
53

■ ■ ■

C H A P T E R 5

Entry Objects

A service is exported to lookup services based on its class. Clients search for services using
class information, typically using an interface. There is often additional information about a
service that is not part of its class information, such as who owns the service, who maintains it,
where it is located, and so on. Entries are used to pass additional information about services to
a client, and the client can then use that information to determine if a particular service is what
it wants.

Entry Class
When a service provider registers a service, it places a copy of the service object (or a service
proxy) on the lookup service. This copy is an instance of an object, albeit in serialized form. The
server can optionally register sets of attributes along with the service object. Each set is given
by an instance of a type or class, so what is stored on each service locator is an instance of a
class along with a set of attribute entries.

For example, a set of file editors may be available as services. Each editor is capable of
editing different types of file as shown in Figure 5-1.

Figure 5-1. Editor class diagram

■Note The classes in Figure 5-1 would probably be interfaces, rather than instantiable classes.

7168ch05.fm Page 53 Thursday, July 27, 2006 1:39 PM

Alyce Fountain
FPO

54 C H A P T E R 5 ■ E N T R Y O B J E C T S

A client can search for a suitable editor in two ways:

• By asking for an instance of a specific class such as ImageEditor

• By asking for an instance of the general class Editor with the additional information that
it can handle a certain type of file

The type of search performed depends on the problem domain and the amount of infor-
mation that clients have. Jini can handle either case. It handles the first case by only specifying
a class object, such as ImageEditor.class. The Jini Entry class is designed to help with the
second situation by specifying a superclass object such as Editor.class and allowing the addi-
tional information to be given in the request by adding extra objects.

The Entry class allows services to advertise their capabilities in very flexible ways. For
example, suppose an editor was capable of handling a number of file types, such as plain text
and RTF files. It could do so by exporting a service object implementing Editor along with an
Entry object saying that it can handle plain text and another Entry object saying that it can
handle RTF files. The service implementation can just add more and more information about
its capabilities without altering the basic interface.

To manage this way of adding information, we would have a FileType class that gives
information about the types of files handled:

public Class FileType implements Entry {
 public String type; // this is a MIME type
 public FileType(String type) {
 this.type = type;
 }
}

For a text editor, the attribute set would be FileType("plain/text"). For an RTF editor, the
attribute set would be FileType("application/rtf").

For an editor capable of handling both plain text and RTF files, its capabilities would be
given by using an array of entries:

Entry[] entries = new Entry[] {new FileType("plain/text"),
 new FileType("application/rtf")
 };

On the other side, suppose a client wishes to find services that can handle the attributes
that it requires. The client uses the same Entry class to do this. For any particular Entry, the
client specifies both of the following:

• Which fields must match exactly (a non-null value)

• Which fields it does not care about (a null value)

 For example, to search for a plain text editor, an entry like this could be used:

Entry[] entries = new Entry[] {new FileType("plain/text")};

7168ch05.fm Page 54 Thursday, July 27, 2006 1:39 PM

C H A P T E R 5 ■ E N T R Y O B J E C T S 55

If any editor will do, the following entry could be used:

Entry[] entries = new Entry[] {new FileType(null)};

Attribute Matching Mechanism
The attribute matching mechanism is pretty basic. For example, a printer typically has the
capacity to print a certain number of pages per minute, but if it specifies this using an Entry, it
actually makes it rather hard to find. A client can request a printer service in which it does not
care about speed, or it can request a particular speed. It cannot ask for printers with a speed
greater than some value. It cannot ask for a printer without a capability, such as anything
except a color printer. An attribute must either match exactly or be ignored. Relational opera-
tors such as < and != are not supported.

If you want to search for a printer with a particular speed, then printer speed capabilities
may need to be given simpler descriptive values, such as “fast,” “average,” or “slow.” Then,
once you have a “fast” printer service returned to the client, it can perform a query on the
service, itself, for its actual speed. This would be done outside of the Jini mechanisms, using
whatever interface has been agreed on for the description of printers. A similar problem, that
of finding a physically “close” service, is taken up in Chapter 15.

The attribute matching mechanism chosen by the Jini designers, of exact matches with
wildcards, is comparatively easy to implement. It is a pity from the programmer’s view that a
more flexible mechanism was not used. One suggestion often made in the Jini mailing list is
that there should be a boolean matches() method on the service object. However, that would
involve unmarshalling the service on the locator to run the matches() method, which would
slow down the lookup service and generate a couple of awkward questions:

• What security permissions should the filter run with?

