
B
la

n
k

p
ag

e

 7
 A

pr
 2

00
5

©
 J

an
 N

ew
m

ar
ch

S
lid

e
1

UPnP Services and Jini Clients

Jan Newmarch
Monash University

© Jan Newmarch 7 Apr 2005 Slide 2

Home middleware
One of the next battlefields for systems will be the home
Possible middleware candidates include

UPnP
Jini
HAVi
many others

Home networks will require
Zero configuration
Lightweight middleware

 7 Apr 2005© Jan Newmarch Slide 3

Jini
Relatively heavyweight: the Jini libraries are over 1M in code size
A pain in the b*tt to set up
Won’t work easily in a badly setup or "incomplete" environment
Poor industry support
No Jini devices exist

© Jan Newmarch 7 Apr 2005 Slide 4

UPnP
Fairly lightweight, uses existing protocols: SOAP, HTTP, TCP, UDP,
Multicast
Easy to set up
Will work in minimally configured environments
Strongly supported by a Microsoft backed industry group
Several UPnP devices exist

 7 Apr 2005© Jan Newmarch Slide 5

Technical comparison
Jini UPnP

Service adverts via a Lookup Service (LUS) Direct multicast

Service discovery via an LUS Direct multicast

Discovery protocol fixed fixed

Service invocation
protocol

Unspecified (JRMP, Jeri, IIOP, etc) SOAP

Object references Java proxy objects
URLs or XML
documents

Mobility

LUS proxy (to client and service)

Service proxy (to client)

Method call arguments (to service)

Method call result (to client)

Listener registration (to service and
LUS)

Unknown class definitions
downloaded from an HTTP server

None

Language Java only Agnostic

© Jan Newmarch 7 Apr 2005 Slide 6

Object mobility
Requires object introspection (for marshalling)
Requires specialised class loader (e.g RMIClassLoader)
Requires security management (e.g. RMISecurityManager)
Requires HTTP server
Not available in e.g. KVM

 7 Apr 2005© Jan Newmarch Slide 7

Method level object mobility
UPnP avoids object mobility by using primitive data types: int, boolean,
string, etc
Jini can equally use these types
If Jini services only use primitive data types, then there is no method-level
object mobility - just like UPnP
This requires no change to any of Jini - just how the interfaces are
specified
Paranthetic note: UPnP should be in trouble over A/V structures - it avoids
them by hiding XML documents in primitive strings

© Jan Newmarch 7 Apr 2005 Slide 8

LUS proxy mobility
A home service is likely to be on a small footprint device: temperature
sensor, infrared sensor, washing machine, fridge, etc
A home service may not be able to support object mobility to the service
Embed an LUS within the service, so mobility of an LUS proxy to the
service is avoided

 7 Apr 2005© Jan Newmarch Slide 9

Listeners
Event listeners could be registered with the LUS proxy...
Listeners could be registered with the service...
...just don’t move them to the service/LUS

© Jan Newmarch 7 Apr 2005 Slide 10

Object mobility changes
The change is shown as

 7 Apr 2005© Jan Newmarch Slide 11

Removing the HTTP server
To load an unknown class, the JVM must be able to find the class
definition
For new mobile objects, the class definitions are usually stored on an
HTTP server
The Java Proxy class reduces this: a proxy supporting an interface can
be generated on the fly
The generated proxy uses an InvocationHandler to deal with method
calls
Jini and RMI have standard invocation handlers known to the client so no
mobile code is needed for protocols such as JRMP, Jeri, IIOP, etc
Additional classes unknown to the client may need to be downloaded - not
a problem for UPnP data types
Anyway, a UPnP device contains an HTTP server

© Jan Newmarch 7 Apr 2005 Slide 12

Situation so far: ZeroConf
Jini can function at the level of UPnP data types trivially
Combining the LUS with the service can remove all mobile code to the
service
Use of Proxy and a standard invocation handler avoids use of an HTTP
server
Result: Zero Configuration of the service!

 7 Apr 2005© Jan Newmarch Slide 13

Lessons from JMatos
JMatos is a Jini LUS, not Open Source
The Sun LUS proxy communicates back to the LUS itself for any queries
The JMatos LUS is self-contained and does not need to talk to its original
server - a "complete" proxy
This reduces network traffic, speeds up responses, etc

© Jan Newmarch 7 Apr 2005 Slide 14

Lessons for Jini/UPnP
It can be more convenient to send a "complete" LUS proxy
Network traffic can be reduced
There is no need to define a "proxy to source" protocol
But it isn’t necessary...
What follows can be done more easily using a complete proxy, but can be
done anyway

 7 Apr 2005© Jan Newmarch Slide 15

Piggybacking service definitions off UPnP
The UPnP consortium has defined a number of standard home services
Services are defined in an XML file
This can be parsed to define a Jini interface to talk to the service
This is similar to mapping CORBA IDL to Java and mapping Web Service
WSDL descriptions to Java
It is simple for UPnP since the data types are primitive, and you only need
to look at in or out parameters
Define "holder" classes for out parameters such as IntHolder

© Jan Newmarch 7 Apr 2005 Slide 16

Making UPnP services available as Jini
services

A Java-based UPnP service can advertise itself as a Jini service too!
By combining a Jini LUS into a UPnP service it can advertise using both
protocols
The Jini dynamic proxy can use a SOAP invocation handler to talk directly
from a Jini client to a SOAP service
Alternatively, a specialised LUS can listen for UPnP announcements and
deliver them as Jini services

 7 Apr 2005© Jan Newmarch Slide 17

SOAP Invocation Handler

© Jan Newmarch 7 Apr 2005 Slide 18

What’s in it for Jini?
It brings a lower-capability middleware into the Jini world
It allows Jini to piggyback on the UPnP consortium efforts
Additionally, clients can still talk to non-UPnP services - for example a Jini
client can talk to a Jini hardware clock using information from a Jini
software calendar!

 7 Apr 2005© Jan Newmarch Slide 19

Jini without Java
An LUS must deliver a MarshalledObject to a request
The receiver must understand what to do with a Java object
The producer doesn’t: it could just read this object out of a file and squirt it
to the receiver
Even a very stupid service could send a marshalled LUS containing a
service proxy to an enquirer
A smart preparer could write a marshalled object into a file for a dumb
service
Jini on a Nutshell :-)

© Jan Newmarch 7 Apr 2005 Slide 20

Current status
Prototype system running
Generation of Jini interfaces from UPnP XML description done
Examples written and working
Code cleanups and completion underway
Makes use of CyberGarage UPnP for Java - remove this dependency?

Jan Newmarch (http://jan.netcomp.monash.edu.au)

jan.newmarch@infotech.monash.edu.au
Last modified: Wed Dec 8 19:47:01 EST 2004
Copyright ©Jan Newmarch

 7 Apr 2005© Jan Newmarch Slide 21

http://jan.netcomp.monash.edu.au/

	Blank page
	UPnP Services and Jini Clients
	Jan Newmarch Monash University
	Home middleware
	Jini
	UPnP
	Technical comparison
	Object mobility
	Method level object mobility
	LUS proxy mobility
	Listeners
	Object mobility changes
	Removing the HTTP server
	Situation so far: ZeroConf
	Lessons from JMatos
	Lessons for Jini/UPnP
	Piggybacking service definitions off UPnP
	Making UPnP services available as Jini services

	SOAP Invocation Handler
	What's in it for Jini?
	Jini without Java
	Current status

