
73

■ ■ ■

C H A P T E R 8

Leasing

In distributed applications, there may be partial failures of the network or of components on
the network. Leasing is a way for components to register that they are alive, but to ensure that
they are “timed out” if they fail or are unreachable. Leasing is the mechanism used between
applications to give access to resources over a period of time in an agreed-upon manner.

Leases are requested for periods of time, and these requests may be granted, modified, or
denied. The most common example of a lease is when a service is registered with lookup
services. A lookup service will not want to keep a service forever, because it may disappear.
Keeping information about nonexistent services is a waste of resources on the lookup service
and also may lead to clients wasting time trying to access services that aren’t there. As a result,
a lookup service will grant a lease saying that it will only keep information for a certain period
of time, and the service can renew the lease later if desired.

Requesting and Receiving Leases
Leases are requested for a period of time. In Jini, a common use of leasing is for a service to
request that a copy of the service be kept on a lookup service for a certain length of time, for
delivery to clients on request. The service requests a time in the ServiceRegistrar’s register()
method. Two special values of the time are as follows:

• Lease.ANY: The service lets the lookup service decide on the time.

• Lease.FOREVER: The request is for a lease that never expires.

The lookup service acts as the granter of the lease and decides how long it will actually
create the lease for. (The lookup service from Sun typically sets the lease time as only five
minutes.) Once it has done that, it will attempt to ensure that the request is honored for that
period of time. The lease is returned to the service and is accessible through the getLease()
method of the ServiceRegistration object. These objects are shown in Figure 8-1.

7168ch08.fm Page 73 Thursday, July 27, 2006 4:17 PM

74 C H A P T E R 8 ■ L E A S I N G

Figure 8-1. Objects in a leased system

ServiceRegistration reg = registrar.register();
Lease lease = reg.getLease();

The principal methods of the Lease object are as follows:

package net.jini.core;
public interface Lease {
 void cancel() throws
 UnknownLeaseException,
 java.rmi.RemoteException;
 long getExpiration();
 void renew(long duration) throws
 LeaseDeniedException,
 UnknownLeaseException,
 java.rmi.RemoteException;
}

The expiration value from getExpiration() is the time in milliseconds since the beginning
of the epoch (the same as in System.currentTimeMillis()). To find the amount of time still
remaining from the present, the current time can be subtracted from this, as follows:

long duration = lease.getExpiration() - System.currentTimeMillis();

Cancellation
A service can cancel its lease by using cancel(). The lease communicates back to the lease
management system on the lookup service, which cancels storage of the service.

Expiration
When a lease expires, it does so silently. That is, the lease granter (the lookup service) will not
inform the lease holder (the service) that it has expired. While it might seem nice to get warning
of a lease expiring so that it can be renewed, this would have to be in advance of the expiration
(e.g., “I’m just about to expire; please renew me quickly!”), but this would complicate the
leasing system and not be completely reliable anyway (e.g., how far in advance is soon
enough?).

7168ch08.fm Page 74 Thursday, July 27, 2006 4:17 PM

Alyce Fountain
FPO

C H A P T E R 8 ■ L E A S I N G 75

Instead, it is up to the service to call renew() before the lease expires if it wishes the lease
to continue.

Renewing Leases
Jini supplies a LeaseRenewalManager class that looks after the process of calling renew() at suit-
able times.

package net.jini.lease;
public Class LeaseRenewalManager {
 public LeaseRenewalManager();
 public LeaseRenewalManager(Lease lease,
 long expiration,
 LeaseListener listener);
 public void renewFor(Lease lease, long duration,
 LeaseListener listener);
 public void renewUntil(Lease lease,
 long expiration,
 LeaseListener listener);
 // etc
}

The LeaseRenewalManager manages a set of leases, which may be set by the constructor or
added later by renewFor() or renewUntil(). The time requested in these methods is in millisec-
onds. The expiration time is measured since the epoch, whereas the duration time is
measured from now.

Generally, leases will be renewed and the manager will function quietly. However, the
lookup service may decide not to renew a lease and will cause an exception to be thrown. This
exception will be caught by the renewal manager and will cause the listener’s notify() method
to be called with a LeaseRenewalEvent as a parameter, which will allow the application to take
corrective action if its lease is denied. If the listener is null, then no notification will take place.

Granting and Handling Leases
The preceding discussion looked at leases from the side of the client that receives a lease and
has to manage it. The converse of this is the agent that grants leases and has to manage things
from its side. This section contains more advanced material that you can feel free to skip for
now; it is not needed until Chapter 16. An example of creating a lease is also presented in
Chapter 15.

