
59

■ ■ ■

C H A P T E R 6

Service Registration

This chapter looks at how services register themselves with lookup services so that they can
later be found by clients. From a lookup service, the service will get a ServiceRegistrar object.
The server will prepare a description of the service in a ServiceItem and will then call the
ServiceRegistrar’s register() method with the ServiceItem as a parameter. The ServiceItem
can contain additional information about a service as well as its type, and this information is
stored in Entry objects.

ServiceRegistrar
A server for a service finds a service locator using either a unicast lookup with a LookupLocator
or a multicast search using LookupDiscovery. In both cases, a ServiceRegistrar object is
returned to act as a proxy for the lookup service. The server then registers the service with the
service locator using the ServiceRegistrar’s register() method:

package net.jini.core.lookup;
public Class ServiceRegistrar {
 public ServiceRegistration register(ServiceItem item,
 long leaseDuration)
 throws java.rmi.RemoteException;
}

The second parameter here, leaseDuration, is a request for the length of time (in millisec-
onds) the lookup service will keep the service registered. A request for a time period need not
be honored—the lookup service may reject it completely, or only grant a lesser time interval.
Leasing is discussed in more detail in Chapter 8.

The first parameter is of the following type:

package net.jini.core.lookup;
public Class ServiceItem {
 public ServiceID serviceID;
 public java.lang.Object service;
 public Entry[] attributeSets;
 public ServiceItem(ServiceID serviceID,

7168ch06.fm Page 59 Thursday, July 27, 2006 1:58 PM

60 C H A P T E R 6 ■ S E R V I C E R E G I S T R A T I O N

 java.lang.Object service,
 Entry[] attrSets);
}

ServiceItem
The service provider will create a ServiceItem object by using the constructor and pass it into
register(). The serviceID is set to null when the service is registered for the first time. The
lookup service will set a non-null value as it registers the service. On subsequent registrations
or reregistrations, this non-null value should be used. The serviceID is used as a globally
unique identifier (GUID) for the service.

The second parameter, service, is the service object that is being registered. This object
will be serialized and sent to the service locator for storage. When a client later requests a
service, this is the object it will be given. There are several things to note about the service
object:

• The object must be serializable. Some objects, such as Swing’s JTextArea, are not serial-
izable at present and so cannot be used.

• The object is created in the service’s JVM. However, when it runs, it will do so in the
client’s JVM, so it may need to be a proxy for the actual service. For example, the object
may be able to show a set of toaster controls, but it might have to send messages across
the network to the real toaster service, which is connected to the physical toaster.

• If the service object is an RMI proxy, then the object in the ServiceItem is given by the
programmer as the UnicastRemoteObject for the proxy stub, not the proxy itself. The Java
runtime substitutes the proxy. This subtlety is explored in Chapter 10.

The third parameter is a set of entries giving information about the service in addition to
the service object/service proxy itself. If there is no additional information, this can be null.

Registration
The service attempts to register itself by calling register(). This may throw an java.rmi.
RemoteException, which must be caught. The second parameter is a request to the service
locator for the length of time to store the service. The time requested may or may not be
honored. The return value is of type ServiceRegistration.

ServiceRegistration
The ServiceRegistration object is created by the lookup service and is returned to run in the
service provider. This object acts as a proxy object that will maintain the state information for
the service object exported to the lookup service.

Actually, the ServiceRegistration object can be used to make changes to the entire
ServiceItem stored on the lookup service. The ServiceRegistration object maintains
a serviceID field, which is used to identify the ServiceItem on the lookup service. The
ServiceItem value can be retrieved by getServiceID() for reuse by the server if it needs to do so

7168ch06.fm Page 60 Thursday, July 27, 2006 1:58 PM

C H A P T E R 6 ■ S E R V I C E R E G I S T R A T I O N 61

(which it should, so that it can use the same identifier for the service across all lookup services).
These objects are shown in Figure 6-1.

Figure 6-1. Objects in service registration

Other methods such as the following can be used to change the entry attributes stored on
the lookup service:

void addAttributes(Entry[] attrSets);
void modifyAttributes(Entry[] attrSetTemplates, Entry[] attrSets);
void setAttributes(Entry[] attrSets);

The final public method for the ServiceRegistration class is getLease(), which returns a
Lease object that allows renewal or cancellation of the lease. This is discussed in more detail in
Chapter 8.

