
35

■ ■ ■

C H A P T E R 4

Discovering a Lookup Service

Jini uses a lookup service in much the same way as other distributed systems use naming
services and traders. Services register with lookup services, and clients use them to find
services they are interested in. Jini lookup services are designed to be an integral part of the Jini
system, and they have their own set of classes and methods. This chapter looks at what is
involved in discovering a lookup service/service locator; this is common to both services and
clients. The chapter also discusses issues particular to the Sun lookup service reggie.

Running a Lookup Service
A client locates a service by querying a lookup service (service locator). In order to do this, it
must first locate a lookup service. Similarly, a service must register itself with the lookup
service, and in order to do so it must also first locate a lookup service.

The initial task for both a client and a service is thus discovering a lookup service. Such a
service (or set of services) will usually have been started by some independent mechanism. The
search for a lookup service can be done either by unicast or by multicast. Unicast means that
you know the address of the lookup service and can contact it directly. Multicast is used when
you do not know where a lookup service is and have to broadcast a message across the network
so that any lookup service can respond. In fact, the lookup service is just another Jini service,
but it is one that is specialized to store services and pass them on to clients looking for them.

reggie
Sun supplies a lookup service called reggie as part of the standard Jini distribution. The speci-
fication of a lookup service is public, and in the future we can expect to see other
implementations of lookup services.

There may be any number of these lookup services running in a network. A local area
network (LAN) may run many lookup services to provide redundancy in case one of them
crashes. Similarly, across the Internet, people may run lookup services for a variety of reasons;
for example, a public lookup service is running on http://www.jini.monash.edu.au to aid
people trying Jini clients and services so they don't need to also set up a lookup service. Other
lookup services may act as coordination centers, such as a repository of locations for all of the
atomic clock servers in the world.

Anybody can start a lookup service (depending on access permissions), but it will usually
be started by an administrator, or started at boot time. Starting a lookup service used to be the
hardest part of getting Jini working for the beginner. It could take hours or even days of playing
with configuration files and network settings. It has now been made substantially easier: just

7168ch04.fm Page 35 Wednesday, July 26, 2006 8:18 PM

36 C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E

run a DOS batch file or Unix shell script. At the top level of the Jini distribution is the directory
installverify. Change to this directory and run the program LaunchAll, which will start an
HTTP server, the lookup service reggie, and several other useful services.

For the curious, LaunchAll uses the ServiceStarter described in a later chapter, which in
turn uses the configuration file startAll.config. Configuration files are described in Chapter 19.

Unicast Discovery
Unicast discovery can be used when you know the machine on which the lookup service
resides and can ask for it directly. This approach is expected to be used for a lookup service that
is outside of your local network, but that you know the address of anyway (such as your home
network while you are at work, or a network identified in a newsgroup or e-mail message, or
maybe even one advertised on TV).

Unicast discovery relies on a single class, LookupLocator, which is described in the next
section. Basic use of this class is illustrated in the sections on the InvalidLookupLocator
program. The InvalidLookupLocator should be treated as an introductory Jini program that
you can build and run without having to worry about network issues. Connecting to a lookup
service using the network is done with the getRegister method of LookupLocator, and an
example program using this is shown in the UnicastRegistrar program in the “getRegistrar”
section.

LookupLocator
The LookupLocator class in the net.jini.core.discovery package is used for unicast discovery
of a lookup service. There are two constructors:

package net.jini.core.discovery;
public class LookupLocator {

LookupLocator(java.lang.String url) throws
java.net.MalformedURLException;

LookupLocator(java.lang.String host,int port);
}

 For the first constructor, the URL must be of the form jini://host/ or jini://host:port/.
If no port is given, it defaults to 4160. The host should be a valid Domain Name System (DNS)
name (such as www.jini.monash.edu.au) or an IP address (such as 137.92.11.13). No unicast
discovery is performed at this stage, though, so any rubbish could be entered. Only a check for
syntactic validity of the URL is performed. This syntactic check is not even done for the second
constructor.