A lease can be granted for almost any remote service—any one where one object wants to
maintain information about another one that is not within the same virtual machine. As with
other remote services, there are the added partial failure modes, such as network crash, remote
service crash, timeouts, and so on. An object that keeps information on a remote service will
hand out a lease to the service and will want the remote service to keep “pinging” it periodically
to say that it is alive and that it wants the information kept. Without this periodic assurance, the
object might conclude that the remote service has vanished or is somehow unreachable, and
that it should discard the information about it.

7168ch08.fm Page 75 Thursday, July 27, 2006 4:17 PM

76 C H A P T E R 8 ■ L E A S I N G

Leases are a very general mechanism for allowing one service to have confidence in the
existence of the other for a limited period. Because they are general, they allow for a great deal
of flexibility in use. Because of the possible variety of services, some parts of the Jini lease
mechanism cannot be completely defined and must be left as interfaces for applications to fill
in. This generality means that all of the details are not filled in for you, as your own require-
ments cannot be completely predicted in advance.

A lease is given as an interface, and any agent that wishes to grant leases must implement
this interface.

package net.jini.core.lease;
import java.rmi.RemoteException;
public interface Lease {
 long FOREVER;
 long ANY;
 long getExpiration();
 void cancel() throws UnknownLeaseException, RemoteException;
 void renew(long duration)

throws LeaseDeniedException, UnknownLeaseException, RemoteException;
 void setSerialFormat(int format);
 int getSerialFormat();
 LeaseMap createLeaseMap(long duration);
 boolean canBatch(Lease lease);
}

Jini provides three implementations: an AbstractLease, and a subclass of this, a
LandlordLease, which in turn has a subclass ConstrainableLandlordLease.

The main issues in implementing a particular lease class lie in setting a policy for handling
the initial request for a lease period and in deciding what to do when a renewal request comes
in. Some simple possibilities are as follows:

• Always grant the requested time.

• Ignore the requested time and always grant a fixed time.

 Of course, there are many more possibilities based on the lessor’s expected TTL, system
load, and so forth.

There are other issues, though. Any particular lease will need a timeout mechanism. Also,
a group of leases can be managed together, and this can reduce the amount of overhead of
managing individual leases.

Abstract Lease
An abstract lease gives a basic implementation of a lease that can almost be used for simple
leases.

package com.sun.jini.lease;
public abstract class AbstractLease implements Lease, java.io.Serializable {

7168ch08.fm Page 76 Thursday, July 27, 2006 4:17 PM

C H A P T E R 8 ■ L E A S I N G 77

 protected AbstractLease(long expiration);
 public long getExpiration();
 public int getSerialFormat();
 public void setSerialFormat(int format);
 public void renew(long duration);
 protected abstract long doRenew(long duration);
}

This class supplies straightforward implementations of much of the Lease interface, with
three provisos:

• The constructor is protected, so that constructing a lease with a specified duration is
devolved to a subclass. This means that lease duration policy must be set by this
subclass.

• The renew() method calls into the abstract doRenew() method, again to force a subclass
to implement a renewal policy.

• The Lease interface does not implement the cancel() and createLeaseMap() methods,
so these must also be left to a subclass.

Thus, this class implements the easy things and leaves all matters of policy to concrete
subclasses.

Landlord Package
The landlord is a package that allows more-complex leasing systems to be built. It is not part of
the Jini specification, but is supplied as a set of classes and interfaces. The set is not complete
in itself—some parts are left as interfaces and need to have class implementations. These will
be supplied by a particular application.

A landlord looks after a set of leases. Leases are identified to the landlord by a cookie, which
is a unique identifier (Uuid) for each lease. A landlord does not need to create leases itself; it can
use a landlord lease factory to do this. (But of course the landlord can create leases, depending
on how an implementation is done.) When a client wishes to cancel or renew a lease, it asks the
lease to perform the cancellation or renewal, and in turn the lease asks its landlord to perform
the action. A client is unlikely to ask the landlord directly, as it will only have been given a lease,
not a landlord.

The principal classes and interfaces in the landlord package are shown in Figure 8-2,
where the interfaces are shown in italic font and the classes in normal font.

7168ch08.fm Page 77 Thursday, July 27, 2006 4:17 PM

78 C H A P T E R 8 ■ L E A S I N G

Figure 8-2. Class diagram in the landlord package

The interfaces assume that they will be implemented in certain ways, in that each imple-
mentation class will contain a reference to certain other interfaces. This doesn’t show in the
interface specifications, but can be inferred from the method calls.

