
1

■ ■ ■

C H A P T E R 1

Overview of Jini

Jini grew from early work in Java to make distributed computing easier. It intends to make
network devices and network services into standard components of everyone’s computing
environment. The computing world is currently abuzz about service-oriented systems, and Jini
has been a major platform for service-oriented computing since its inception, long before the
term became popular.

Jini supports both software and hardware services. When you buy a new piece of office
computing equipment such as a desk lamp, or a new home computer appliance such as an
alarm clock, it will not only carry out its “traditional” functions, but will also join a network of
other computer devices and services. The desk lamp will turn itself off when you leave your
desk, informed of your departure by sensors in your chair; the alarm clock will tell your coffee-
maker to switch on a few minutes before it wakes you up. These hardware services will interact
with software services such as calendar and diary services, and possibly with external services
such as weather and stock exchange services (to wake you up early if the weather is cold or if
there is sudden movement on the market). Jini doesn’t care what is behind services; it just
makes the services available to applications.

Homes, offices, and factories are becoming increasingly networked. Current twisted-pair
wiring will remain, but it will be augmented by wireless networks and networks built on phone
lines and power cables. On top of this will be an infrastructure to allow services to communi-
cate. TCP/IP will be a part of this, but it will not be enough. There will need to be mechanisms
for service discovery, for negotiation of properties, and for event signaling (e.g., “My alarm has
gone off—does anyone want to know?”).

Jini supplies this higher level of interaction. This chapter provides a brief overview of Jini,
and the components of a Jini system and the relationships between them.

■Note The licensing model for Jini has now changed to an open source Apache license from a proprietary
license. This change, plus the continued quality of the middleware, has sparked renewed interest in Jini.

Jini
Jini is the name for a distributed computing environment that can offer network plug and play,
meaning that a device or a software service can be connected to a network and announce its
presence, and clients that wish to use such a service can then locate it and call it to perform

7168ch01.fm Page 1 Tuesday, August 22, 2006 2:44 PM

2 C H A P T E R 1 ■ O V E R V I E W O F J I N I

tasks. Jini can be used for mobile computing tasks where a service may be connected to a
network for only a short time, but it can more generally be used in any network where there is
some degree of change. Jini is useful in a large number of scenarios, including the following:

• A new printer can be connected to the network and announce its presence and capabil-
ities. A client can then use this printer without having to be specially configured to do so.

• A digital camera can be connected to the network and present a user interface that will
not only allow pictures to be taken, but also be aware of any printers so that the pictures
can be printed.

• A configuration file that is copied and modified on individual machines can be made
into a network service from a single machine, reducing maintenance costs.

• New capabilities extending existing ones can be added to a running system without
disrupting existing services, or without any need to reconfigure clients.

• Services can announce changes of state, such as when a printer runs out of paper.
Listeners, typically of an administrative nature, can watch for these changes and flag
them for attention.

Jini is not an acronym for anything, and it does not have a particular meaning (although it
gained the post-hoc interpretation of “Jini Is Not Initials”). A Jini system or federation is a
collection of clients and services all communicating by the Jini protocols. Often this federation
will consist of applications written in Java, communicating using the Java Remote Method
Invocation (RMI) mechanism. Although Jini is written in pure Java, neither clients nor services
are constrained to be in pure Java. They may include native code methods, act as wrappers
around non-Java objects, or even be written in some other language altogether. Jini supplies a
middleware layer to link services and clients from a variety of sources.

When you download a copy of Jini, you actually get a mixture of things. First, Jini is a spec-
ification of a set of middleware components, including an application programming interface
(API) so that you as a programmer can write services and components that make use of this
middleware. Second, it includes an implementation (in pure Java) of the middleware, as a set
of Java packages. By including these packages in the classpath of your client or service, you can
invoke the Jini middleware protocols to join in whatever Jini services and clients are currently
running. (This collection of clients of services is sometimes called a djinn.) You also get source
code to these packages as a bonus. Finally, Jini requires a number of “standard” services, and
Sun gives basic implementations of each. These implementations are not an official part of
Jini, but are included to get you going, and in practice, most users find these implementations
sufficient to do substantial work with Jini.

Jini was not born in a vacuum. It was based on long experience within Sun Microsystems
of building networking applications and frameworks. Many of the most important lessons
from this were summarised in the Eight Fallacies of Distributed Computing. For the last few
years Jini has not been highly visible. There are various non-technical reasons for this, but also
technology that works and works well is often not reported. Nevertheless, to show that Jini
came from somewhere and has been used in substantial projects, in the subsections that
follow, I discuss the Eight Fallacies of Distributed Computing and how they relate to Jini, and I
also describe some Jini success stories.

