
21

■ ■ ■

C H A P T E R 2

Troubleshooting Jini

Jini is advertised as being “network plug and play,” which carries with it the idea of zero admin-
istration, where you buy a device or install a software service, switch it on, and voila!—it is
there and available. Well, this may happen in the future, but right now there are a number of
backroom games that you have to succeed at. Once you have won these games, “network plug
and play” does work, but if you lose at any stage, you have an uphill battle to fight.

The difficult parts are getting the right files in the right places with the right permissions.
About 50 percent of the messages in the Jini mailing list relate to these configuration problems,
which shouldn’t occur.

This chapter looks at some of the problems that can arise in a Jini system, most of which
are configuration issues of some kind. Each of the early sections contains step-by-step instruc-
tions on what to do to get the example programs working. Because this is only the second
chapter in this book, and right now you shouldn’t have managed to fail at anything, feel free to
skip to the next chapters, but do come back here when things go wrong.

Java Packages
The following is a typical Java package-related error:

Exception in thread "main" java.lang.NoClassDefFoundError: basic/
InvalidLookupLocator

Most of the code in this tutorial is organized into packages. To run the book’s examples,
the classes must be accessible from your classpath. For example, one of the programs in the
basic directory is InvalidLookupLocator.java. This defines the class InvalidLookupLocator in
the package basic. The program must be run using the fully qualified path name, as follows:

java basic.InvalidLookupLocator

 (Note the use of “.”, not “/”.)
To find this class, the classpath must be set correctly for the Java runtime. If you have

copied the file classes.zip, then you can find the class files for this tutorial there. You only
need to reference this:

CLASSPATH=classes.zip:...

7168ch02.fm Page 21 Friday, July 14, 2006 6:39 PM

22 C H A P T E R 2 ■ T R O U B L E S H O O T I N G J I N I

If you have downloaded the source files, then you can find the class files in subdirectories
such as basic, complex, and so on. After compilation, the class files should also be in these
subdirectories, for example, basic/InvalidLookupLocator.class. An alternative to using
classes.zip is to set the classpath to include the directory containing those subdirectories. For
example, if the full path is /home/jan/classes/basic/InvalidLookupLocator.class, then set
classpath to

CLASSPATH=/home/jan/classes:...

An alternative to setting the CLASSPATH environment variable is to use the -classpath
option to the Java runtime engine:

java -classpath /home/jan/classes basic.InvalidLookupLocator

Jini and Java Versions
There are five versions of Jini: 1.0, 1.1, 1.2, 2.0, and now 2.1. The core classes are the same in
each version. In this book, we'll deal only with the new version, 2.1. Jini 2.1 requires Java Devel-
opment Kit (JDK) 1.4 or later, not earlier versions of Java. It will work with JDK 1.5 but does not
require it.

The changes for 2.1 are listed in the document jini2_1/doc/release-notes/new.html.
The main classes that have changed for 2.0 are as follows:

• LookupDiscovery (now has an additional constructor)

• LeaseRenewalManager

• ServiceIDListener

The main new classes are as follows:

• LookupLocatorDiscovery

• LookupDiscoveryManager

• ClientLookupManager

If you get syntax errors or runtime errors relating to these classes, it is possible that you are
using Jini 1 instead of Jini 2. If you get “deprecated” warnings, it is likely that you are using the Jini
1 classes in a Jini 2 environment. The old classes are supported for now, but are not approved.

Jini Packages
The following is a typical Jini package-related error:

Exception in thread "main" java.lang.NoClassDefFoundError: net/jini/discovery/
DiscoveryListener

7168ch02.fm Page 22 Friday, July 14, 2006 6:39 PM

C H A P T E R 2 ■ T R O U B L E S H O O T I N G J I N I 23

The Jini class files are all in .jar files. The Jini distribution has them in a subdirectory, lib.
The files were repackaged in Jini 2.0: formerly you would use jini-core.jar, jini-ext.jar and
sometimes sun-util.jar. Now you should use jsk-platform.jar and jsk-lib.jar.

A compile or run of a Jini application will typically have an environment set something
like this:

JINI_HOME=wherever_Jini_home_is CLASSPATH=.:$JINI_HOME/lib/jsk-plat-
form.jar:$JINI_HOME/lib/jsk-lib.jar

HTTP Server
Jini requires a server to deliver class files to a client. Usually this is done using an HTTP server.
One of the common errors related to this is as follows:

java.rmi.ServerException: RemoteException in server thread; nested exception is:
java.rmi.UnmarshalException: unmarshalling method/arguments; nested exception is:
java.lang.ClassNotFoundException: could not obtain preferred value for: ...

 The most likely cause of this exception is that you aren't running an HTTP server on the
machine that java.rmi.server.codebase is pointing to. Note that using localhost is a common
error, since it may refer to a different machine from the one intended.

Network Configuration
A long-term aim in pervasive computing is to have zero configuration, whereby you can plug
devices into a network and things “just work.” Jini goes a long way toward making this possible
at the service level, but the current implementation relies heavily on a functioning network
layer: misconfiguration of the network can cause a great deal of problems in Jini.

