
67

■ ■ ■

C H A P T E R 7

Client Search

This chapter looks at what the client has to do once it has found a lookup service and wishes
to find a service. From the lookup service, the client will get a ServiceRegistrar object. To find
a service from the lookup service, the client needs to prepare a description of the service, which
it does using a ServiceTemplate object. The client will then call one of two methods on the
ServiceRegistrar to return either a single matching service or a set of matching services.

Searching for Services with the ServiceRegistrar
A client gets a ServiceRegistrar object from the lookup service, and it uses this object to search
for a service stored on the lookup service using the lookup() method:

public Class ServiceRegistrar {
 public java.lang.Object lookup(ServiceTemplate tmpl)
 throws java.rmi.RemoteException;
 public ServiceMatches lookup(ServiceTemplate tmpl,
 int maxMatches)
 throws java.rmi.RemoteException;
}

The first of these methods just finds a service that matches the request. The second finds a
set (up to maxMatches) requested.

The lookup methods use a class of type ServiceTemplate to specify the service looked for:

package net.jini.core.lookup;
public Class ServiceTemplate {
 public ServiceID serviceID;
 public java.lang.Class[] serviceTypes;
 public Entry[] attributeSetTemplates;
 ServiceTemplate(ServiceID serviceID,
 java.lang.Class[] serviceTypes,
 Entry[] attrSetTemplates);
}

Although each service should have been assigned a serviceID by a lookup service, a client
might not know the serviceID (e.g., it could be the first time the client has looked for this
service). In this case, the serviceID is set to null. If the client does know the serviceID, then it
can set the value to find the service. The attributeSetTemplates is a set of Entry elements used
to match attributes, as discussed later in this chapter in the “Matching Services” section.

7168ch07.fm Page 67 Thursday, July 27, 2006 3:43 PM

68 C H A P T E R 7 ■ C L I E N T S E A R C H

The major parameter of the lookup() method is a list of serviceTypes. We know that
services export instances of a class, but how does the client ask so that it gets a suitable instance
delivered from the lookup service? Although the lookup services keep instances of objects for
the service, the client will only know about a service from its specification (unless it already has
a serviceID for the service). The specification will almost certainly be a Java interface, so the
client needs to ask using this interface. An interface can have a class object in the same way as
ordinary classes, so the list of serviceTypes will typically be a list of class objects for service
interfaces.

To be more concrete, suppose a toaster is defined by this interface:

public interface Toaster extends java.io.Serializable {
 public void setDarkness(int dark);
 public void startToasting();
}

A Breville “Extra Lift” toaster would implement this interface in one particular way, as
would other toasters:

public class BrevilleExtraLiftToaster implements Toaster {
 public void setDarkness(int dark) {
 ...
 }
 public void startToasting() {
 ...
 }
}

When the toaster service starts, it exports an object of class BrevilleExtraLiftToaster to
the lookup service. However, the client does not know what type of toaster is out there, so it will
make a request like this:

 System.setSecurityManager(new RMISecurityManager());
 // specify the interface object
 Class[] toasterClasses = new Class[1];
 toasterClasses[0] = Toaster.class;
 // prepare a search template of serviceID, classes, and entries
 ServiceTemplate template = new ServiceTemplate(null,
 toasterClasses,
 null);
 // now find a toaster
 Toaster toaster = null;
 try {
 toaster = (Toaster) registrar.lookup(template);
 } catch(java.rmi.RemoteException e) {
 System.exit(2);
 }

Notice that lookup() can throw an exception. This can occur if, for example, the service
requested cannot be deserialized.

7168ch07.fm Page 68 Thursday, July 27, 2006 3:43 PM

C H A P T E R 7 ■ C L I E N T S E A R C H 69

As a result of calling the lookup() method, an object (an instance of a class implementing
the Toaster interface) has been transported across to the client, and the object has been
coerced to be of this Toaster type. This object has two methods: setDarkness() and
startToasting(). No other information is available about the toaster’s capabilities, because
the interface does not specify any more, and in this case the set of attribute values was null. So
the client can call either of the two methods:

 toaster.setDarkness(1);
 toaster.startToasting();

Before leaving this section, you might wonder what the role of System.setSecurityManager
(new RMISecurityManager()) is. A serialized object has been transported across the network
and is reconstituted and coerced to an object implementing Toaster. We know that here it will,
in fact, be an object of class BrevilleExtraLiftToaster, but the client doesn’t need to know
that. Or does it? Certainly the client will not have a class definition for this class on its side. But
when the toaster object begins to run, then it must run using its BrevilleExtraLiftToaster
code! Where does it get this code from?

