unknown]: IT
What is the name of your organization?
 [Unknown]: Monash
What is the name of your City or Locality?
 [Unknown]: Melbourne
What is the name of your State or Province?
 [Unknown]: Vic
What is the two-letter country code for this unit?
 [Unknown]: AU
Is CN=Client, OU=IT, O=Monash, L=Melbourne, ST=Vic, C=AU correct?
 [no]: yes
Enter key password for <mykey>
 (RETURN if same as keystore password):

Similarly, you can set up a keystore for the server:

keytool -keystore keystore.server -genkey
Enter keystore password: server
What is your first and last name?
 [Unknown]: Server
What is the name of your organizational unit?
 [Unknown]: IT

7168ch22.fm Page 334 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 335

What is the name of your organization?
 [Unknown]: Monash
What is the name of your City or Locality?
 [Unknown]: Melbourne
What is the name of your State or Province?
 [Unknown]: Vic
What is the two-letter country code for this unit?
 [Unknown]: AU
Is CN=Server, OU=IT, O=Monash, L=Melbourne, ST=Vic, C=AU correct?
 [no]: yes
Enter key password for <mykey>
 (RETURN if same as keystore password):

You can export the server’s public key from the its keystore and import it into the client’s
truststore under the alias “Server” as follows:

keytool -keystore keystore.server -export -file server.certEnter keystore pass-
word: server
Certificate stored in file <server.cert>
keytool -keystore truststore.client -import -file server.cert -alias Server
Enter keystore password: client
Owner: CN=Server, OU=IT, O=Monash, L=Melbourne, ST=Vic, C=AU
Issuer: CN=Server, OU=IT, O=Monash, L=Melbourne, ST=Vic, C=AU
Serial number: 4123f906
Valid from: Thu Aug 19 10:49:10 EST 2004 until: Wed Nov 17 11:49:10 EST 2004
Certificate fingerprints:
 MD5: 6E:24:70:EB:E2:2C:A0:72:C5:B9:9B:95:72:39:87:B1
 SHA1: 2B:AB:0D:80:4F:DF:B8:66:3B:E7:49:66:3D:53:EC:C5:B8:3A:91:5E
Trust this certificate? [no]: yes
Certificate was added to keystore

Similarly, you can export the client’s public key and import it into the server’s truststore
under the alias “Client”:

keytool -keystore keystore.client -export -file client.cert
Enter keystore password: client
Certificate stored in file <client.cert>
keytool -keystore truststore.server -import -file client.cert -alias Client
Enter keystore password: server
Owner: CN=Client, OU=IT, O=Monash, L=Melbourne, ST=Vic, C=AU
Issuer: CN=Client, OU=IT, O=Monash, L=Melbourne, ST=Vic, C=AU
Serial number: 4123f88d
Valid from: Thu Aug 19 10:47:09 EST 2004 until: Wed Nov 17 11:47:09 EST 2004
Certificate fingerprints:
 MD5: EA:4A:67:E3:A6:58:2D:F4:52:00:FE:CF:2C:AC:7A:6A
 SHA1: 8C:68:E3:9C:E8:08:4A:33:F5:12:E4:9D:73:D6:EF:A4:A5:82:B2:79
Trust this certificate? [no]: yes
Certificate was added to keystore

7168ch22.fm Page 335 Friday, August 11, 2006 4:25 PM

336 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

Authenticating Server
A server that is prepared to authenticate itself must be able to offer suitable credentials when
challenged. For SSL, this would be an X.509 certificate; for Kerberos, it would be a Kerberos
ticket; and so on. If JAAS is used to provide these credentials, then it must be able to “log in” to
get its authentication information.

The server code needs to be modified slightly to get a login context, and then log in using
a principal to get a subject. If this succeeds, then the server can run the rest of the code as that
subject. The changes to the file classifier server are given as static code to execute before
creating the server. The security/FileClassifierServerAuth is as follows:

package security;
import java.rmi.RMISecurityManager;
import java.rmi.Remote;
import java.rmi.RemoteException;
import java.rmi.server.ExportException;
import java.security.PrivilegedExceptionAction;
import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;
import java.security.PrivilegedActionException;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceRegistration;
import net.jini.core.lease.Lease;
import net.jini.core.lookup.ServiceID ;
import net.jini.lease.LeaseListener;
import net.jini.lease.LeaseRenewalEvent;
import net.jini.lease.LeaseRenewalManager;
import net.jini.config.Configuration;
import net.jini.config.ConfigurationException;
import net.jini.config.ConfigurationProvider;
import net.jini.lookup.JoinManager;
import net.jini.id.UuidFactory;
import net.jini.id.Uuid;
import net.jini.discovery.LookupDiscoveryManager;
import net.jini.export.Exporter;
import rmi.RemoteFileClassifier;
import rmi.FileClassifierImpl;
import java.util.logging.*;
import java.io.*;
/**
 * FileClassifierServerAuth
 */