7168ch01.fm Page 2 Tuesday, August 22, 2006 2:44 PM

C H A P T E R 1 ■ O V E R V I E W O F J I N I 3

Eight Fallacies of Distributed Computing
Since the early days, computers have been linked in networks. For over 20 years, the mantra
from Sun Microsystems has been “The Network Is the Computer,” and this idea has been a
cornerstone of much work in distributed computing. Based on the experience of Sun engineers
over many years, Peter Deutsch took a critical look at the state of distributed computing in 1999
and concluded that early optimism was in many ways misplaced. Networks and applications
that run on them are prone to all sorts of problems that do not occur with stand-alone applica-
tions, and ignoring these problems can lead to unreliable and unstable applications. Deutsch
identified the following fallacies of networking (extended by James Gosling):

• The network is reliable.

• Bandwidth is infinite.

• The network is secure.

• Topology doesn’t change.

• There is one administrator.

• Transport cost is zero.

• The network is homogeneous.

• Latency is zero.

Typical ways of “hiding” the network such as remote procedure calls (RPCs) assume these
fallacies are all true. For example, Sun’s RPC was one of the earliest widespread RPC frame-
works. This does assume that the network is reliable, and it does assume that bandwidth is
infinite, so applications assume that remote calls will always succeeed and that there is no
overhead in making remote calls. Network calls are several orders of magnitude slower than
local function calls and do sometimes fail, but there is no recognition of this in the RPC
programming model—that was its purpose: to hide the network! These assumptions have been
continued into many later middleware systems such as CORBA, and even into quite recent
(and popular) frameworks.

Jini recognizes these fallacies and attempts to deal with them. For example, specifications
of services have to be marked as “potentially remote” and all method calls have to handle
possible network failures.

Jini Success Stories
Jini has been around since 1999, and while it has achieved some notable successes, it does not
have the visibility of many other middleware systems. In part, this is because Jini simply works
and has been a stable but evolving platform over these years. The Sun web site lists many
successful projects using Jini. This section covers a couple of them plus some other systems.
For more stories, visit http://www.sun.com/software/jini/news/success.xml.

7168ch01.fm Page 3 Tuesday, August 22, 2006 2:44 PM

4 C H A P T E R 1 ■ O V E R V I E W O F J I N I

■Note You should be aware that Jini is only one competitor in a growing market. What conditions the
success or failure of Jini is partly the politics of the market, but also (hopefully) the technical capabilities of
Jini. This book deals with some of these technical issues involved in using Jini.

Note that the systems described in the sections that follow often have to deal directly with
the issues raised by the Eight Fallacies described in the previous section. For example, they
need to work in changing topologies, on unreliable networks, and with limited bandwidth. Jini
is middleware designed to manage such issues, but it is not perfect. Nevertheless, it recognises
the Fallacies and provides mechanisms adequate for many systems, with the possibility of
sophisticated configuration for more demanding situations.

Rubean, A.G.

Frank Sommers reports on a banking system developed by Rubean, A.G., in an article at
http://www.artima.com/lejava/articles/banking_on_jiniP.html. A group of German and
Swiss banks with 35,000 customers run a centralized Java 2 Platform, Enterprise Edition (J2EE)
system. However, this system needs to interact with ATM machines, cash-dispensing
machines, and other devices linked to PCs typically through an RS232 cable. These devices
have differing capabilities, their PCs are not always on, and they have IP addresses assigned by
the Dynamic Host Configuration Protocol (DHCP), so they are continually changing. This
dynamic environment could be a maintenance nightmare to a centralized system. The solu-
tion by Rubean uses Jini services running on each PC, talking to the devices using the Java
Comms API. Each service advertises itself to Jini lookup services, which can handle the
dynamic nature of the services without needing configuration. The J2EE system just sees
collections of services and is unaware of configuration details.

Magnetti Marelli

Magneti Marelli Motorsport builds monitoring equipment for Formula One racing cars, and its
hardware and software is used by most racing teams. However, its software used to run on
proprietary platforms and lacked the flexibility and robustness required. In the cars, sensors
collect a great deal of information, which is relayed by radio links to teams in the pits. The envi-
ronment in the pits is often hot and noisy, and real-time responses are needed to deal both
with the data itself and with a changing environment (computers die, network cables are
tripped over, etc.). New software was developed using not only the discovery mechanisms of
Jini, but also its ability to self-heal the service environment. Being able to run in multiple oper-
ating system environments was also a help. The project is described at http://
wiki.javapolis.com/confluence/display/JP05/Formula+One+Telemetry+with+Java.

Nedap N.V.

Nedap N.V. is a security management company used by over 6 million people every day. Some
years ago, the company saw the need for a next generation of security systems and began to
design one from the ground up. The heart of the system is a 64MB controller with an Ethernet
connection to the network and CAN connection to devices. Each controller exposes itself to the

7168ch01.fm Page 4 Tuesday, August 22, 2006 2:44 PM

C H A P T E R 1 ■ O V E R V I E W O F J I N I 5

network as a Jini service. Examples of use include the security system controlling elevators
within the Eiffel Tower in Paris. Every time an elevator comes within wireless range of a Jini
lookup service, it is discovered. This allows security access of an elevator to any floor to be
controlled, with Jini dynamic service management handling access to services. This system is
described at http://www.jini.org/meetings/eighth/J8abstracts.html#Wegman.