From the server—most likely by an HTTP request on the server. This means that the
Toaster object is loading a class definition across the network, and this requires security
access. So a security manager capable of granting this access must be installed before the load
request is made.

Note the difference between loading a serialized instance and loading a class definition:
the first does not require access rights; only the second one does. So if the client had the class
definitions of all possible toasters, then it would never need to load a class and would not need
a security manager that allows classes to be loaded across the network. This is not likely, but
may perhaps be needed in a high-security environment.

Receiving the ServiceMatches Object
If a client wishes to search for more than one match to a service request from a particular
lookup service, then it specifies the maximum number of matches it would like returned by the
maxMatches parameter of the second lookup() method. The client gets back a ServiceMatches
object that looks like this:

package net.jini.core.lookup;
public Class ServiceMatches {
 public ServiceItem[] items;
 public int totalMatches ;
}

The number of elements in items need not be the same as totalMatches. Suppose there are
five matching services stored on the lookup service. In that case, totalMatches will be set to 5
after a lookup. However, if you only specified to search for at most two matches, then items will
be set to be an array with only two elements.

In addition, not all elements of this array need be non-null! Note that in lookup(tmpl)
when asking for only one match, an exception can be returned, such as when the service is not
serializable. No exception is thrown here, because although one match might be bad, the
others may still be OK. So a value of null as the array element value is used to signify this:

7168ch07.fm Page 69 Thursday, July 27, 2006 3:43 PM

70 C H A P T E R 7 ■ C L I E N T S E A R C H

 ServiceMatches matches = registrar.lookup(template, 10);
 // NB: matches.totalMatches may be greater than matches.items.length
 for (int n = 0; n < matches.items.length; n++) {
 Toaster toaster = (Toaster) matches.items[n].service;

if (toaster != null) {
 toaster.setDarkness(1);
 toaster.startToasting();

 }
 }

This code will start up to ten toasters cooking at once!

Matching Services
As mentioned previously, a client attempts to find one or more services that satisfy its require-
ments by creating a ServiceTemplate object and using this in a registrar’s lookup() call. A
ServiceTemplate object has three fields:

ServiceID serviceID;
java.lang.Class[] serviceTypes;
Entry[] attributeSetTemplates;

If the client is repeating a request, then it may have recorded the serviceID from an earlier
request. The serviceID is a universally unique identifier (UUID), so it can be used to identify a
service unambiguously. This serviceID can be used by the lookup service as a filter to quickly
discard other services.

Alternatively, a client may want to find a service satisfying several interface requirements
at once. For example, a client may look for a service that implements both Toaster and
FireAlarm (so that it can properly handle burnt toast).

And finally, the client will specify a set of attributes that must be satisfied by each service.
Each attribute required by the client is taken in turn and matched against the set offered by the
service. For example, in addition to requesting a Toaster with a FireAlarm, a client entry may
specify a location in GP South Building. This will be tried against all the variations of location
offered by the service. A single match is good enough. An additional client requirement of, say,
manufacturer would also have to be matched by the service.

The more formal description from the ServiceTemplate API documentation follows:

• A service item (item) matches a service template (tmpl) if item.serviceID equals
tmpl.serviceID (or if tmpl.serviceID is null); and item.service is an instance of every
type in tmpl.serviceTypes; and item.attributeSets contains at least one matching
entry for each entry template in tmpl.attributeSetTemplates.

• An entry matches an entry template if the class of the template is the same as, or a super-
class of, the class of the entry, and every non-null field in the template equals the
corresponding field of the entry. Every entry can be used to match more than one
template. Note that in a service template, for serviceTypes and attributeSetTemplates,
a null field is equivalent to an empty array; both represent a wildcard.

7168ch07.fm Page 70 Thursday, July 27, 2006 3:43 PM

C H A P T E R 7 ■ C L I E N T S E A R C H 71

Summary
As described in this chapter, a client prepares a ServiceTemplate, which is a list of class objects
and a list of entries. For each lookup service that is found, the client can query the lookup
service using the ServiceRegistrar object’s lookup() method, to see if the lookup service has a
service matching the template. If the match is successful, an object is returned that can be cast
into the class required. Service methods can then be invoked on this object.

7168ch07.fm Page 71 Thursday, July 27, 2006 3:43 PM

7168ch07.fm Page 72 Thursday, July 27, 2006 3:43 PM