The major task of the server is then over. It will have successfully exported the service to a
number of lookup services. What the server then does depends on how long it needs to keep
the service alive or registered. If the exported service can do everything that the service needs
to do, and does not need to maintain long-term registration, then the server can simply exit.
More commonly, if the exported service object acts as a proxy and needs to communicate back
to the service, then the server can sleep so that it maintains the existence of the service. If the
service needs to be reregistered before timeout occurs, then the server can also sleep in this
situation.

The SimpleService Program
A unicast server that exports its service and does nothing else is shown in the following
program:

package basic;
import net.jini.core.discovery.LookupLocator;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceRegistration;
import java.io.Serializable;
import java.rmi.RMISecurityManager;
/**
 * SimpleService.java

7168ch06.fm Page 61 Thursday, July 27, 2006 1:58 PM

Alyce Fountain
FPO

62 C H A P T E R 6 ■ S E R V I C E R E G I S T R A T I O N

 */
public class SimpleService implements Serializable {

 static public void main(String argv[]) {
 new SimpleService();
 }

 public SimpleService() {

LookupLocator lookup = null;
ServiceRegistrar registrar = null;
System.setSecurityManager(new RMISecurityManager());

 try {
 lookup = new LookupLocator("jini://localhost");
 } catch(java.net.MalformedURLException e) {
 System.err.println("Lookup failed: " + e.toString());

 System.exit(1);
 }

try {
 registrar = lookup.getRegistrar();
} catch (java.io.IOException e) {

 System.err.println("Registrar search failed: " + e.toString());
 System.exit(1);
} catch (java.lang.ClassNotFoundException e) {

 System.err.println("Registrar search failed: " + e.toString());
 System.exit(1);
}
System.out.println("Found a registrar");
// register ourselves as service, with no serviceID
// or set of attributes
ServiceItem item = new ServiceItem(null, this, null);
ServiceRegistration reg = null;
try {
 // ask to register for 10,000,000 milliseconds
 reg = registrar.register(item, 10000000L);
} catch(java.rmi.RemoteException e) {
 System.err.println("Register exception: " + e.toString());
}
System.out.println("Service registered with registration id: " +

 reg.getServiceID());
// we can exit here if the exported service object can do
// everything, or we can sleep if it needs to communicate
// to us or we need to renew a lease later
//
// Typically, we will need to renew a lease later

 }

} // SimpleService

7168ch06.fm Page 62 Thursday, July 27, 2006 1:58 PM

C H A P T E R 6 ■ S E R V I C E R E G I S T R A T I O N 63

Running the SimpleService Program
The SimpleService program needs to be compiled and run with jsk-platform.jar and
jsk-lib.jar in its CLASSPATH. In order to run the program, a security policy must be specified,
as it uses an RMIClassLoader.

When run, the SimpleService program will attempt to connect to the service locator, so
obviously one needs to be running on the machine specified in order for this to happen. Other-
wise, the program will throw an exception and terminate.

The instance data for the service object is transferred in serialized form across socket
connections. The instance data is kept in this serialized form by the lookup services. Later,
when a client asks for the service to be reconstituted, it will use this instance data and also will
need the class files. At this point, the class files will also need to be transferred, probably by an
HTTP server. There is no need for additional RMI support services, such as rmiregistry or
rmid, since all registration is done by the register() method.

An Ant file to build and run the SimpleService program is basic.SimpleService.xml:

<project name="basic.SimpleService" default="usage">
 <!-- Inherits properties
 jini.home
 jini.jars
 src
 dist
 build
 httpd.classes
 -->
 <!-- files for this project -->
 <property name="src.files"
 value="
 basic/SimpleService.java
 "/>
 <property name="class.files"
 value="
 basic/SimpleService.class
 "/>
 <property name="class.files.dl"
 value="
 "/>
 <property name="no-dl" value="true"/>
 <!-- derived names - may be changed -->
 <property name="jar.file"
 value="${ant.project.name}.jar"/>
 <property name="jar.file.dl"
 value="${ant.project.name}-dl.jar"/>
 <property name="main.class"
 value="${ant.project.name}"/>
 <property name="jini.jars.start" value="${jini.jars}:${jini.home}/lib/
start.jar"/>
 <!-- targets -->

7168ch06.fm Page 63 Thursday, July 27, 2006 1:58 PM

64 C H A P T E R 6 ■ S E R V I C E R E G I S T R A T I O N

 <target name="all" depends="compile"/>
 <target name="compile">

<javac destdir="${build}" srcdir="${src}"
 classpath="${jini.jars.start}"

 includes="${src.files}">
 </javac>
 </target>
 <target name="dist" depends="compile"
 description="generate the distribution">