• What happens if the filter modifies its arguments? (Deep copying to avoid this would
cause further slowdowns.)

 The ServiceDiscoveryManager, discussed in Chapter 17, has the ability to do client-side
filtering to partly rectify this problem.

Restrictions on Entries
Entries are shipped around in marshalled form. Exported service objects are serialized, moved
around, and reconstituted as objects at some remote client. Entries are similarly serialized and
moved around. However, when it comes to comparing them, this is usually done on the lookup
service, and they are not reconstituted on the lookup service. So when comparing an entry
from a service and an entry from a client request, it is the serialized forms that are compared.

An entry cannot have one of the primitive types, such as int or char, as a field. If one of
these fields is required, then it must be wrapped up in a class such as Integer or Character. This
makes it easier to perform “wildcarding” for matching (see Chapter 6 for details). A wildcard for
any object can be the “pattern” null, which will work for any class, including wrapper classes
such as Boolean. (But what is the wildcard for boolean: true or false?)

7168ch05.fm Page 55 Thursday, July 27, 2006 1:39 PM

56 C H A P T E R 5 ■ E N T R Y O B J E C T S

Jini places some further restrictions on the fields of Entry objects. They must be public,
nonstatic, nontransient, and nonfinal. In addition, an Entry class must have a no-args
constructor.

Convenience Classes
The AbstractEntry class implements the Entry interface and is designed as a convenience
class. It implements methods such as equals() and toString(). An application would probably
want to subclass this class instead of implementing Entry.

In addition, Sun’s implementation of Jini contains a further set of convenience classes, all
subclassed out of AbstractEntry. These require the jini-ext.jar file and are as follows:

• Address: The address of the physical component of a service.

• Comment: A free-form comment about a service.

• Location: The location of the physical component of a service. This is distinct from the
Address class in that it can be used alone in a small, local organization.

• Name: The name of a service as used by users. A service may have multiple names.

• ServiceInfo: Generic information about a service, including the name of the manufac-
turer, the product, and the vendor.

• ServiceType: Human-oriented information about the “type” of a service. This is not
related to its data or class types, but is more oriented toward allowing someone to deter-
mine what a service (e.g., a printer) does and that it is similar to another, without
needing to know anything about data or class types for the Java platform.

• Status: The base class from which other status-related entry classes may be derived.

For example, the Address class contains the following:

String country;
String locality; // City or locality name.
String organization; // Name of the company or organization that provides this
service.
String organizationalUnit; // The unit within the organization that provides this
service.
String postalCode; // Postal code.
String stateOrProvince; // Full name or standard postal abbreviation of a state
or province.
String street; // Street address.

You may find these classes useful. On the other hand, what services would like to advertise,
and what clients would like to match on, is pretty much unknown as of yet. These classes are
not part of the formal Jini specification.

7168ch05.fm Page 56 Thursday, July 27, 2006 1:39 PM

C H A P T E R 5 ■ E N T R Y O B J E C T S 57

Further Uses of Entries
The primary intention of entries is to provide extra information about services so that clients
can decide whether or not they are the services the client want to use. An expectation in this is
that the information in an entry is primarily static. However, entries are objects, and they could
implement behavior as well as state. Putting code into entry objects should not be used to
extend the behavior of a service, since all service behavior should be captured in the service
interface specification. There are though some occasions when it is worthwhile having code in
entries.

A good example of a nonstatic Entry is ServiceType, which is an abstract subclass of
AbstractEntry. A ServiceType object contains human-oriented information about a service,
and it contains abstract methods such as String getDisplayName(). This method is intended to
provide a localized name for the service. Localization (e.g., producing an appropriate French
name for the service for French-speaking communities) can only be done on the client side
and will require code to be executed in the client to examine the locale and produce a name.

Another use of entries is when defining the user interface for a service. Services do not
have or require user interfaces for human users, since they are defined by Java interfaces that
can be called by any other Java objects. However, some services may wish to offer a way of
interacting with themselves by means of a user interface, and this involves much executable
code. Since it is not part of the service itself, the user interface should be left in suitable Entry
objects. We examine this topic in detail in Chapter 24.

Summary
As described in this chapter, an entry is additional information about a service, and a service
may have any number of entries. Clients request services by class and by entries, using a simple
matching system. A number of convenience classes subclass Entry.

7168ch05.fm Page 57 Thursday, July 27, 2006 1:39 PM

7168ch05.fm Page 58 Thursday, July 27, 2006 1:39 PM