7168ch22.fm Page 336 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 337

public class FileClassifierServerAuth implements LeaseListener {

 private LeaseRenewalManager leaseManager = new LeaseRenewalManager();
 private ServiceID serviceID = null;
 private RemoteFileClassifier impl;
 private File serviceIdFile;
 private Configuration config;
 static final String TRUST_LOG = "net.jini.security.trust";
 static final String INTEGRITY_LOG = "net.jini.security.integrity";
 static final String POLICY_LOG = "net.jini.security.policy";
 static final Logger trustLogger = Logger.getLogger(TRUST_LOG);
 static final Logger integrityLogger = Logger.getLogger(INTEGRITY_LOG);
 static final Logger policyLogger = Logger.getLogger(POLICY_LOG);
 private static FileHandler trustFh;
 private static FileHandler integrityFh;
 private static FileHandler policyFh;
 private static FileClassifierServerAuth server;
 static final String DISCOVERY_LOG = "net.jini.security.trust";
 static final Logger logger = Logger.getLogger(DISCOVERY_LOG);
 private static FileHandler fh;
 public static void main(String args[]) {
 installLoggers();
 init(args);
 Object keepAlive = new Object();
 synchronized(keepAlive) {
 try {
 keepAlive.wait();
 } catch(java.lang.InterruptedException e) {
 // do nothing
 }
 }
 }
 private static void init(final String[] args) {
 try {
 LoginContext loginContext =
 new LoginContext("security.FileClassifierServerAuth");
 if (loginContext == null) {
 System.out.println("No login context");
 server = new FileClassifierServerAuth(args);
 } else {
 loginContext.login();
 System.out.println("Login succeeded as " +
 loginContext.getSubject().toString());
 Subject.doAsPrivileged(
 loginContext.getSubject(),
 new PrivilegedExceptionAction() {

7168ch22.fm Page 337 Friday, August 11, 2006 4:25 PM

338 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

 public Object run() throws Exception {
 server = new FileClassifierServer-
Auth(args);
 return null;
 }
 },
 null);
 }
 } catch(LoginException e) {
 e.printStackTrace();
 System.exit(3);
 } catch(PrivilegedActionException e) {
 e.printStackTrace();
 System.exit(3);
 }
 }
 public FileClassifierServerAuth(String[] args) {
 System.setSecurityManager(new RMISecurityManager());
 Exporter exporter = null;
 String serviceName = null;
 try {
 config = ConfigurationProvider.getInstance(args);
 exporter = (Exporter)
 config.getEntry("security.FileClassifierServer",
 "exporter",
 Exporter.class);
 serviceName = (String)
 config.getEntry("security.FileClassifierServer",
 "serviceName",
 String.class);
 } catch(ConfigurationException e) {
 System.err.println("Configuration error: " + e.toString());
 System.exit(1);
 }
 // Create the service and its proxy
 try {
 // impl = new security.FileClassifierImpl();
 impl = (RemoteFileClassifier) Class.forName(serviceName).newInstance();
 } catch(Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 Remote proxy = null;
 try {
 proxy = exporter.export(impl);
 System.out.println("Proxy is " + proxy.toString());
 } catch(ExportException e) {