InvalidLookupLocator
The following program creates some objects with valid and invalid host/URLs. They are only
checked for syntactic validity rather than existence as URLs; that is, no network lookups are
performed. This should be treated as a basic example to get you started building and running a
simple Jini program.

7168ch04.fm Page 36 Wednesday, July 26, 2006 8:18 PM

C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E 37

package basic;
import net.jini.core.discovery.LookupLocator;
/**
 * InvalidLookupLocator.java
 */
public class InvalidLookupLocator {
 static public void main(String argv[]) {

new InvalidLookupLocator();
 }

 public InvalidLookupLocator() {

LookupLocator lookup;
// this is valid
try {
 lookup = new LookupLocator("jini://localhost");
 System.out.println("First lookup creation succeeded");
} catch(java.net.MalformedURLException e) {
 System.err.println("First lookup failed: " + e.toString());
}
// this is probably an invalid URL,
// but the URL is syntactically okay
try {
 lookup = new LookupLocator("jini://ABCDEFG.org");
 System.out.println("Second lookup creation succeeded");
} catch(java.net.MalformedURLException e) {
 System.err.println("Second lookup failed: " + e.toString());
}
// this IS a malformed URL, and should throw an exception
try {
 lookup = new LookupLocator("A:B:C://ABCDEFG.org");
 System.out.println("Third lookup creation succeeded");
} catch(java.net.MalformedURLException e) {
 System.err.println("Third lookup failed: " + e.toString());
}
// this is valid, but no check is made anyway
lookup = new LookupLocator("localhost", 80);
System.out.println("Fourth lookup creation succeeded");

 }

} // InvalidLookupLocator

Running the InvalidLookupLocator
All programs in this book can be compiled using the JDK 1.2 compiler. Jini programs will not
compile or run under JDK 1.1 (any versions). The Java 1.5 compiler can be used, although the
Jini class libraries do not use any of the 1.5 features.

7168ch04.fm Page 37 Wednesday, July 26, 2006 8:18 PM

38 C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E

The following program defines the InvalidLookupLocator class in the basic package. The
source code will in the InvalidLookupLocator.java file in the basic subdirectory. From the
parent directory, this can be compiled by a command such as this:

javac basic/InvalidLookupLocator.java

 to leave the class file also in the basic subdirectory.
When you compile the code, the CLASSPATH will need to include some Jini .jar files. In

versions 2.0 and earlier, the jini-core.jar file was required. This has changed for Jini 2.1; the
preferred files are jsk-platform.jar and jsk-lib.jar for compilation of the source code.
These files are in the lib subdirectory of the Jini distribution. When a service is run, these Jini
files will need to be in its CLASSPATH. Similarly, when a client runs, it will also need these files
in its CLASSPATH. The reason for this repetition is that the service and the client are two sepa-
rate applications, running in two separate JVMs, and quite likely they will be on two separate
computers.

The InvalidLookupLocator has no additional requirements. It does not perform any
network calls and does not require any additional service to be running. It can be run simply
by entering this command:

 java -Djava.security.policy=policy.all -classpath ... basic.InvalidLookupLocator

 where the policy file could be the permissive security policy file

 grant { permission java.security.AllPermission; };

An Ant file to build, deploy, and run this class is basic.InvalidLookupLocator.xml:

<project name="basic.InvalidLookupLocator" default="usage">
 <!-- files for this project -->
 <property name="src.files" value="basic/InvalidLookupLocator.java"/>
 <property name="class.files" value="basic/InvalidLookupLocator.class"/>

 <!-- derived names - may be changed -->
 <property name="jar.file"
 value="${ant.project.name}.jar"/>
 <property name="jar.file.dl"
 value="${ant.project.name}-dl.jar"/>
 <property name="main.class"
 value="${ant.project.name}"/>
 <property name="no-dl" value="true"/>
 <!-- targets -->
 <target name="all" depends="compile"/>
 <target name="compile">

<javac destdir="${build}" srcdir="${src}"
 classpath="${jini.jars}"

 includes="${src.files}">
 </javac>
 </target>
 <target name="dist" depends="compile"
 description="generate the distribution">