Orbitz

The previous examples seem to suggest that Jini is just for linking hardware systems into soft-
ware systems. Jini is certainly good at doing this, since it makes the devices appear as services,
making them first-class citizens in a service-oriented system. But that is not all that Jini is good
for: it is a framework for service-oriented middleware, and it excels in purely software-based
systems too. An example of such a system is Orbitz, a multibillion dollar online travel company
based in the United States. Orbitz uses over 1,000 Linux servers, and it has both a changing set
of machines and evolving applications running on them. For example, if a supplier is having a
sale, Orbitz will allocate more services to that company. Obviously, reconfiguring applications
to use new services could be an ongoing horrific task, but Jini dynamic discovery allows it to be
done transparently. In addition, services can be upgraded in place and the new versions
become automatically available. The Orbitz system is described here: http://www.sun.com/
software/jini/news/Jini_Orbitz_Profile_Final.pdf.

Orange

Orange is a major mobile communications company, with over 44 million customers world-
wide. It offers a range of services, many of them supplied by external organizations. Again, this
is a dynamic service environment, with new services begin deployed and existing services
being revised, all in a high-volume environment, and Jini manages many aspects of this dyna-
mism automatically. For more information, see http://www.sun.com/products-n-solutions/
telecom/docs/orangesp_1.pdf.

Jini Licensing and Apache
Jini for may years has been licensed under a Sun Community License. While generous in many
respects (for example, Jini source code has always been available) it is, nevertheless, a propri-
etary license. Recently the Jini group has decided that this has possibly limited the uptake of
Jini, and so early in 2006 the license was changed to the open source Apache license.

However, grander changes are underway. At the time of writing, negotiations are under
way to turn Jini into an Apache “incubator project”, and later perhaps into a top-level Apache
project. This will turn Jini into a true open source project and hopefully will bring in a new set
of users and developers, in addition to being build on, and contribute to, other Apache
projects. Among the issues still to be resolved is the name of the project—since Jini is all of: a
concept for middleware, a specification and API and an implementation, the name might
change in moving to Apache. One possible name that has been suggested is Babylon. Associa-
tive thinking leads to “Rivers of Babylon”, then to “disco”, and from there to “discovery”—
which is one of the principal features of Jini :-)

Until recently, the primary site for Jini was http://www.jini.org. A new site has been
added https://jini.dev.java.net/ and most of the projects have been moved to there. In

7168ch01.fm Page 5 Tuesday, August 22, 2006 2:44 PM

6 C H A P T E R 1 ■ O V E R V I E W O F J I N I

the future, it is hoped that Jini will be on the Incubator’s page on the Apache site at http://
incubator.apache.org/ and later on perhaps will have its own top-level page on the main
Apache site.

Jini in One Hour
Our homes are becoming full of more and more complex pieces of electronic equipment—TVs,
microwaves, stereo systems, and so forth—and many of these items have clocks. It’s pretty
common to find one or more of these clocks flashing; particularly the one on the VCR. When-
ever there is a power failure, all the clocks on these pieces of equipment start up again with an
incorrect time and signal this by flashing until they are manually corrected. In addition, many
offices synchronize the clocks in a building to a central time server, but this is a luxury most
homes do not have. But wouldn’t it be nice if every clock in the house could find a correct,
central clock and set itself? In this section, we’ll walk through the steps of setting up a Jini
system that will do this for some “software” clocks. No real clocks currently support Jini, but it
would be nice if they did!

The first step is to get the Jini classes, which you can download from http://www.jini.org
by following the “Getting Started” link to the Jini Downloads page. This page has several
options; you only need the Jini Technology Starter Kit for now, but you may like to download
other projects as well.

The Starter Kit installation process for platforms such as Windows and Linux will check
your network settings and Java installation, and start up a key component of Jini called a regis-
trar. Once you see a window called Service Browser with the message “1 registrar, not
selected,” you’ll know this key component is running and you can start up some services and
clients. You should see something similar to Figure 1-1.

Figure 1-1. Service Browser window showing the registrar running

At later times, you can get to this page by just running the command LaunchAll from the
installverify directory.

At this stage, you will use three files in the Jini directories:

• jsk-lib.jar, in the lib directory, contains many of the Jini classes.

• jsk-platform.jar, in the lib directory, contains more Jini classes.

7168ch01.fm Page 6 Tuesday, August 22, 2006 2:44 PM

C H A P T E R 1 ■ O V E R V I E W O F J I N I 7

• jsk-all.policy, in the installverify/support directory, controls Jini security, and here
just turns it off. (This is OK for the purposes of this demonstration, but not for real
systems!)