For example, suppose we wish to develop a lease mechanism for a Foo resource. We would
create a FooLandlord to create and manage leases for Foo objects. A minimal structure for this
could be as shown in Figure 8-3.

Figure 8-3. Class diagram of a minimal landlord implementation

7168ch08.fm Page 78 Thursday, July 27, 2006 4:17 PM

Alyce Fountain
FPO

Alyce Fountain
FPO

C H A P T E R 8 ■ L E A S I N G 79

The landlord creates a lease factory and asks it to create leases. Each lease contains a refer-
ence to its landlord. When requests are made of the lease, such as renew(), these are passed to
the landlord to make a decision. However, the renew() request to the landlord does not pass in
the lease, but just its UUID.

Information missing from Figure 8-3 includes how the resource itself is dealt with, where
leases end up, and how leasing granting and renewal decisions are made:

• Leases are given to the client that is requesting a lease. Calls such as renew() are remote
calls to the landlord. The landlord doesn’t need a copy of the lease, but does need some
representation of it, and that is the purpose of the cookie: it acts as a lessor-side repre-
sentation of the lease.

• The resource being leased has a representation on the lessor. For example, a lookup
service would have the marshalled form of the service proxy to manage. The lessor needs
to have this representation plus the lease handle (the cookie) and information such as
the lease duration and expiration. This information is given in an implementation of the
LeasedResource interface.

• Decisions about granting or renewing leases would need to be made using the
LeasedResource. While these decisions could be made by the landlord, it is cleaner to
hand such a task to a separate object concerned with such policy decisions, which is the
function of LeasePeriodPolicy objects. For example, the FixedLeasePeriodPolicy has a
simple policy that grants lease times based on a fixed default and maximum lease.

These considerations lead to a more complex class diagram involving the resource and the
policy classes, shown in Figure 8-4.

Figure 8-4. Class diagram in a landlord implementation

In this context, let’s now consider some of these classes in more detail.

LandlordLease Class
The LandlordLease class extends AbstractLease. This class has the private fields cookie and
landlord, as shown in Figure 8-5.

7168ch08.fm Page 79 Thursday, July 27, 2006 4:17 PM

Alyce Fountain
FPO

80 C H A P T E R 8 ■ L E A S I N G

Figure 8-5. The LandlordLease class diagram

 Implementation of the cancel()and doRenew() methods in LandlordLease is deferred to its
landlord.

 public void cancel() {
landlord.cancel(cookie);

 }
 protected long doRenew(long renewDuration) {

return landlord.renew(cookie, renewDuration);
 }

The LandlordLease class can be used as is, with no subclassing needed. Note that the land-
lord system produces these leases, but does not actually keep them anywhere; they are passed
on to clients, which then use the lease to call the landlord and hence interact with the landlord
lease system. Within the landlord system, the cookie is used as an identifier for the lease.

LeasedResource Interface
A LeasedResource is a convenience wrapper around a resource that includes extra information
about a lease and methods for use by landlords. It defines an interface as follows:

public interface LeasedResource {
 public void setExpiration(long newExpiration);
 public long getExpiration();

7168ch08.fm Page 80 Thursday, July 27, 2006 4:17 PM

Alyce Fountain
FPO

C H A P T E R 8 ■ L E A S I N G 81

 public Uuid getCookie();
}

This interface includes the cookie, a unique identifier for a lease within a landlord system,
as well as expiration information for the lease. This is all the information maintained about the
lease that has been given out to a client.

An implementation of LeasedResource will typically include the resource that is leased,
plus a method of setting the cookie. The following code shows an example:

/**
 * FooLeasedResource.java
 */
package foolandlord;
import com.sun.jini.landlord.LeasedResource;
import net.jini.id.Uuid;
import net.jini.id.UuidFactory;
public class FooLeasedResource implements LeasedResource {

 protected Uuid cookie;
 protected Foo foo;
 protected long expiration = 0;
 public FooLeasedResource(Foo foo) {
 this.foo = foo;

cookie = UuidFactory.generate();
 }
 public void setExpiration(long newExpiration) {

this.expiration = newExpiration;
 }
 public long getExpiration() {

return expiration;
 }
 public Uuid getCookie() {

return cookie;
 }
 public Foo getFoo() {

return foo;
 }
} // FooLeasedResource

LeasePeriodPolicy Interface
A lease policy is used when a lease is first granted, and when it tries to renew itself. The time
requested may be granted, modified or denied. A lease policy is specified by the
LeasePeriodPolicy interface.

package com.sun.jini.landlord;
public interface LeasePeriodPolicy {
 LeasePeriodPolicy.Result grant(LeasedResource resource, long requestedDuration);

7168ch08.fm Page 81 Thursday, July 27, 2006 4:17 PM

82 C H A P T E R 8 ■ L E A S I N G

 LeasePeriodPolicy.Result renew(LeasedResource resource, long requestedDuration);
}

An implementation of this policy is given by the FixedLeasePeriodPolicy. The constructor
takes maximum and default lease values. It uses these to grant and renew leases.