7168ch22.fm Page 338 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 339

 e.printStackTrace();
 System.exit(1);
 }
 // register proxy with lookup services
 JoinManager joinMgr = null;
 try {
 LookupDiscoveryManager mgr =
 new LookupDiscoveryManager(LookupDiscovery.ALL_GROUPS,
 null, // unicast locators
 null); // DiscoveryListener
 joinMgr = new JoinManager(proxy, // service proxy
 null, // attr sets
 serviceID,
 mgr, // DiscoveryManager
 new LeaseRenewalManager());
 } catch(Exception e) {
 e.printStackTrace();
 System.exit(1);
 }
 }
 private static void installLoggers() {
 try {
 // this handler will save ALL log messages in the file
 trustFh = new FileHandler("log.server.trust.txt");
 integrityFh = new FileHandler("log.server.integrity.txt");
 policyFh = new FileHandler("log.server.policy.txt");
 // the format is simple rather than XML
 trustFh.setFormatter(new SimpleFormatter());
 integrityFh.setFormatter(new SimpleFormatter());
 policyFh.setFormatter(new SimpleFormatter());
 trustLogger.addHandler(trustFh);
 integrityLogger.addHandler(integrityFh);
 policyLogger.addHandler(policyFh);
 trustLogger.setLevel(java.util.logging.Level.ALL);
 integrityLogger.setLevel(java.util.logging.Level.ALL);
 policyLogger.setLevel(java.util.logging.Level.ALL);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 void getServiceID() {
 // Make up our own
 Uuid id = UuidFactory.generate();
 serviceID = new ServiceID(id.getMostSignificantBits(),
 id.getLeastSignificantBits());
 }
 public void serviceIDNotify(ServiceID serviceID) {

7168ch22.fm Page 339 Friday, August 11, 2006 4:25 PM

340 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

 // called as a ServiceIDListener
 // Should save the id to permanent storage
 System.out.println("got service ID " + serviceID.toString());
 }
 public void discarded(DiscoveryEvent evt) {
 }
 public void notify(LeaseRenewalEvent evt) {
 System.out.println("Lease expired " + evt.toString());
 }

} // FileClassifierServerAuth

This login context uses a hard-coded string to specify the name “security.FileClassifier-
ServerAuth” used by JAAS to find information from the JAAS configuration file; this string could
better be given in a Jini configuration file in a production environment.

A few other pieces need to be put in place for this server to authenticate itself:

• The server needs to be run with an additional runtime property. The property
java.security.auth.login.config needs to be set to the login configuration file, as
follows:

 java ... -Djava.security.auth.login.config=ssl-server.login ...

• The JAAS login file specifies how JAAS is to get its credentials. For example, for SSL it will
need a certificate, which it can get from a keystore. So for an SSL authenticating server,
the ssl-server.login could contain the following:

security.FileClassifierServerAuth {
 com.sun.security.auth.module.KeyStoreLoginModule required
 keyStoreAlias="mykey"
 keyStoreURL="file:resources/security/keystore.server"
 keyStorePasswordURL="file:resources/security/password.server";
};

The configuration name “security.FileClassifierServerAuth” is the same as the
parameter to the LoginContext constructor. The file also specifies the alias to be used in
looking up entries (the default is “mykey,” if the alias is not specified during creation of
the keystore), the keystore, and a file that contains the password to access this keystore.

• The password file password.server just contains the password we set earlier: “server”.

This server can be run from the command line:

java ... security.FileClassiferServerAuth \
 config/security/jeri-ssl-minimal.config

or it can be run from Ant:

ant run -DrunFile=security.FileClassiferServerAuth \
 -Dconfig=config/security/jeri-ssl-minimal.config

7168ch22.fm Page 340 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 341

The server does not need to set any constraints (since it just authenticates itself), so the
minimal server configuration file can be used.

Client Requiring Authentication
The client can require that the server have a proof of identity, or that it identifies itself as a
particular subject. This is like asking, “Do you have a card that proves you are over eighteen
years old?” versus “Do you have a card that proves you are Joe Bloggs?”

The first case (“Do you have a credential?”) can be specified in the client configuration file
by just adding the ServerAuthentication.YES constraint:

import java.security.Permission;
import net.jini.core.constraint.InvocationConstraint;
import net.jini.core.constraint.InvocationConstraints;
import net.jini.core.constraint.ServerAuthentication;
import net.jini.security.BasicProxyPreparer;
import net.jini.constraint.BasicMethodConstraints;
client.TestFileClassifierProxyPreparer {
 preparer =
 new BasicProxyPreparer(
 /* Don't verify the proxy. */
 false,
 /* Require authentication as anyone */
 new BasicMethodConstraints(
 new InvocationConstraints(
 new InvocationConstraint[] {
 ServerAuthentication.YES
 },
 null
)
),
 new Permission[] {}
);
}

The client is the TestFileClassiferProxyPreparer used throughout this chapter. However,
although it doesn’t look up any certificates, it does seem to need a truststore to be specified—
a bug? You can specify a truststore by adding the property to the runtime:

 -Djavax.net.ssl.trustStore=truststore.client

The second case requires specifying which principal(s) the server is required to authenti-
cate as. The most common case is when the client requires a single principal as identity. The
ServerMinPrincipal is used for this, with constructors for a single principal or for a set of prin-
cipals. In order to get an SSL principal, you need to do something like pull it out of a keystore.
This involves obtaining the list of users from a keystore and getting a single user from this list.
The KeyStores class in Jini allows you to perform these steps from within a configuration file.