As you already know, this book is all about how programmers can build Jini services and
clients. The flashing clocks problem has all the source code explained in Chapter 18. For now,
you can download .jar files containing all the compiled classes from http://jan.netcomp.
monash.edu.au/java/jini/tutorial/programs.zip. Unzip the files into any directory you want.
Three .jar files are of interest, under the dist directory:

• clock.clock.ticker.jar: This file contains the class files for a standard “dumb” clock
that starts off with a random time and just ticks away. However, it is smart enough to
look around the network to see if there are any other clocks it can synchronize with.

• clock.clock.computer.jar: This file is a “smarter” clock that gets its time from the
built-in computer clock, which we assume has the correct time. This clock also looks
around the network to see of there are clocks that should synchronize with it.

• clock.clock-dl.jar: This file contains special classes that can be downloaded across
the network. Systems like CORBA and web services rely on getting references to remote
services and making calls using specific protocols by these references. Jini, on the other
hand, relies on downloading Java classes representing a service: once a client has these
classes, then it just makes local calls and doesn’t care how the downloaded classes talk
to the service.

When clients find services, they download a proxy for the service. Support code for this
proxy is usually in a .jar file on an HTTP server. So the file clock.clock-dl.jar has to be on an
HTTP server somewhere. You can copy this file to an HTTP server you have access to, or you can
just use the file on the HTTP server that I run at jan.netcomp.monash.edu.au. (If you have a fire-
wall between my server and your computers, then it may be easier to put the file on a local server
than to get Java to talk through the firewall. You can get away with not using these classes in this
example; the clocks will work fine, but the service browser won’t see the services properly.)

That’s all you need to get this demonstration working. You can start up a flashing clock by
running Java from, say, a command box under Windows or a terminal window under Unix. You
will need to set your classpath so that it contains the Jini files jsk-platform.jar and jsk-lib.jar,
and also the clock file clock.clock.ticker.jar. For example, under Unix you could run

JINI_HOME=...
CLOCK_DIR=...
CLASSPATH=$JINI_HOME/lib/jsk-lib.jar:$JINI_HOME/lib/jsk-platform.jar:$CLOCK_DIR/
clock.clock.ticker.jar
export CLASSPATH

and under Windows, you could run

set JINI_HOME = ...
set CLASSPATH = %JINI_HOME%/lib/jsk-lib.jar;%JINI_HOME%/lib/jsk-plat-
form.jar;%CLOCK_DIR%/clock.clock.ticker.jar

7168ch01.fm Page 7 Tuesday, August 22, 2006 2:44 PM

8 C H A P T E R 1 ■ O V E R V I E W O F J I N I

After setting the classpath, run a dumb ticking clock:

java \
 -Djava.rmi.server.codebase=http://jan.netcomp.monash.edu.au/classes/
clock.clock-dl.jar \
 -Djava.security.policy=JINI_HOME/installverify/support/jsk-all.policy \
 clock.clock.TickerClock \
 "Ticking Clock"

where JINI_HOME is replaced by the directory name where you installed Jini. The first parameter
(codebase) lets the service tell clients where the downloadable files are; the second parameter
(security) sets the policy for what remote code is allowed to do to this service. The third
parameter is the main class file, and the last parameter is just a string to be displayed as window
title.

You should see a clock like the one shown in Figure 1-2, flashing every second.

Figure 1-2. Jini service browser

You can run this command as often as you want, on the same or different machines. Each
one should start up a new flashing clock. These clocks will all discover one another, but since
none of them shows a valid time, there is nothing they can do to each other.

Now start up a “smart” clock that is showing the right time. The classpath needs to be set
to the Jini files jsk-platform.jar and jsk-lib.jar again, but this time it should include
clock.clock.computer.jar instead of clock.clock.ticker.jar. The you run the good clock as
follows:

java \
 -Djava.rmi.server.codebase=http://jan.netcomp.monash.edu.au/classes/
clock.clock-dl.jar \
 -Djava.security.policy=JINI_HOME/installverify/support/jsk-all.policy \
 clock.clock.ComputerClock \
 "Computer Clock"

As this one starts up, it will discover the other clocks and they will discover it. The wrong
clocks will ask the right clocks for the correct time; the right clocks will tell the wrong clocks to
reset their time. This is a peer-to-peer system, and I don’t know whether right tells wrong the
correct time or wrong gets the correct time from right—it doesn’t matter. All that matters is that
the correct time will soon show on all clocks. Later, the clocks will “drift,” but after reading
Chapter 18 you will easily be able to add code to resynchronize on a regular basis.

7168ch01.fm Page 8 Tuesday, August 22, 2006 2:44 PM

C H A P T E R 1 ■ O V E R V I E W O F J I N I 9

If you now start up another possible flashing clock, it will quickly discover the other
correct clocks and may not even flash at all.