Landlord Interface
The Landlord is the final interface in the package that we need for a basic landlord system.
Other classes and interfaces, such as LeaseMap, are for handling of leases in batches, and will
not be dealt with here. The Landlord interface is as follows:

package com.sun.jini.lease.landlord;
public interface Landlord extends Remote {
 public long renew(Uuid cookie, long extension)

throws LeaseDeniedException, UnknownLeaseException, RemoteException;
 public void cancel(Uuid cookie)

throws UnknownLeaseException, RemoteException;
 public RenewResults renewAll(Object[] cookies, long[] durations)

throws RemoteException;

 public Map cancelAll(Uuid[] cookies)

throws RemoteException;
}

The renew() and cancel() methods are usually called from the renew() and cancel()
methods of a particular lease. An implementation of Landlord, such as FooLandlord, will prob-
ably have a table of LeasedResource objects indexed by the Uuid, so that it can work out which
resource the request is about.

For any implementation of the Landlord interface, the methods renewAll() and
cancelAll() will clearly just loop through the cookies and call renew() and cancel(), respec-
tively, on each cookie. A convenience class, LandlordUtil, has the methods renewAll() and
cancelAll(), which just do that, saving the programmer from having to write the same code for
each implementation. This utility class needs to have an object that implements just renew()
and cancel(), and the LocalLandlord interface has these two methods. So by making our
FooLandlord also implement this interface, we can use the utility class to reduce the code we
need to write.

The landlord won’t make decisions itself about renewals. The renew() method needs to
use a policy object to ask for renewal. In the FooManager implementation, it uses a
FixedLeasePeriodPolicy.

There must be a method to ask for a new lease for a resource, and this is not specified by
the landlord package. This request will probably be made on the lease-granting side, and this
should have access to the landlord object, which forms a central point for lease management.
So the FooLandlord will quite likely have a method such as the following:

 public Lease newFooLease(Foo foo, long duration);

which will give a lease for a resource.

7168ch08.fm Page 82 Thursday, July 27, 2006 4:17 PM

C H A P T E R 8 ■ L E A S I N G 83

The lease used in the landlord package is a LandlordLease. This contains a private field,
which is a reference to the landlord itself. The lease is given to a client as a result of
newFooLease(), and this client will usually be a remote object. Giving the lease to the client will
involve serializing the lease and sending it to this remote client. While serializing the lease, the
landlord field will also be serialized and sent to the client.

When the client methods such as renew() are called, the implementation of the
LandlordLease will make a call to the landlord, which by then will be remote from its origin. So
the landlord object invoked by the lease will need to be a remote object making a remote call.
In Jini 1.2, this would have been done by making FooLandlord a subclass of
UnicastRemoteObject. In Jini 2.0, this is preferably done by explicitly exporting the landlord to
get a proxy object. The code that follows uses a BasicJeriExporter (for simplicity), but it would
be better to use a configuration.

Putting all this together for the FooLandlord class gives us this:

/**
 * FooLandlord.java
 */
package foolandlord;
import net.jini.core.lease.UnknownLeaseException;
import net.jini.core.lease.LeaseDeniedException;
import net.jini.core.lease.Lease;
import net.jini.jeri.BasicJeriExporter;
import net.jini.jeri.BasicILFactory;
import net.jini.jeri.tcp.TcpServerEndpoint;
import net.jini.export.*;
import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util.Map;
import java.util.HashMap;
import net.jini.id.Uuid;
import com.sun.jini.landlord.Landlord;
import com.sun.jini.landlord.LeaseFactory;
import com.sun.jini.landlord.LeasedResource;
import com.sun.jini.landlord.FixedLeasePeriodPolicy;
import com.sun.jini.landlord.LeasePeriodPolicy;
import com.sun.jini.landlord.LeasePeriodPolicy.Result;
import com.sun.jini.landlord.Landlord.RenewResults;
import com.sun.jini.landlord.LandlordUtil;
import com.sun.jini.landlord.LocalLandlord;
import net.jini.id.UuidFactory;
public class FooLandlord implements Landlord, LocalLandlord {
 private static final long MAX_LEASE = Lease.FOREVER;
 private static final long DEFAULT_LEASE = 1000*60*5; // 5 minutes
 private Map leasedResourceMap = new HashMap();
 private LeasePeriodPolicy policy = new