The client is still unaltered from TestFileClassifierProxyPreparer. The configuration file
is now preparer-auth-server.config:

7168ch22.fm Page 341 Friday, August 11, 2006 4:25 PM

342 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

import java.security.Permission;
import net.jini.core.constraint.InvocationConstraint;
import net.jini.core.constraint.InvocationConstraints;
import net.jini.core.constraint.ServerAuthentication;
import net.jini.security.BasicProxyPreparer;
import net.jini.constraint.BasicMethodConstraints;
import com.sun.jini.config.KeyStores;
import net.jini.core.constraint.ServerMinPrincipal;
client.TestFileClassifierProxyPreparer {
 /* Keystore for getting principals */
 private static users=
 KeyStores.getKeyStore("file:resources/security/truststore.client", null);
 private static serverUser =
 KeyStores.getX500Principal("server", users);
 preparer =
 new BasicProxyPreparer(
 /* Don't verify the proxy. */
 false,
 /* Require authentication as "server" */
 new BasicMethodConstraints(
 new InvocationConstraints(
 new InvocationConstraint[] {
 ServerAuthentication.YES,
 new ServerMinPrincipal(serverUser)
 },
 null
)
),
 new Permission[] {}
);
}

Alternative Constraints
Classes such as ServerMinPrincipal can take a set of principals and AND them together, such
as “Are you Jan Newmarch AND are you over eighteen AND are you the father of Katy
Newmarch?” A client may want to express a set of alternatives, such as “Do you have a driver’s
license OR do you have a social security card?” The ConstraintAlternatives class can be used
to handle these cases.

Authenticating Client
The same mechanism a server uses to authenticate itself is used by the client. That is, the client
sets up a login context, logs in, and then runs code as a particular subject. The modified code is
client.TestFileClassifierAuth:

7168ch22.fm Page 342 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 343

package client;
import common.FileClassifier;
import common.MIMEType;
import java.security.PrivilegedExceptionAction;
import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;
import java.security.PrivilegedActionException;
import java.rmi.RMISecurityManager;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import java.rmi.RemoteException;
import net.jini.security.BasicProxyPreparer;
import net.jini.security.ProxyPreparer;
import net.jini.config.Configuration;
import net.jini.config.ConfigurationException;
import net.jini.config.ConfigurationProvider;
import java.util.logging.*;
/**
 * TestFileClassifierAuth.java
 */
public class TestFileClassifierAuth implements DiscoveryListener {
 private Configuration config;
 static final String TRUST_LOG = "net.jini.security.trust";
 static final String INTEGRITY_LOG = "net.jini.security.integrity";
 static final String POLICY_LOG = "net.jini.security.policy";
 static final Logger trustLogger = Logger.getLogger(TRUST_LOG);
 static final Logger integrityLogger = Logger.getLogger(INTEGRITY_LOG);
 static final Logger policyLogger = Logger.getLogger(POLICY_LOG);
 private static FileHandler trustFh;
 private static FileHandler integrityFh;
 private static FileHandler policyFh;
 public static void main(String argv[])
 throws ConfigurationException {
 installLoggers();
 // Become a subject if possible
 init(argv);
 // stay around long enough to receive replies
 try {
 Thread.currentThread().sleep(100000L);
 } catch(java.lang.InterruptedException e) {
 // do nothing
 }
 }

7168ch22.fm Page 343 Friday, August 11, 2006 4:25 PM

344 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

 private static void init(final String[] args) {
 try {
 LoginContext loginContext =
 new LoginContext("security.TestFileClassifierAuth");
 if (loginContext == null) {
 System.out.println("No login context");
 new TestFileClassifierAuth(args);
 } else {
 loginContext.login();
 System.out.println("Login succeeded as " +
 loginContext.getSubject().toString());
 Subject.doAsPrivileged(
 loginContext.getSubject(),
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 new TestFileClassifierAuth(args);
 return null;
 }
 },
 null);
 }
 } catch(LoginException e) {
 e.printStackTrace();
 System.exit(3);
 } catch(PrivilegedActionException e) {
 e.printStackTrace();
 System.exit(3);
 } catch(ConfigurationException e) {
 e.printStackTrace();
 System.exit(3);
 }
 }
 public TestFileClassifierAuth(String[] argv)
 throws ConfigurationException {
 config = ConfigurationProvider.getInstance(argv);
 System.setSecurityManager(new RMISecurityManager());
 LookupDiscovery discover = null;
 try {
 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);
 } catch(Exception e) {
 System.err.println(e.toString());
 System.exit(1);
 }
 discover.addDiscoveryListener(this);
 }
 private static void installLoggers() {
 try {