So, what is going on with these clocks that is valuable to a distributed application’s
programmer?

• The clocks demonstrate discovery . New clocks start and both discover and are discov-
ered by existing clocks. This is a general property of Jini: clients discover services they are
interested in.

• A clock can make a call on another clock to get or set the time. The clocks are making
remote method calls, but as you will discover later, the protocol isn’t specified by Jini: all
each clock knows is that it has a local proxy representing the remote service and is
making local calls on that proxy. How the proxy talks to its service is of no interest to the
client. Of course, it is of interest to the service programmer, and Jini allows the service
programmer full control of how this is done, while giving default mechanisms good
enough for many cases.

• Some clocks can crash and the others will carry on. Well, OK, there isn’t much interac-
tion going on. But a clock can crash after but before being called. Jini will throw
exceptions to signal failed calls so that the client programmer can handle failure.

• While method calls are synchronous, Jini also allows events to be generated and delivered
asynchronously to listeners. When a clock changes state, it can inform any interested
listener. So Jini can handle both synchronous and asynchronous method calls.

Finally in this section, let’s look at pseudocode for the clocks:

main:
 allow remote code to be downloaded and run within this VM
 start a thread to asynchronously discover proxies for clock services,
 calling us as listener
service discovered:
 if we are invalid and the remote clock is valid
 set our time from the remote clock
 set state to valid
 else if we are valid and the remote clock is invalid
 set the time on the remote clock

That’s it! The rest of the clocks’ code (less than 700 lines total) is the service specification,
user interface classes, and code to keeping the clocks ticking.

Components
When running Jini system, you are dealing with three main players: a service, a client, and a
lookup service. The service could be something such as a printer, a toaster, a marriage agency,
and so forth. The client would like to make use of this service, and the lookup service acts as a
broker/trader/locator between the service and client. (The generic term for the lookup service
seems to be settling on service cache manager.) An additional component is a network
connecting all three main players, and this network will generally be running TCP/IP. (The Jini

7168ch01.fm Page 9 Tuesday, August 22, 2006 2:44 PM

10 C H A P T E R 1 ■ O V E R V I E W O F J I N I

specification is fairly independent of network protocol, but the only current implementation is
on TCP/IP.)

Code is moved around between these three pieces by marshaling the objects. Marshaling
involves serializing the objects in such a way that they can be moved around the network,
stored in a “freeze-dried” form and later reconstituted by using included information about
the class files as well as instance data. This process is performed using Java’s socket support to
send and receive objects.

In addition, objects in one Java Virtual Machine (JVM) may need to invoke methods on an
object in another JVM. Often this will be done using RMI, although the Jini specification does
not require this, and there are many other possibilities.

Figure 1-3 shows the components of a Jini system discussed in this section.

Figure 1-3. Components of a Jini system

Service Registration
As mentioned previously, a service is a logical concept such as a blender, a chat service, or a disk.
It will usually turn out to be defined by a Java interface, and often the service itself will be iden-
tified by this interface. Each service can be implemented in many ways, by many different
vendors. For example, there may be Joe’s dating service, Mary’s dating service, and any number
of others. What makes them the “same” service is that they implement the same interface;
what distinguishes one from another is that each different implementation uses a different set
of objects (or maybe just one object) belonging to different classes.

A service is created by a service provider. A service provider plays a number of roles:

• It creates the objects that implement the service.

• It registers one of these objects, the service object, with lookup services. The service
object is the publicly visible part of the service, and it will be downloaded to clients.

• It stays alive in a server role, performing various tasks such as keeping the service “alive.”

7168ch01.fm Page 10 Tuesday, August 22, 2006 2:44 PM

Alyce Fountain
smallFPO

C H A P T E R 1 ■ O V E R V I E W O F J I N I 11

In order for the service provider to register the service object with a lookup service, the
server must first find the lookup service. This can be done in two ways. If the location of the
lookup service is known, then the service provider can use unicast TCP to connect directly to it.
If the location is not known, the service provider will make UDP multicast requests, and lookup
services may respond to these requests. Lookup services will be listening on port 4160 for both
the unicast and multicast requests. (Port 4160 is the decimal representation of hexadecimal
(CAFEBABE). Oh well, these numbers have to come from somewhere.) When the lookup
service gets a request on this port, it sends an object back to the server. This object, known as a
registrar, acts as a proxy to the lookup service and runs in the service’s JVM. Any requests that
the service provider needs to make of the lookup service are made through this proxy registrar.
Any suitable protocol may be used to do this, but in practice the implementations that you get
of the lookup service (such as those from Sun) will probably use RMI.

What the service provider does with the registrar is register the service with the lookup
service. This involves taking a copy of the service object and storing it on the lookup service as
shown in Figures 1-4, 1-5, and 1-6.