7168ch04.fm Page 38 Wednesday, July 26, 2006 8:18 PM

C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E 39

<jar jarfile="${dist}/${jar.file}"
 basedir="${build}"

 includes="${class.files}"/>
 <antcall target="dist-jar-dl"/>
 </target>
 <target name="dist-jar-dl" unless="no-dl">

<jar jarfile="${dist}/${jar.file.dl}"
 basedir="${build}"

 includes="${class.files.dl}"/>
 </target>
 <target name="build" depends="dist,compile"/>
 <target name="deploy" depends="dist" unless="no-dl">
 <copy file="${dist}/${jar.file.dl}"
 todir="${httpd.classes}"/>
 </target>
 <target name="run">

<java classname="${main.class}"
 classpath="${jini.jars}:${dist}/${jar.file}"/>

 </target>
</project>

Information from the LookupLocator
Two of the methods of LookupLocator are as follows:

String getHost(); int getPort();

These methods will return information about the hostname that the locator will use, and
the port it will connect on or is already connected on. This is just the information fed into the
constructor or left to default values, though; it doesn't offer anything new for unicasting.
However, this information will be useful in the multicast situation if you need to find out where
the lookup service is.

getRegistrar
Search and lookup is performed by the getRegistrar() method of the LookupLocator, which
returns an object of class ServiceRegistrar.

public ServiceRegistrar getRegistrar()
throws java.io.IOException,
java.lang.ClassNotFoundException

 The ServiceRegistrar class is discussed in detail later. This class performs network
lookup on the URL given in the LookupLocator constructor.

UML sequence diagrams are useful for showing the timelines of object existence and the
method calls that are made from one object to another. The timeline reads down, and method
calls and their returns read across. A UML sequence diagram augmented with a jagged arrow
showing the network connection is shown in Figure 4-1. <Undefined Cross-Reference> The
UnicastRegister object makes a new() call to create a LookupLocator, and this call returns a

7168ch04.fm Page 39 Wednesday, July 26, 2006 8:18 PM

40 C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E

lookup object. The getRegistrar() method call is then made on the lookup object, and this
causes network activity. As a result, a ServiceRegistrar object is created in some manner by
the lookup object, and this object is returned from the method as the registrar.

Figure 4-1. UML sequence diagram for lookup

 By this stage, the UnicastRegister program that implements Figure 4-1 and performs the
connection to get a ServiceRegistrar object looks like this:

package basic;
import net.jini.core.discovery.LookupLocator;
import net.jini.core.lookup.ServiceRegistrar;
import java.rmi.RMISecurityManager;
/**
 * UnicastRegistrar.java
 */
public class UnicastRegister {

 static public void main(String argv[]) {
 new UnicastRegister();
 }

 public UnicastRegister() {

LookupLocator lookup = null;
ServiceRegistrar registrar = null;
System.setSecurityManager(new RMISecurityManager());

 try {
 lookup = new LookupLocator("jini://localhost");
 } catch(java.net.MalformedURLException e) {
 System.err.println("Lookup failed: " + e.toString());

 System.exit(1);
 }

7168ch04.fm Page 40 Wednesday, July 26, 2006 8:18 PM

Alyce Fountain
FPO

C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E 41

try {
 registrar = lookup.getRegistrar();
} catch (java.io.IOException e) {

 System.err.println("Registrar search failed: " + e.toString());
 System.exit(1);
} catch (java.lang.ClassNotFoundException e) {

 System.err.println("Registrar search failed: " + e.toString());
 System.exit(1);
}
System.out.println("Registrar found");
// the code takes separate routes from here for client or service

 }

} // UnicastRegister

 The registrar object will be used in different ways for clients and services: the services
will use it to register themselves, and the clients will use it to locate services.

Running the UnicastRegister
When the UnicastRegistrar program in the previous section needs to be compiled and run, it
has to have jsk-platform.jar and jsk-lib.jar in its CLASSPATH.

 javac -classpath ... basic/UnicastRegister.java

 When run, it will attempt to connect to the service locator, so obviously the service locator
needs to be running on the machine specified in order for this to happen. Otherwise, the
program will throw an exception and terminate. In this case, the host specified is localhost. It
could, however, be any machine accessible on the local or remote network (as long as it is
running a service locator). For example, to connect to the service locator running on my
current workstation, jan.netcomp.monash.edu.au, the parameter to LookupLocator would be
jini://jan.netcomp.monash.edu.au.