7168ch22.fm Page 344 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 345

 // this handler will save ALL log messages in the file
 trustFh = new FileHandler("log.client.trust.txt");
 integrityFh = new FileHandler("log.client.integrity.txt");
 policyFh = new FileHandler("log.client.policy.txt");
 // the format is simple rather than XML
 trustFh.setFormatter(new SimpleFormatter());
 integrityFh.setFormatter(new SimpleFormatter());
 policyFh.setFormatter(new SimpleFormatter());
 trustLogger.addHandler(trustFh);
 integrityLogger.addHandler(integrityFh);
 policyLogger.addHandler(policyFh);
 trustLogger.setLevel(java.util.logging.Level.ALL);
 integrityLogger.setLevel(java.util.logging.Level.ALL);
 policyLogger.setLevel(java.util.logging.Level.ALL);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 public void discovered(DiscoveryEvent evt) {
 ServiceRegistrar[] registrars = evt.getRegistrars();
 Class [] classes = new Class[] {FileClassifier.class};
 FileClassifier classifier = null;
 ServiceTemplate template = new ServiceTemplate(null, classes,
 null);

 for (int n = 0; n < registrars.length; n++) {
 System.out.println("Lookup service found");
 ServiceRegistrar registrar = registrars[n];
 try {
 classifier = (FileClassifier) registrar.lookup(template);
 } catch(java.rmi.RemoteException e) {
 e.printStackTrace();
 System.exit(4);
 continue;
 }
 if (classifier == null) {
 System.out.println("Classifier null");
 continue;
 }
 System.out.println("Getting the proxy");
 // Get the proxy preparer
 ProxyPreparer preparer = null;
 try {
 preparer =
 (ProxyPreparer) config.getEntry(
 "client.TestFileClassifierProxyPre-
parer",

7168ch22.fm Page 345 Friday, August 11, 2006 4:25 PM

346 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

 "preparer", ProxyPreparer.class,
 new BasicProxyPreparer());
 } catch(ConfigurationException e) {
 e.printStackTrace();
 preparer = new BasicProxyPreparer();
 }
 // Prepare the new proxy
 System.out.println("Preparing the proxy");
 try {
 classifier = (FileClassifier) preparer.prepareProxy(classifier);
 } catch(RemoteException e) {
 e.printStackTrace();
 System.exit(3);
 } catch(java.lang.SecurityException e) {
 e.printStackTrace();
 System.exit(6);
 }
 // Use the service to classify a few file types
 System.out.println("Calling the proxy");
 MIMEType type;
 try {
 String fileName;
 fileName = "file1.txt";
 type = classifier.getMIMEType(fileName);
 printType(fileName, type);
 fileName = "file2.rtf";
 type = classifier.getMIMEType(fileName);
 printType(fileName, type);
 fileName = "file3.abc";
 type = classifier.getMIMEType(fileName);
 printType(fileName, type);
 } catch(java.rmi.RemoteException e) {
 System.out.println("Failed to call method");
 System.err.println(e.toString());
 System.exit(5);
 continue;
 }
 // success
 System.exit(0);
 }
 }
 private void printType(String fileName, MIMEType type) {
 System.out.print("Type of " + fileName + " is ");
 if (type == null) {
 System.out.println("null");
 } else {
 System.out.println(type.toString());

7168ch22.fm Page 346 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 347

 }
 }
 public void discarded(DiscoveryEvent evt) {
 // empty
 }
} // TestFileClassifierAuth

As with the server, other pieces need to be in place for this client to authenticate itself:

• The client needs to be run with an additional runtime property. The property
java.security.auth.login.config needs to be set to the login configuration file, as
follows:

 java ... -Djava.security.auth.login.config=ssl-client.login ...