FixedLeasePeriodPolicy(MAX_LEASE, DEFAULT_LEASE);
 private Uuid myUuid = UuidFactory.generate();
 private LeaseFactory factory;

7168ch08.fm Page 83 Thursday, July 27, 2006 4:17 PM

84 C H A P T E R 8 ■ L E A S I N G

 public FooLandlord() throws java.rmi.RemoteException {
Exporter exporter = new
 BasicJeriExporter(TcpServerEndpoint.getInstance(0),

 new BasicILFactory());
Landlord proxy = (Landlord) exporter.export(this);
factory = new LeaseFactory(proxy, myUuid);

 }

 public void cancel(Uuid cookie) throws UnknownLeaseException {

if (leasedResourceMap.remove(cookie) == null) {
 throw new UnknownLeaseException();
}

 }
 public Map cancelAll(Uuid[] cookies) {

return LandlordUtil.cancelAll(this, cookies);
 }
 public long renew(Uuid cookie,

 long extension) throws LeaseDeniedException,
 UnknownLeaseException {

LeasedResource resource = (LeasedResource)
 leasedResourceMap.get(cookie);
LeasePeriodPolicy.Result result = null;
if (resource != null) {
 result = policy.renew(resource, extension);
} else {
 throw new UnknownLeaseException();
}
return result.duration;

 }
 public Landlord.RenewResults renewAll(Uuid[] cookies, long[] durations) {

return LandlordUtil.renewAll(this, cookies, durations);
 }
 public LeasePeriodPolicy.Result grant(LeasedResource resource,

 long requestedDuration)
throws LeaseDeniedException {
Uuid cookie = resource.getCookie();
try {
 leasedResourceMap.put(cookie, resource);
} catch(Exception e) {
 throw new LeaseDeniedException(e.toString());
}
return policy.grant(resource, requestedDuration);

 }
 public Lease newFooLease(Foo foo, long duration)

throws LeaseDeniedException {
FooLeasedResource resource = new FooLeasedResource(foo);
Uuid cookie = resource.getCookie();

7168ch08.fm Page 84 Thursday, July 27, 2006 4:17 PM

C H A P T E R 8 ■ L E A S I N G 85

// find out how long we should grant the lease for
LeasePeriodPolicy.Result result = grant(resource, duration);
long expiration = result.expiration;
resource.setExpiration(expiration);
Lease lease = factory.newLease(cookie, expiration);
return lease;

 }
 public static void main(String[] args) throws RemoteException,

 LeaseDeniedException,
 UnknownLeaseException {

// simple test harness

long DURATION = 2000; // 2 secs;

FooLandlord landlord = new FooLandlord();
Lease lease = landlord.newFooLease(new Foo(), DURATION);
long duration = lease.getExpiration() - System.currentTimeMillis();
System.out.println("Lease granted for " + duration + " msecs");
try {
 Thread.sleep(1000);
} catch(InterruptedException e) {
 // ignore
}
lease.renew(5000);
duration = lease.getExpiration() - System.currentTimeMillis();
System.out.println("Lease renewed for " + duration + " msecs");
lease.cancel();
System.out.println("Lease cancelled");

 }
} // FooLandlord

The Ant file for this is similar to those given before. I only give the parts that are different
this time:

 <!-- Source files for the server -->
 <property name="src.files"
 value="
 foolandlord/Foo.java
 foolandlord/FooLeasedResource.java
 foolandlord/FooLandlord.java
 "/>
 <!-- Class files to run the server -->
 <property name="class.files"
 value="
 foolandlord/Foo.class
 foolandlord/FooLeasedResource.class
 foolandlord/FooLandlord.class
 "/>

7168ch08.fm Page 85 Thursday, July 27, 2006 4:17 PM

86 C H A P T E R 8 ■ L E A S I N G

 <!-- Class files for the client to download -->
 <property name="class.files.dl"
 value="
 "/>

Summary
Leasing allows resources to be managed without complex garbage collection mechanisms.
Leases received from services can be dealt with easily using LeaseRenewalManager. Entities that
need to hand out leases can use a system, such as the landlord system, to handle these leases.

7168ch08.fm Page 86 Thursday, July 27, 2006 4:17 PM