The UnicastRegister program will receive a ServiceRegistrar from the service locator.
However, it does so by a simple readObject() on a socket connected to the service locator, so it
does not need any additional support services such as rmiregistry or rmid. The program can
be run by this command:

 java -Djava.security.policy=policy.all -classpath ... basic.UnicastRegister

An Ant file to build, deploy, and run this class is basic.UnicastRegister.xml:

<project name="basic.UnicastRegister" default="usage">
 <!-- Inherits properties
 jini.home
 jini.jars
 src
 dist
 build

7168ch04.fm Page 41 Wednesday, July 26, 2006 8:18 PM

42 C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E

 httpd.classes
 -->
 <!-- files for this project -->
 <property name="src.files"
 value="
 basic/UnicastRegister.java
 "/>
 <property name="class.files"
 value="
 basic/UnicastRegister.class
 "/>
 <property name="class.files.dl"
 value="
 "/>
 <property name="no-dl" value="true"/>
 <!-- derived names - may be changed -->
 <property name="jar.file"
 value="${ant.project.name}.jar"/>
 <property name="jar.file.dl"
 value="${ant.project.name}-dl.jar"/>
 <property name="main.class"
 value="${ant.project.name}"/>
 <property name="jini.jars.start" value="${jini.jars}:${jini.home}/lib/
start.jar"/>
 <!-- targets -->
 <target name="all" depends="compile"/>
 <target name="compile">

<javac destdir="${build}" srcdir="${src}"
 classpath="${jini.jars.start}"

 includes="${src.files}">
 </javac>
 </target>
 <target name="dist" depends="compile"
 description="generate the distribution">

<jar jarfile="${dist}/${jar.file}"
 basedir="${build}"

 includes="${class.files}"/>
 <antcall target="dist-jar-dl"/>
 </target>
 <target name="dist-jar-dl" unless="no-dl">

<jar jarfile="${dist}/${jar.file.dl}"
 basedir="${build}"

 includes="${class.files.dl}"/>
 </target>
 <target name="build" depends="dist,compile"/>
 <target name="run" depends="build">

<java classname="${main.class}"

7168ch04.fm Page 42 Wednesday, July 26, 2006 8:18 PM

C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E 43

 fork="true"
 classpath="${jini.jars.start}:${dist}/${jar.file}">

 <jvmarg value="-Djava.security.policy=${res}/policy.all"/>
 </java>
 </target>
 <target name="deploy" depends="dist" unless="no-dl">
 <copy file="${dist}/${jar.file.dl}"
 todir="${httpd.classes}"/>
 </target>
</project>

Broadcast Discovery
If the location of a lookup service is unknown, it is necessary to make a broadcast search for
one. The User Datagram Protocol (UDP) supports a multicast mechanism that the current
implementations of Jini use. Because multicast is expensive in terms of network requirements,
most routers block multicast packets. This usually restricts broadcast to a LAN, although this
depends on the network configuration and the time to live (TTL) of the multicast packets.

Any number of lookup services can be running on the network accessible to the broadcast
search. On a small network, such as a home network, there may be just a single lookup service,
but in a large network there may be many—perhaps one or two per department. Each one of
these may choose to reply to a broadcast request.

Groups
Some services may be meant for anyone to use, but some may be more restricted in applica-
bility. For example, the engineering department may wish to keep lists of services specific to
that department, including a departmental diary service, a departmental inventory, and so
forth. The services themselves may be running anywhere in the organization, but the depart-
ment would like to be able to store information about them and to locate them from their own
lookup service. Of course, this lookup service may be running anywhere, too!

So there could be lookup services specifically for a particular group of services, such as the
engineering department services, and others for the publicity department services. Some
lookup services may cater to more than one group—for example, a company lookup service
may want to hold information about all services running for all groups on the network.