The following is a typical network configuration error:

java.rmi.ConnectException: connection refused or timed out to BasicObjectEnd-
point[88133900-39f9-466a-880b-de8ce6653a63, TcpEndpoint[0.0.0.0:1831]]; nested
exception is: java.net.ConnectException: Connection refused

 This error can occur by using the new configuration mechanism, where a service is
exported by Jeri as follows:

 exporter = new BasicJeriExporter(TcpServerEndpoint.getInstance(0), new
BasicILFactory());

“Exporting a service” means finding the localhost, getting its hostname and IP address,
and listening on any available port. I lost several days' work over this, as the hostname on one
machine was incorrectly set, and the Java network layer (by InetAddress.getLocalHost()) was
unable to determine the IP address of localhost and returned “0.0.0.0”—and nothing could
connect to that address!

7168ch02.fm Page 23 Friday, July 14, 2006 6:39 PM

24 C H A P T E R 2 ■ T R O U B L E S H O O T I N G J I N I

The solution was to correctly set the hostname on that machine; then services could be
found and run on that machine. Alternatively, TcpServerEndpoint.getInstance(0) could be
replaced by TcpServerEndpoint.getInstance("my_ip_address", 0) (for a suitable
“my_ip_address”, of course!) in the configuration files for the services in that machine.

Could Not Obtain Preferred Value
When you receive a “Could not obtain preferred value for . . .” message, it means that Jini can't
find a class file—something is wrong with the classpath or the codebase. This can occur if the
codebase points to a directory, and the value is not terminated with a forward slash (/).

Lookup Service
The following is a typical lookup service-related error:

java.rmi.activation.ActivationException: ActivationSystem not running; nested excep-
tion is: java.rmi.NotBoundException: java.rmi.activation.ActivationSystem
java.rmi.NotBoundException: java.rmi.activation.ActivationSystem

 The command rmid starts the activation system running. If the activation system cannot
start properly or dies just after starting, you will get this message. Usually it is caused by incor-
rect file permissions.

RMI Stubs
This is a typical RMI stubs-related error:

java.rmi.StubNotFoundException: Stub class not found: rmi.FileClassifierImpl_Stub;
nested exception is: java.lang.ClassNotFoundException: rmi.FileClassifierImpl_Stub

This error does not occur as frequently as it used to. From Jini 2.0 onward, proxies should
be generated using Jeri instead of RMI, and this error will only occur when using RMI. If it does
occur, then the best thing to do is change the application to use Jeri. See Chapter 10 for more
details.

Garbage Collection
The following is a typical garbage collection-related error:

java.rmi.ConnectException: connection refused or timed out to BasicObjectEnd-
point[afeb7958-8cff-41cb-8042-ec884a52e9a6,TcpEndpoint[192.168.2.1:3558]]; nested
exception is: java.net.ConnectException: Connection refused

7168ch02.fm Page 24 Friday, July 14, 2006 6:39 PM

C H A P T E R 2 ■ T R O U B L E S H O O T I N G J I N I 25

 If the service has been garbage collected, then there will be no server listening for connec-
tions to it, so any connection request will be refused. This error is more likely to happen with
Jini 2.0, where objects may be garbage collected if there are no active references.

The solution is to ensure that an active reference is kept to the service. The main() method
should contain a reference to the server (not just create it, but also keep a variable pointing to
it). The server should also keep a reference to the service implementation. An alternative is to
keep a static reference to the service implementation. Similarly, if you are using a JoinManager
to keep services leased, then there should be an active reference to it or it may be garbage
collected and cause any leases to expire.

Debugging
Debugging a Jini application is difficult because there are so many bits to it, and these bits are
all running separately: the server for a service, the client, lookup services, possibly remote acti-
vation daemons, and HTTP servers. There are a few (not many) errors within the Jini objects
themselves, but more important, many of these objects are implemented using multiple
threads, and the flow of execution is not always clear. There are no magic debug flags that can
be turned on to show what is happening.

On either the client or service side, a debugger such as jdb can be used to step through or
trace execution of the client or the server. Having lots of print statements helps, too, and you
can also turn on the following three flags:

java -Djava.security.debug=access \ -Dnet.jini.discovery.debug=1 \ -Djava.rmi.serv-
er.logCalls=true ...

 These flags don't give complete information, but they do give some, and can at least tell
you if the application parts are still living.

The logging API introduced in Jini 1.4 has been adopted by Jini 2.0. It can also be used for
debugging and is discussed in Chapter 20.

Summary
As discussed in this chapter, getting a Jini application to run should be easy, but sometimes it
isn't. Issues specific to Jini that you may encounter include the following:

• Using the correct Jini packages

• Running an HTTP server

• Having a properly configured network

• Codebase settings

• Weak references causing services to be garbage collected

7168ch02.fm Page 25 Friday, July 14, 2006 6:39 PM

7168ch02.fm Page 26 Friday, July 14, 2006 6:39 PM