Figure 1-4. Querying for a service locator

Figure 1-5. Registrar returned

7168ch01.fm Page 11 Tuesday, August 22, 2006 2:44 PM

Alyce Fountain
smallFPO

Alyce Fountain
smallFPO

12 C H A P T E R 1 ■ O V E R V I E W O F J I N I

Figure 1-6. Service uploaded

Client Lookup
The client, on the other hand, is trying to get a copy of the service into its own JVM. It goes
through the same mechanism to get a registrar from the lookup service. But this time it does
something different, which is to request the service object to be copied across to it. This
process is shown in Figures 1-7, 1-8, 1-9, and 1-10.

Figure 1-7. Querying for a service locator

Figure 1-8. Registrar returned

7168ch01.fm Page 12 Tuesday, August 22, 2006 2:44 PM

Alyce Fountain
smallFPO

Alyce Fountain
smallFPO

Alyce Fountain
smallFPO

C H A P T E R 1 ■ O V E R V I E W O F J I N I 13

Figure 1-9. Asking for a service

Figure 1-10. Service returned

At this point, the original service object is running on its host, there is a copy of the service
object stored in the lookup service, and there is a copy of the service object running in the
client’s JVM. The client can make requests of the service object running in its own JVM.

Proxies
Some services can be implemented by a single object, the service object. How does this work if
the service is actually a toaster, a printer, or is controlling some piece of hardware? By the time
the service object runs in the client’s JVM, it may be a long way away from its hardware. It
cannot control this remote piece of hardware all by itself. In this situation, the implementation
of the service must be made up of at least two objects: one running in the client and another
distinct one running in the service provider.

The service object is really a proxy, which will communicate back to other objects in the
service provider, probably using RMI. The proxy is the part of the service that is visible to
clients, but its function will be to pass method calls back to the rest of the objects that form the
total implementation of the service. There isn’t a standard nomenclature for these server-side
implementation objects. I will refer to them in this book as the service back-end objects.

The motivation for discussing proxies is when a service object needs to control a remote
piece of hardware that is not directly accessible to the service object. However, it need not be
hardware: there could be files accessible to the service provider that are not available to objects
running in clients. There could be applications local to the service provider that are useful in
implementing the service. Or it could simply be easier to program the service in ways that

7168ch01.fm Page 13 Tuesday, August 22, 2006 2:44 PM

Alyce Fountain
smallFPO

Alyce Fountain
smallFPO

14 C H A P T E R 1 ■ O V E R V I E W O F J I N I

involve objects on the service provider, with the service object being just a proxy. The majority
of service implementations end up with the service object being just a proxy to service back-end
objects, and it is quite common to see the service object being referred to as a service proxy. It is
sometimes referred to a the service proxy even if the implementation doesn’t use a proxy at all!

The proxy needs to communicate with other objects in the service provider, but this
begins to look like a chicken-and-egg situation: how does the proxy find the service back-end
objects in its service provider? Use a Jini lookup? No, when the proxy is created it is “primed”
with its own service provider’s location so that when run it can find its own “home,” as shown
in Figure 1-11.

Figure 1-11. A proxy service

How is the proxy primed? This isn’t specified by Jini, and it can be done in many ways. For
example, an RMI naming service can be used, such as rmiregistry, where the proxy is given the
name of the service. This isn’t very common, as RMI proxies can be passed more directly as
returned objects from method calls, and these can refer to ordinary RMI server objects or to
RMI activateable objects. Another option is that the proxy can be implemented without any
direct use of RMI and can then use an RMI-exported service or some other protocol altogether,
such as FTP, HTTP, or a home-grown protocol. These various possibilities are all illustrated in
later chapters.

Client Structure
Internally a client will look as shown in Table 1-1.

Table 1-1. Client Pseudocommand

Pseudocommand Where Discussed

prepare for discovery Chapter 4, “Discovering a Lookup Service”

discover a lookup service Chapter 4, “Discovering a Lookup Service”

prepare a template for lookup search Chapter 5, “Entry Objects” and “Client Search”

look up a service Chapter 7, “Client Search”

call the service

7168ch01.fm Page 14 Tuesday, August 22, 2006 2:44 PM

Alyce Fountain
smallFPO

C H A P T E R 1 ■ O V E R V I E W O F J I N I 15

The following code is a simplified version of a real case, with various checks on exceptions
and other conditions omitted. It attempts to find a FileClassifier service, and then calls the
method getMIMEType() on this service. The full version of the code is given in a later chapter. I
don’t provide detailed code explanations right now, as this example is just intended to show
how the preceding schema translates into actual code.

package nonworking;
public class TestUnicastFileClassifier {
 public static void main(String argv[]) {

new TestUnicastFileClassifier();
 }
 public TestUnicastFileClassifier() {

LookupLocator lookup = null;
ServiceRegistrar registrar = null;
FileClassifier classifier = null;