When a lookup service is started, it can be given a list of groups to act for as a command-
line parameter. A service may include such group information by giving a list of groups that it
belongs to. This is an array of strings, such as the following:

 String [] groups = {"Engineering dept"};

LookupDiscovery
The LookupDiscovery class in the net.jini.discovery package is used for broadcast discovery.
There are two constructors:

7168ch04.fm Page 43 Wednesday, July 26, 2006 8:18 PM

44 C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E

LookupDiscovery(java.lang.String[] groups)
LookupDiscovery(java.lang.String[] groups, Configuration config)

 We will look at only the first one for now. The second one is new to Jini 2.0.
The parameter to the first LookupDiscovery constructor can take three cases:

• null, or LookupDiscovery.ALL_GROUPS, means that the object should attempt to discover
all reachable lookup services, no matter which group they belong to. This will be the
normal case.

• An empty list of strings, or LookupDiscovery.NO_GROUPS, means that the object is created
but no search is performed. In this case, the setGroups() method will need to be called
in order to perform a search.

• A nonempty array of strings can be given. This will attempt to discover all lookup
services in that set of groups.

DiscoveryListener
A broadcast is a multicast call across the network, and lookup services are expected to reply as
they receive the call. Doing so may take time, and there will generally be an unknown number
of lookup services that can reply. To be notified of lookup services as they are discovered, the
application must register a listener with the LookupDiscovery object, as follows.

public void addDiscoveryListener(DiscoveryListener l)

 The listener must implement the DiscoveryListener interface:

package net.jini.discovery;

public abstract interface DiscoveryListener {
public void discovered(DiscoveryEvent e);
public void discarded(DiscoveryEvent e);

}

The discovered() method is invoked whenever a lookup service has been discovered. The
API recommends that this method should return quickly and not make any remote calls.
However, the discovered() method is the natural place to register the service, and for a client
it is the natural place to ask if there is a service available and to invoke the service. It may be
better to perform these lengthy operations in a separate thread.

Other timing issues are involved: when the DiscoveryListener is created, the broadcast is
made, and after this, a listener is added to this discovery object. What happens if replies come
in very quickly, before the listener is added? The Jini Discovery Utilities Specification guaran-
tees that these replies will be buffered and delivered when a listener is added. Conversely, no
replies may come in for a long time—what is the application supposed to do in the meantime?
It cannot simply exit, because then there would be no object to reply to! It has to be made
persistent enough to last till replies come in. One way of handling this is for the application to
have a GUI interface, in which case the application will stay until the user dismisses it. Another
possibility is that the application may be prepared to wait for a while before giving up. In that

7168ch04.fm Page 44 Wednesday, July 26, 2006 8:18 PM

C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E 45

case, the main() method could sleep for, say, ten seconds and then exit. This will depend on
what the application should do if no lookup service is discovered.

The discarded() method is invoked whenever the application discards a lookup service by
calling discard() on the registrar object.

DiscoveryEvent
The parameter of the discovered()method of the DiscoveryListener interface is a
DiscoveryEvent object.

package net.jini.discovery;

public Class DiscoveryEvent {
public net.jini.core.lookup.ServiceRegistrar[] getRegistrars();

}

 This has one public method, getRegistrars(), which returns an array of ServiceRegistrar
objects. Each one of these implements the ServiceRegistrar interface, just like the object
returned from a unicast search for a lookup service. More than one ServiceRegistrar object can
be returned if a set of replies has come in before the listener was registered—they are collected
in an array and returned in a single call to the listener. Figure 4-2 shows a UML sequence
diagram augmented with jagged arrows showing the network broadcast and replies.

Figure 4-2. UML sequence diagram for discovery

In Figure 4-2, the creation of a LookupDiscovery object starts the broadcast search, and it
returns the discover object. The MulticastRegister adds itself as a listener to the discover
object. The search continues in a separate thread, and when a new lookup service replies, the
discover object invokes the discovered() method in the MulticastRegister, passing it a

7168ch04.fm Page 45 Wednesday, July 26, 2006 8:18 PM

Alyce Fountain
FPO

46 C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E

newly created DiscoveryEvent. The MulticastRegister object can then make calls on the
DiscoveryEvent, such as getRegistrars(), which will return suitable ServiceRegistrar objects.