<jar jarfile="${dist}/${jar.file}"
 basedir="${build}"

 includes="${class.files}"/>
 <antcall target="dist-jar-dl"/>
 </target>
 <target name="dist-jar-dl" unless="no-dl">

<jar jarfile="${dist}/${jar.file.dl}"
 basedir="${build}"

 includes="${class.files.dl}"/>
 </target>
 <target name="build" depends="dist,compile"/>
 <target name="run" depends="build">

<java classname="${main.class}"
 fork="true"

 classpath="${jini.jars.start}:${dist}/${jar.file}">
 <jvmarg value="-Djava.security.policy=${res}/policy.all"/>
 </java>
 </target>
 <target name="deploy" depends="dist" unless="no-dl">
 <copy file="${dist}/${jar.file.dl}"
 todir="${httpd.classes}"/>
 </target>
</project>

Information from the ServiceRegistration
The ServiceRegistrar object’s register() method is used to register the service, and in doing
so returns a ServiceRegistration object. This object can be used to give information about the
registration itself. The relevant methods are as follows:

ServiceID getServiceID();
Lease getLease();

The service ID can be stored by the application if it is going to reregister later. The lease
object can be used to control the lease granted by the lookup locator, and will be discussed in
more detail in Chapter 8. For now, we can just use the lease object to find out how long the
lease has been granted for by using its getExpiration() method:

long duration = reg.getLease().getExpiration() -
 System.currentTimeMillis();

7168ch06.fm Page 64 Thursday, July 27, 2006 1:58 PM

C H A P T E R 6 ■ S E R V I C E R E G I S T R A T I O N 65

System.out.println("Lease expires at: " +
 duration +
 " milliseconds from now");

Service ID
A service is unique in the world. It runs on a particular machine and performs certain tasks.
However, it will probably register itself with many lookup services; it should have the same
“identity” on all of these. In addition, if either the service or one of these locators crashes or
restarts, then this identity should be the same as before.

The ServiceID plays the role of unique identifier for a service. It is a 128-bit number gener-
ated in a pseudo-random manner, and it should be effectively unique—the chance that a
generator might duplicate this number is vanishingly small. There are two ways to get a service
ID: ask a lookup service for one or generate it yourself.

If the first argument to ServiceItem is null, this is a request to a lookup service to generate
and return a service ID. The returned service ID can then be used as the first parameter to other
lookup services. This used to be the preferred method, but if you register with multiple lookup
services, it can lead to slightly messy logic.

These days, the preferred method seems to be for a service to generate the service ID itself
and give this to all the lookup services it finds, as follows:

import net.jini.id.Uuid;
import net.jini.id.Uuidfactory;
Uuid uuid = UuidFactory.generate();
ServiceID serviceID = new ServiceID(uuid.getMostSignificantBits(),
 uuid.getLeastSignificantBits());

Entries
A service can announce a number of entry attributes when it registers itself with a lookup
service. It does so by preparing an array of Entry objects and passing them into the
ServiceItem used in the register() method of the registrar. There is no limitation to the
amount of information the service can include; in later searches by clients, each entry is
treated as though it was OR’ed with the other entries. In other words, the more entries that are
given by the service, the greater the chance of matching a client’s requirements.

For example, suppose we have a coffee machine on the seventh floor of our building,
which is known as both “GP South Building” and “General Purpose South Building.” Informa-
tion such as this, and general information about the coffee machine, can be encapsulated in
the convenience classes Location and Comment from the net.jini.lookup.entry package. If this
were on our network as a service, it would advertise itself as follows:

import net.jini.lookup.entry.Location;
import net.jini.lookup.entry.Comment;
Location loc1 = new Location("7", "728",
 "GP South Building");
Location loc2 = new Location("7", "728",
 "General Purpose South Building");
Comment comment = new Comment("DSTC coffee machine");

7168ch06.fm Page 65 Thursday, July 27, 2006 1:58 PM

66 C H A P T E R 6 ■ S E R V I C E R E G I S T R A T I O N

Entry[] entries = new Entry[] {loc1, loc2, comment};
ServiceItem item = new ServiceItem(..., ..., entries);
registrar.register(item, ...);

Summary
As you learned in this chapter, a service uses the ServiceRegistrar object, which is returned as
a proxy from a locator, to register itself with that locator. The service prepares a ServiceItem
that contains a service object and a set of entries, and the service object may be a proxy for the
real service. It registers this service object and entry information using the register() method
of the ServiceRegistrar object. Information about a registration is returned as a
ServiceRegistration object, which may be queried for information such as the lease and its
duration.

7168ch06.fm Page 66 Thursday, July 27, 2006 1:58 PM