 // Prepare for discovery
 lookup = new LookupLocator("jini://www.all_about_files.com");
 // Discover a lookup service
 // This uses the synchronous unicast protocol

registrar = lookup.getRegistrar();
 // Prepare a template for lookup search

Class[] classes = new Class[] {FileClassifier.class};
ServiceTemplate template = new ServiceTemplate(null, classes, null);

 // Lookup a service
classifier = (FileClassifier) registrar.lookup(template);

 // Call the service
MIMEType type;
type = classifier.getMIMEType("file1.txt");

 System.out.println("Type is " + type.toString());
 }
} // TestUnicastFileClassifier

Server Structure
A server application will internally look as shown in Table 1-2.

Table 1-2. Server Pseudocommand

Pseudocode Where Discussed

prepare for discovery Chapter 4, “Discovering a Lookup Service”

discover a lookup service Chapter 4, “Discovering a Lookup Service”

create information about a service Chapter 5, “Entry Objects” and “Client Search”

export a service Chapter 6, “Service Registration”

renew leasing periodically Chapter 8, “Leasing”

7168ch01.fm Page 15 Tuesday, August 22, 2006 2:44 PM

16 C H A P T E R 1 ■ O V E R V I E W O F J I N I

Again, the following code is simplified, with various checks on exceptions and other condi-
tions omitted. It exports an implementation of a file classifier service as a FileClassifierImpl
object. The full version of the code is given in a later chapter. I don’t provide detailed code
explanations right now, as this example is just intended to show how the preceding schema
translates into actual code.

package nonworking;
public class FileClassifierServer implements DiscoveryListener {

 protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();
 public static void main(String argv[]) {

new FileClassifierServer();
 // keep server running (almost) forever to

// - allow time for locator discovery and
// - keep reregistering the lease

 Thread.currentThread().sleep(Lease.FOREVER);
 }
 public FileClassifierServer() {

LookupDiscovery discover = null;
 // Prepare for discovery - empty here
 // Discover a lookup service
 // This uses the asynchronous multicast protocol,
 // which calls back into the discovered() method
 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);
 discover.addDiscoveryListener(this);
 }

 public void discovered(DiscoveryEvent evt) {
 ServiceRegistrar registrar = evt.getRegistrars()[0];
 // At this point we have discovered a lookup service
 // Create information about a service

ServiceItem item = new ServiceItem(null,
 new FileClassifierImpl(),

 null);
 // Export a service

ServiceRegistration reg = registrar.register(item, Lease.FOREVER);
// Renew leasing
leaseManager.renewUntil(reg.getLease(), Lease.FOREVER, this);

 }
} // FileClassifierServer

Partitioning an Application
Jini uses a service view of applications, in contrast to the simple object-oriented view of an
application. Of course, a Jini “application” is made up of objects, but these will be distributed
out into individual services, which will communicate via their proxy objects. The Jini specifica-

7168ch01.fm Page 16 Tuesday, August 22, 2006 2:44 PM

C H A P T E R 1 ■ O V E R V I E W O F J I N I 17

tion claims that in many monolithic applications, there are one or more services waiting to be
released, and making them into services increases their possible uses.

To see this, let’s look at a smart file viewer. This application will be given a file name, and
the structure of the name will determine what type of file it is (.rtf is Rich Text Format file, .gif
is a Graphics Interchange Format file, etc.). Using this classification, the application will then
call up an appropriate viewer for a given type of file, such as an image viewer or document
viewer. A UML class diagram for this application might look like Figure 1-12.

Figure 1-12. A UML diagram for a smart file viewer application

If we take a service-oriented view of the smart file viewer, then we can see a number of
possible services in this application. Classifying a file into types is one possible service (which
will be used heavily in the sequel, because it is simple). A file classification service can be used
in many different situations, in addition to determining the file type for viewing contents of
files. Each of the different viewer classes is another possible candidate for a service: an image
display service, a text display service and so on. This is not to say that every class should
become a service; that would be overkill. What makes these qualify as services is that they

• Have a simple interface

• Are useful in more than one situation

• Can be replaced or varied

 They are reusable, and this is makes them good candidates for services. They do not
require high-bandwidth communication and are not completely trivial.

If the application is reorganized as a collection of services, it might look like Figure 1-13.

7168ch01.fm Page 17 Tuesday, August 22, 2006 2:44 PM

Alyce Fountain
smallFPO

18 C H A P T E R 1 ■ O V E R V I E W O F J I N I

Figure 1-13. An application as a collection of services

 Each service may be running on a different machine on the network (or on the same
machine; it doesn’t matter). Each service exports a proxy to whatever service locators are
running. The SmartViewer application finds and downloads whatever services it needs, as it
needs them.