By this stage, the program looks like this:

package basic;
import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.discovery.LookupLocator;
import java.rmi.RemoteException;
/**
 * MulticastRegister.java
 */
public class MulticastRegister implements DiscoveryListener {

 static public void main(String argv[]) {
 new MulticastRegister();

// stay around long enough to receive replies
try {
 Thread.currentThread().sleep(10000L);
} catch(java.lang.InterruptedException e) {
 // do nothing
}

 }

 public MulticastRegister() {

System.setSecurityManager(new java.rmi.RMISecurityManager());
 LookupDiscovery discover = null;
 try {
 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);
 } catch(Exception e) {
 System.err.println(e.toString());

 e.printStackTrace();
 System.exit(1);

 }
 discover.addDiscoveryListener(this);
 }

 public void discovered(DiscoveryEvent evt) {
 ServiceRegistrar[] registrars = evt.getRegistrars();
 for (int n = 0; n < registrars.length; n++) {

 ServiceRegistrar registrar = registrars[n];
 // the code takes separate routes from here for client or service
 try {

System.out.println("found a service locator at " +
 registrar.getLocator().getHost() +

 " at port " +

7168ch04.fm Page 46 Wednesday, July 26, 2006 8:18 PM

C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E 47

 registrar.getLocator().getPort());
 } catch(RemoteException e) {

e.printStackTrace();
 }
}

 }
 public void discarded(DiscoveryEvent evt) {
 }
} // MulticastRegister

Staying Alive
In the preceding constructor for the MulticastRegister program, we create a LookupDiscovery
object, add a DiscoveryListener, and then the constructor terminates. The main() method,
having called this constructor, promptly goes to sleep. What is going on here? The constructor
for LookupDiscovery actually starts up a number of threads to broadcast the service and to
listen for replies. When replies come in, the listener thread will call the discovered() method of
the MulticastRegister. However, these threads are daemon threads. Java has two types of
threads, daemon threads and user threads, and at least one user thread must be running or the
application will terminate. All these other threads are not enough to keep the application alive,
so it keeps a user thread running in order to continue to exist.

The sleep() method ensures that a user thread continues to run, even though it appar-
ently does nothing. This will keep the application alive, so that the daemon threads (running in
the background) can discover some lookup locators. Ten seconds (10,000 milliseconds) is long
enough for that. To stay alive after this ten seconds expires requires either increasing the sleep
time or creating another user thread in the discovered() method (for example, by creating an
AWT frame) or by some other method.

I have placed the sleep() call in the main() method. It is perfectly reasonable to place it in
the application constructor, and some examples do this. However, it looks a bit strange in the
constructor, because it looks like the constructor does not terminate (so is the object created or
not?), so I prefer this placement. Note that although the constructor for MulticastRegister will
have terminated without us assigning its object reference, a live reference has been passed into
the discover object as a DiscoveryListener, and it will keep the reference alive in its own
daemon threads. This means that the application object will still exist for its discovered()
method to be called.

Any other method that results in a user thread continuing to exist will do just as well. For
example, a client that has an AWT or Swing user interface will stay alive because there are many
user threads created by any of these GUI objects.

For services, which typically will not have a GUI interface running, another simple way to
keep them alive is to create an object and then wait for another thread to notify() it. Since
nothing will, the thread (and hence the application) stays alive. Essentially, this is an unsatis-
fied wait that will never terminate—usually an erroneous thing to do, but here it is deliberate.

Object keepAlive = new Object();
synchronized(keepAlive) {

try {
keepAlive.wait();

7168ch04.fm Page 47 Wednesday, July 26, 2006 8:18 PM

48 C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E

}
catch(InterruptedException e) {

// do nothing
}

}

 This will keep the service alive indefinitely, and it will not terminate unless interrupted.
This is unlike sleep(), which will terminate eventually.