• The JAAS login file specifies how JAAS is to get its credentials. For example, for SSL it will
need a certificate, which it can get from a keystore. So for an SSL authenticating server,
the ssl-client.login could contain the following:

security.TestFileClassifierAuth {
 com.sun.security.auth.module.KeyStoreLoginModule required
 keyStoreAlias="mykey"
 keyStoreURL="file:resources/security/keystore.client"
 keyStorePasswordURL="file:resources/security/password.client";
};

The configuration name security.TestFileClassifierAuth is the same as the
parameter to the LoginContext constructor. The file also specifies the alias to be used in
looking up entries (the default is mykey if an alias is not specified during creation of the
keystore), the keystore, and a file that contains the password to access this keystore.

• The password file password.client just contains the password set earlier: “client”.

Server Requiring Authentication
If the server requires the client to authenticate as a particular user, then it can be the
config.FileClassifierServer. It does not need to have the authentication code itself. It can
specify client authentication with the jeri-ssl-auth-client.config configuration file:

import java.security.Permission;
import net.jini.constraint.BasicMethodConstraints;
import net.jini.core.constraint.InvocationConstraint;
import net.jini.core.constraint.InvocationConstraints;
import net.jini.core.constraint.ClientAuthentication;
import net.jini.core.constraint.ClientMinPrincipal;
import net.jini.jeri.*;
import net.jini.jeri.ssl.*;
import com.sun.jini.config.KeyStores;
security.FileClassifierServer {
 /* class name for the service */

7168ch22.fm Page 347 Friday, August 11, 2006 4:25 PM

348 C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y

 serviceName = "rmi.FileClassifierImpl";
 /* Keystore for getting principals */
 private static users=
 KeyStores.getKeyStore("file:resources/security/truststore.server", null);
 private static clientUser =
 KeyStores.getX500Principal("client", users);
 /* Exporter for the server proxy */
 exporter =
 /* Use secure exporter */
 new BasicJeriExporter(
 /* Use SSL transport */
 SslServerEndpoint.getInstance(0),
 new BasicILFactory(
 /* Require integrity for all methods */
 new BasicMethodConstraints(
 new InvocationConstraints(
 new InvocationConstraint[] {
 ClientAuthentication.YES,
 new ClientMinPrincipal(clientUser)
 },
 (InvocationConstraint[]) null)),
 /* No Permission */
 null
)
);
}

In addition to this, the server needs to be run with a define:

 -Djavax.net.ssl.trustStore=resources/security/truststore.server

To locate the truststore file, it will use verify certificates from the client.

Authorization
Standard Java uses policy files to determine what foreign code is allowed to do. This policy is
installed when the application starts, so it is a static policy mechanism. In Jini 2.0, when a
service is discovered, it may wish to ask for a policy to be applied at that time, dynamically.
Extensions to the basic security model in JDK 1.4 allow this to occur, by permitting dynamic
policy setting on class loaders.

To allow dynamic policy granting, the Java runtime must have the appropriate classes
installed and trusted. This is the purpose of the jsk-policy.jar file from the Jini library. As part
of the installation process for Jini, it is recommended that you install this file into the jre/lib/
ext directory of your Java distribution to allow the Java runtime to pick these up as trusted
classes when it starts.

7168ch22.fm Page 348 Friday, August 11, 2006 4:25 PM

C H A P T E R 2 2 ■ A D V A N C E D S E C U R I T Y 349

The runtime needs to be told about these classes, which you can do by using the runtime
define:

 -Djava.security.properties=security.properties

where security.properties is a file containing the single line saying which Jini class to use for
dynamic policies.

policy.provider=net.jini.security.policy.DynamicPolicyProvider

For the client, an array of permissions specifies the permissions the client will grant to a
proxy. This array is set in the BasicProxyPreparer.

The server can set a permission in the BasicILFactory. This permission is used to perform
server-side access control on incoming remote calls.

Summary
Ensuring security on the network is a complex task, and the Jini possibilities of mobile code
increase the security risks. This chapter presented an end-programmer’s view of the new Jini
2.0 security. The architecture behind the Jini security model is highly configurable, and we’ve
looked at one set of “plug-ins” to make it (relatively) easy for you as a programmer. However, if
you want more control over any part of this process, be aware that you can dig further into this
architecture and roll your own for almost all parts of it.

7168ch22.fm Page 349 Friday, August 11, 2006 4:25 PM

7168ch22.fm Page 350 Friday, August 11, 2006 4:25 PM