Support Services
As previously discussed, the three components of a Jini system are clients, services, and service
locators, each of which can run anywhere on the network. These will be implemented using
Java code running in JVMs. The implementation may be in pure Java, but it could make use of
native code by Java Native Interface (JNI) or make external calls to other applications. Often,
each application will run in its own JVM on its own computer, although they could run on the
same machine or even share the same JVM. When they run, they will need access to Java class
files, just like any other Java application. Each component will use the CLASSPATH environment
variable or use the classpath option to the runtime to locate the classes it needs to run.

Jini also relies heavily on the ability to move objects across the network, from one JVM to
another. In order to do this, particular implementations must make use of support services
such as an HTTP server. The particular support services required depend on implementation
details, and so may vary from one Jini component to another.

The End of Protocols
Client/server systems built from scratch typically require the design of a communications
protocol. For example, before the Web could became as important as it is today, the Hypertext
Transfer Protocol, or HTTP, had to be designed so that clients and servers could communicate.

7168ch01.fm Page 18 Tuesday, August 22, 2006 2:44 PM

Alyce Fountain
smallFPO

C H A P T E R 1 ■ O V E R V I E W O F J I N I 19

This protocol has been through several public versions: 0.9, 1.0, and 1.1. Clients and servers
have had to be rebuilt on each version change of even this simple protocol.

RPC systems such as Sun’s ONC, CORBA, COM+, and more recently SOAP also rely on a
fixed protocol. In these cases, though, there are usually tools available that will generate code
to manage the protocol messaging. However, these tools need to generate two sets of code: one
for the client side and one for the server side. Any change to the protocol means that both client
and server need to have this code regenerated.

This dependence on protocol is tightly bound to how clients address services, which
depends on how they find these services. For example, to address a web service, you often need
a Web Services Description Language (WSDL) document that contains the URL of the service’s
server and method names of the service. Coupled with knowledge that the service is addressed
using SOAP, a client can then talk to it. With CORBA, you could obtain an object reference in a
variety of ways (through a name server, using “stringified” references, or through a trader).
Given this reference and the knowledge that CORBA uses the IIOP protocol, a client could then
talk to a server.

Changes to a protocol are a nightmare once the protocol has become popular. It took years
for all clients and servers to upgrade to HTTP 1.1, and the situation was similar for CORBA
protocol changes. The protocol used by sendmail hasn’t been touched for years because of the
chaos to e-mail that would almost certainly result from any changes, even though many people
think it is well past its use-by date.

When you discover a Jini service, you don’t get an address to be dealt with by a particular
protocol. Instead, you get a Java proxy object with known methods. This alters the playing field
in a significant way: the client doesn’t need to know the communications protocol at all! It just
makes local method calls on the proxy.

The proxy comes from the server, and this is key to client ignorance. The client doesn’t
know the protocol used between proxy and service since it never has to know. The communi-
cations protocol is private to the proxy and the service. That means that the proxy and the
service can use any protocol they wish, and it has no effect on the client at all. The proxy and
service can change the protocol, and the client never knows.

There is often an assumption that Jini systems must be “all Java.” This isn’t quite true.
Certainly, the client has to be a Java client, although even here there are caveats: strictly
speaking, the client must be able to invoke a Java object through a JVM, and there are many
languages that can now do this. The proxy needs to be JVM bytecode. Most likely, this bytecode
is generated from Java source code, but not necessarily. But on the service side, who knows?
The proxy can talk to any service it wants to, using any protocol it has chosen. For example,
many people (including myself) have built proxies that will talk SOAP to UPnP devices or web
services. The client is ignorant of the service language and has no need to care.

It isn’t quite the end of protocols, unfortunately. Jini leads to the end of client knowledge
of invocation protocols, but the client still has to discover the Jini proxy; a discovery protocol is
still involved. However, the Jini discovery protocol is fairly lightweight and is customized to just
this task rather than being a general-purpose protocol. Jini discovery involves a simple
protocol to discover a lookup service and then a mechanism for downloading bytecode. In the
last section, I pointed out the use of an HTTP server to deliver the proxy bytecode, but this is
not a prescribed mechanism for Jini. It would be possible to use other mechanisms such as
e-mail or FTP, although I don’t think anyone has yet seriously considered doing this, since
HTTP seems to be good enough so far.

7168ch01.fm Page 19 Tuesday, August 22, 2006 2:44 PM

20 C H A P T E R 1 ■ O V E R V I E W O F J I N I

Summary
In this chapter, you learned that a Jini system is made up of three parts:

• Service

• Client

• Service locator

 Code is moved between these applications. A registrar acts as a proxy to the lookup
locator and runs on both the client and service.

A service and a client both possess a certain structure, which is detailed in the following
chapters. Services may require support from other non-Jini servers, such as an HTTP server.

7168ch01.fm Page 20 Tuesday, August 22, 2006 2:44 PM