Running the MulticastRegister
The MulticastRegister program needs to be compiled and run with jsk-platform.jar and
jsk-lib.jar in its CLASSPATH.

 javac -classpath ... basic/MulticastRegister.java

 When run, the program will attempt to find all service locators that it can. If there are
none, it will find none—pretty boring. So one or more service locators should be set running in
the near network or on the local machine.

 java -Djava.security.policy=policy.all -classpath ... basic.MulticastRegister

This program will receive ServiceRegistrars from the service locators. However, it does so
with a simple readObject() on a socket connected to a service locator, and so does not need
any additional support services such as rmiregistry.

An Ant file to build, deploy, and run this class is basic.MulticastRegister.xml:

<project name="basic.MulticastRegister" default="usage">
 <!-- Inherits properties
 jini.home
 jini.jars
 src
 dist
 build
 httpd.classes
 -->
 <!-- files for this project -->
 <property name="src.files"
 value="
 basic/MulticastRegister.java
 "/>
 <property name="class.files"
 value="
 basic/MulticastRegister.class
 "/>
 <property name="class.files.dl"
 value="
 "/>
 <property name="no-dl" value="true"/>

7168ch04.fm Page 48 Wednesday, July 26, 2006 8:18 PM

C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E 49

 <!-- derived names - may be changed -->
 <property name="jar.file"
 value="${ant.project.name}.jar"/>
 <property name="jar.file.dl"
 value="${ant.project.name}-dl.jar"/>
 <property name="main.class"
 value="${ant.project.name}"/>
 <!-- targets -->
 <target name="all" depends="compile"/>
 <target name="compile">

<javac destdir="${build}" srcdir="${src}"
 classpath="${jini.jars}"

 includes="${src.files}">
 </javac>
 </target>
 <target name="dist" depends="compile"
 description="generate the distribution">

<jar jarfile="${dist}/${jar.file}"
 basedir="${build}"

 includes="${class.files}"/>
 <antcall target="dist-jar-dl"/>
 </target>
 <target name="dist-jar-dl" unless="no-dl">

<jar jarfile="${dist}/${jar.file.dl}"
 basedir="${build}"

 includes="${class.files.dl}"/>
 </target>
 <target name="build" depends="dist,compile"/>
 <target name="run" depends="build">

<java classname="${main.class}"
 fork="true"

 classpath="${jini.jars}:${dist}/${jar.file}">
 <jvmarg value="-Djava.security.policy=${res}/policy.all"/>
 </java>
 </target>
 <target name="deploy" depends="dist" unless="no-dl">
 <copy file="${dist}/${jar.file.dl}"
 todir="${httpd.classes}"/>
 </target>
</project>

Broadcast Range
Services and clients search for lookup locators using the multicast protocol by sending out
packets as UDP datagrams. A LookupDiscovery object makes announcements on UDP
224.0.1.84 on port 4160. How far do these announcements reach? This is controlled by two
things:

7168ch04.fm Page 49 Wednesday, July 26, 2006 8:18 PM

50 C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E

• The time to live (TTL) field on the packets

• The network administrator settings on routers and gateways

 By default, the current implementation of LookupDiscovery sets the TTL to 15. Common
network administrative settings restrict such packets to the local network. However, the TTL
may be changed by giving the system property net.jini.discovery.ttl a different value. But
be careful about setting this, as many people will get irate if you flood the networks with multi-
cast packets.

ServiceRegistrar
The ServiceRegistrar is an abstract class implemented by each lookup service. The actual
details of this implementation are not relevant here. The role of a ServiceRegistrar is to act as
a proxy for the lookup service. This proxy runs in the application, which may be a service or a
client.

This is the first object that is moved from one Java process to another in Jini. It is shipped
from the lookup service to the application looking for the lookup service, using a socket
connection. From then on, it runs as an object in the application's address space, and the
application makes normal method calls to it. When needed, it communicates back to its
lookup service. The implementation used by Sun's reggie uses RMI to communicate, but the
application does not need to know this, and anyway, it could be done in different ways. This
proxy object should not cache any information on the application side, but instead should get
"live" information from the lookup service as needed. The implementation of the lookup
service supplied by Sun does exactly this.

