
27

■ ■ ■

C H A P T E R 3

Ant

Ant is becoming increasingly widely used as a build and deploy tool for Java applications.
This chapter covers how I am using Ant in this book; the material covered has nothing in
particular to do with Jini. Feel free to skip this chapter until you start building and deploying
the examples from this book.

Applications consisting of multiple source files benefit from having a build tool to auto-
mate compilation, deployment, testing, and so on. Many of these tools are operating system-
specific, such as make (although Windows versions now exist). Ant has become an increasingly
popular tool for Java applications since it offers cross-platform support and Ant build files can
be written in an operating system-independent way.

This book is adapted to use ant instead of make and Unix shell scripts. This chapter covers
the use of ant for this book; it is not about Jini at all, so unless you want to see how the applica-
tions are currently built, I recommend that you skip this chapter. Individual build files for each
project will be given in the relevant chapters.

Top-Level Build File
Two general parameters need to be set for your own environment:

• jini.home: The pathname to the location where Jini has been unpacked. This parameter
is used to define the jini.jars variable that contains the standard Jini class files.

• localhost: The IP address or hostname of the current machine. In my testing, I run basic
tests from this machine.

These parameters are defined in build.xml in the book's root directory on http://
jan.netcomp.monash.edu.au/java/jini/tutorial/.

Similar to many projects, you adopt the following directory structure:

• src: The directory for all source files.

• build: The location where all class files are built.

• dist: The location where distribution files such as .jar files are created.

• resources: The location where things like policy files and configuration files are kept.

• httpd.classes: This is nonstandard, but it is the location where we need to copy files so
that an HTTP server can find them.

7168ch03.fm Page 27 Wednesday, July 26, 2006 8:20 PM

28 C H A P T E R 3 ■ A N T

 These directories are all defined in the build.xml file in the tutorial's root directory.
The following targets are defined:

• compile: Compile all source files.

• dist: Build the distribution, typically .jar files.

• build: Compile and distribute (redundant).

• deploy: Copy files to their destination, typically some .jar files to an HTTP server.

• clean: Remove all class files, .jar files and source backups.

• run -DrunFile=...: Run a project.

• usage: Print a list of options.

The top-level file build.xml defines these targets. The main function of each target is to
run the target again in each of the projects. So compile runs compile in each project and deploy
runs deploy in each project, whereas run calls run only in the selected project. The projects are
each defined in an Ant file in the antBuildFiles directory. The build.xml file is as follows:

<project name="Jini book" default="usage" basedir=".">
 <!-- CONFIGURABLE STUFF HERE -->
 <property name="jini.home" value="/usr/local/jini2_1"/>
 <property name="localhost" value="dhcp-62-145.EECS.Berkeley.edu"/>
 <!-- END CONFIGURABLE STUFF -->
 <!-- Libraries -->
 <property name="jini.jars"
 value="${jini.home}/lib/jsk-platform.jar;${jini.home}/lib/jsk-lib.jar"/>
 <path id="compile.classpath">
 <pathelement path="${jini.jars}" />
 <pathelement path="build" />
 </path>
 <!-- Directories -->
 <property name="src" value="${basedir}\src"/>
 <property name="dist" value="${basedir}\dist"/>
 <property name="build" value="${basedir}\build"/>
 <property name="res" value="${basedir}/resources"/>
 <property name="httpd.classes" value="/home/httpd/html/classes/"/>
 <!-- Show the usage options to the user -->
 <target name="usage" >
 <echo message=" compile"/>
 <echo message=" dist"/>
 <echo message=" build"/>
 <echo message=" deploy"/>
 <echo message=" clean"/>
 <echo message=" run -DrunFile='...' [-Dconfig='...']"/>
 <echo message=" usage"/>
 </target>
 <target name="all" depends="init,compile"/>

7168ch03.fm Page 28 Wednesday, July 26, 2006 8:20 PM

C H A P T E R 3 ■ A N T 29

 <!-- CLEAN -->
 <target name="clean">
 <!-- Delete our the ${build}, and ${dist} directory trees -->

<delete dir="${build}"/>
<delete dir="${dist}"/>

 <!-- delete all ~ backup files -->
 <delete>
 <fileset dir="." defaultexcludes="false" includes="**/*~"/>
 </delete>
 <!-- delete all .bak backup files -->
 <delete>
 <fileset dir="." defaultexcludes="false" includes="**/*.bak"/>
 </delete>
 </target>
 <target name="init">

<!-- Create the build directory structure used by compile N deploy -->
<mkdir dir="build"/>
<mkdir dir="dist"/>

 </target>
 <!-- call "compile" target in all build files in "antBuildFiles" dir -->
 <target name="compile" depends="init">
 <subant target="compile" inheritall="true">
 <fileset dir="antBuildFiles"
 includes="*.xml"/>
 </subant>
 </target>
 <!-- call "dist" target in all build files in "antBuildFiles" dir -->
 <target name="dist" depends="compile">
 <subant target="dist" inheritall="true">
 <fileset dir="antBuildFiles"
 includes="*.xml"/>
 </subant>
 </target>
 <!-- call "deploy" target in all build files in "antBuildFiles" dir -->
 <target name="deploy" depends="dist">
 <subant target="deploy" inheritall="true">
 <fileset dir="antBuildFiles"
 includes="*.xml"
 />
 </subant>
 </target>
 <target name="build" depends="dist,compile"/>
 <!-- call "run" on antfile determined by "runFile" property -->
 <target name="run">
 <ant
 antfile="antBuildFiles/${runFile}.xml"
 target="run"/>