The ServiceRegistrar object has two major methods. One is used by a service attempting
to register:

public ServiceRegistration register(ServiceItem item, long leaseDuration)
throws java.rmi.RemoteException

 The other method is used by a client trying to locate a particular service:

public java.lang.Object lookup(ServiceTemplate tmpl)
throws java.rmi.RemoteException;

public ServiceMatches lookup(ServiceTemplate tmpl, int maxMatches)
throws java.rmi.RemoteException;

The details of these methods are given in Chapters 6 and 7. For now, an overview will
suffice.

A service provider will register a service object (i.e., an instance of a class) and a set of
attributes for that object. For example, a printer may specify that it can handle PostScript docu-
ments, or a toaster might specify that it can deal with frozen slices of bread. The service
provider may register a singleton object that completely implements the service, but more
likely it will register a service proxy that will communicate back to other objects in the service
provider. Note carefully that the registered object will be shipped around the network, and when
it finally gets to run, it may be a long way away from where it was originally created. It will have
been created in the service’s JVM, transferred to the lookup locator by register(), and then to
the client's JVM by lookup().

7168ch04.fm Page 50 Wednesday, July 26, 2006 8:18 PM

C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E 51

A client is trying to find a service using some properties of the service that it knows about.
Whereas the service can export a live object, the client cannot use a service object as a property,
because then it would already have the thing, and wouldn't need to try to find one! What it can
do is use a class object, and try to find instances of this class lying around in service locators. As
discussed later in Chapter 7, it is best if the client asks for an interface class object. In addition
to this class specification, the client may specify a set of attribute values that it requires from
the service.

The next step is to look at the possible forms of attribute values, and how matching will be
performed. This is done using Jini Entry objects. The simplest services, and the least
demanding clients, will not require any attributes: the Entry[] array will be null. You may wish
to skip ahead to Chapter 6 or Chapter 7 and come back to the discussion of entries in Chapter
5 later.

Information from the ServiceRegistrar
The ServiceRegistrar is returned after a successful discovery has been made. This object has a
number of methods that will return useful information about the lookup service. So, in addi-
tion to using this object to register a service or to look up a service, you can use it to find out
about the lookup locator. The major methods are as follows:

String[] getGroups();
LookupLocator getLocator();
ServiceID getServiceID();

The first method, getGroups(), will return a list of the groups that the locator is a member of.
The second method, getLocator(), is more interesting. This returns exactly the same type

of object as is used in the unicast lookup, but now its fields are filled in by the discovery
process. You can find out which host the locator is running on and its hostname by using the
following statement:

registrar.getLocator().getHost();

Applications usually do not care where the lookup services are running. However, if you
are curious you can use the getLocator() method to find this:

public void discovered(DiscoveryEvent evt) {
ServiceRegistrar[] registrars = evt.getRegistrars();
for (int n = 0; n < registrars.length; n++) {

ServiceRegistrar registrar = registrars[n];
System.out.println("Service locator at " +

registrar.getLocator().getHost());
}

}

The third method, getServiceID(), is unlikely to be of much use to you. In general, service
IDs are used to give a globally unique identifier for the service (different services should not
have the same ID), and a service should have the same ID with all service locators. However,
this is the service ID of the lookup service, not of any services registered with it.

7168ch04.fm Page 51 Wednesday, July 26, 2006 8:18 PM

52 C H A P T E R 4 ■ D I S C O V E R I N G A L O O K U P S E R V I C E

Summary
Both services and clients need to find lookup services. Discovering a lookup service may be
done using unicast or multicast protocols. Unicast discovery is a synchronous mechanism.
Multicast discovery is an asynchronous mechanism that requires the use of a listener to
respond when a new service locator is discovered.

When a service locator is discovered, it sends a ServiceRegistrar object to run in the client
or service. This object acts as a proxy for the locator and may be queried for information, such
as the host the service locator is on. The major uses of the ServiceRegistrar object are to
register services (covered in Chapter 6) and by clients searching for services (covered in
Chapter 7).

7168ch04.fm Page 52 Wednesday, July 26, 2006 8:18 PM