7168ch03.fm Page 29 Wednesday, July 26, 2006 8:20 PM

30 C H A P T E R 3 ■ A N T

 </target>
</project>

Project Files
Each project is defined in an Ant file in the antBuildFiles directory. The purpose is to imple-
ment the top-level build targets for each project. Each of these project files inherits values from
the top-level file, namely the following:

• jini.home

• jini.jars

• src

• dist

• build

• httpd.classes

Each project uses only a small number of the files from the src directory; these are defined
in the src.files variable. For example, for the complete.FileClassifierServer project
discussed in Chapter 9, the source files are defined as follows:

 <property name="src.files"
 value="
 common/MIMEType.java,
 common/FileClassifier.java,
 complete/FileClassifierImpl.java,
 complete/FileClassifierServer.java
 "
 />

Since Jini is a distributed system, not all class files are required by all components. Typi-
cally, a server will require some files, whereas a client will require others. These are defined by
two further variables:

<!-- Class files to run the server -->
<property name="class.files"
 value="
 common/MIMEType.class,
 common/FileClassifier.class,
 complete/FileClassifierImpl.class,
 complete/FileClassifierServer.class
 "
 />
<!-- Class files for the client to download --->
<property name="class.files.dl"

7168ch03.fm Page 30 Wednesday, July 26, 2006 8:20 PM

C H A P T E R 3 ■ A N T 31

 value="
 complete/FileClassifierImpl.class
 "
 />

The rest of each project file is fairly straightforward. The compile target compiles all files in
the src.files list; the dist target builds .jar files (usually two of them: one for the server and
one for the client); the deploy target copies the .jar files for the client to an HTTP server; and
the run target starts a JVM with appropriate parameters. Note that the JVM must be started as
a separate VM, as it sets a security policy (discussed later), which cannot be done within an
already running Ant JVM.

The complete project file for complete.FileClassifierServer is in the file complete.
FileClassifierServer.xml:

<!--
 Project name must be the same as the filename which must
 be the same as the main.class. Builds jar files with the
 same name
 -->

<project name="complete.FileClassifierServer">
 <!-- Inherits properties from ../build.xml:
 jini.home
 jini.jars
 src
 dist
 build
 httpd.classes
 localhost
 -->
 <!-- files for this project -->
 <!-- Source files for the server -->
 <property name="src.files"
 value="
 common/MIMEType.java,
 common/FileClassifier.java,
 complete/FileClassifierImpl.java,
 complete/FileClassifierServer.java
 "/>
 <!-- Class files to run the server -->
 <property name="class.files"
 value="
 common/MIMEType.class,
 common/FileClassifier.class,
 complete/FileClassifierImpl.class,
 complete/FileClassifierServer.class
 "/>
 <!-- Class files for the client to download -->

7168ch03.fm Page 31 Wednesday, July 26, 2006 8:20 PM

32 C H A P T E R 3 ■ A N T

 <property name="class.files.dl"
 value="
 common/MIMEType.class,
 common/FileClassifier.class,
 complete/FileClassifierImpl.class
 "/>
 <!-- Uncomment if no class files downloaded to the client -->
 <!-- <property name="no-dl" value="true"/> -->
 <!-- derived names - may be changed -->
 <property name="jar.file"
 value="${ant.project.name}.jar"/>
 <property name="jar.file.dl"
 value="${ant.project.name}-dl.jar"/>
 <property name="main.class"
 value="${ant.project.name}"/>
 <property name="codebase"
 value="http://${localhost}/classes/${jar.file.dl}"/>
 <!-- targets -->
 <target name="all" depends="compile"/>
 <target name="compile">

<javac destdir="${build}" srcdir="${src}"
 classpath="${jini.jars}"

 includes="${src.files}">
 </javac>
 </target>
 <target name="dist" depends="compile"
 description="generate the distribution">

<jar jarfile="${dist}/${jar.file}"
 basedir="${build}"

 includes="${class.files}"/>
 <antcall target="dist-jar-dl"/>
 </target>
 <target name="dist-jar-dl" unless="no-dl">

<jar jarfile="${dist}/${jar.file.dl}"
 basedir="${build}"

 includes="${class.files.dl}"/>
 </target>
 <target name="build" depends="dist,compile"/>
 <target name="run" depends="build,deploy">

<java classname="${main.class}"
 fork="true"

 classpath="${jini.jars}:${dist}/${jar.file}">
 <jvmarg value="-Djava.security.policy=${res}/policy.all"/>
 <jvmarg value="-Djava.rmi.server.codebase=${codebase}"/>
 </java>
 </target>
 <target name="deploy" depends="dist" unless="no-dl">

7168ch03.fm Page 32 Wednesday, July 26, 2006 8:20 PM

C H A P T E R 3 ■ A N T 33

 <copy file="${dist}/${jar.file.dl}"
 todir="${httpd.classes}"/>
 </target>
</project>

Summary
Ant is now used in many Java projects to control the build and distribution process. This book
also uses Ant, and this chapter has described how this is done. Please note that the material in
this chapter is not essential to understanding how Jini works, though.

7168ch03.fm Page 33 Wednesday, July 26, 2006 8:20 PM

7168ch03.fm Page 34 Wednesday, July 26, 2006 8:20 PM

