
 1

Jini Meets UPnP: An Architecture for Jini/UPnP Interoperability

J. Allard, V. Chinta, S. Gundala, G. G. Richard III
Department of Computer Science

University of New Orleans
New Orleans, LA 70148

Contact: golden@cs.uno.edu

Abstract

A service discovery framework provides a collection
of protocols for developing dynamic client/server
applications. This enables clients to find and use services
without any previous knowledge of their specific location
or characteristics. There are currently several service
discovery technologies available or in development,
including Jini, UPnP, SLP, Salutation, and Bluetooth
SDP. These have similar high-level goals, but quite
different architectures. Each software or hardware
product using service discovery will use one of these
protocols. This means that clients and services using
different technologies will not be able to cooperate. Since
it is likely that several protocols will be widely used, there
will be a need for interoperability frameworks that allow
clients and services written using different service
discovery technologies to cooperate.

This paper presents a Jini/UPnP interoperability
framework that allows Jini clients to use UPnP services
and UPnP clients to use Jini services, without any
modifications required on any of these. As service
specifications are developed independently for each
protocol, a fully dynamic interoperability solution is not
possible. So each service type requires specific support,
but only a modest development effort is required to
support new service types.

Keywords: service discovery protocols, Jini,
Universal Plug and Play, interoperability.
1. Introduction

Broadly, a service discovery framework is a collection
of protocols for developing dynamic client/server
applications [8, 9]. A number of component protocols
are typically included, which allow services to advertise
their availability and for clients to search for needed
services. In a service discovery-enabled network,
devices that are plugged in become part of the community
and may be discovered and used by clients with a
minimum of manual configuration. Services that crash,
are replaced, or move, gracefully disappear. Catalogs
track available services. Garbage collection facilities rid
the system of outdated information. Device drivers—at

least in the sense that they are visible to users—are
eliminated and highly dynamic interactions between
clients and services become the norm. Administrative
hassles are minimized, since devices can be replaced and
moved about easily. The functionality of mobile devices
such as palm-sized computers, which necessarily trade
functionality for small form factors, is greatly enhanced,
since needed services can be discovered on-demand,
whether the user happens to be at home or in a coffee
shop.

In a service discovery world, a client in need of a
printer invokes service discovery to find available
devices, evaluates their characteristics (e.g., resolution,
color capability, cost per page), chooses a device, and
initiates a print job. A PDA in desperate need of
additional storage searches for a remote file storage
service, offloads some of its content to free available
memory, roams away, then returns to claim the files.
Virtually anything can be a client or a service—clients
need things, and services provide them. A digital camera
might participate in a network as both service and client,
providing pictures to clients, but also engaging an enabled
light if the picture is too dark. Connecting the needy—
clients—and the providers—available services—is the
point of service discovery. These technologies directly
attack the “I don’t know where you are” and “I don’t
know how to talk to you” issues of client/server. But it
can’t be this easy, right? In general, it’s not, because
there are many competing, incompatible service discovery
technologies. More on that in a bit. First, the common
ground.

1.1. Common Ground
The major commercial players in service discovery are

currently Jini [1], Universal Plug and Play [11], Salutation
[10], and SLP [5]. Bluetooth Service Discovery Protocol
(SDP) [2,3], which is substantially lighter weight and has
more limited functionality, as well as a number of
research oriented systems round out the list. One of these,
Ninja [4], addresses a number of security concerns
lacking in other protocols. There is a lot of common
ground among these technologies, and we’ll concentrate
on the commonality before addressing the major
differences. Not all service discovery technologies
embody all the concepts that follow, but most include a

 2

majority of them. All support the concepts of client and
service, which are simply entities that need and offer
some functionality (e.g., printing), respectively. Clients
perform discovery in order to find needed services. In
some cases, they may directly seek the needed services
themselves; in others, they may contact one or more
service catalogs, which maintain directories of available
services. A discovery attempt generally classifies the
service by type, and may optionally include requirements
such as a manufacturer, serial number, or other service
attributes.

Whether services are sought directly or a catalog is
consulted, a client needs very little information about its
environment—it can locate services (or service catalogs)
dynamically, with little or no static configuration.
Multicast is typically used to support dynamic discovery.
When a service enters the network, it will perform service
advertisement, either directly to clients or to one or more
service catalogs. These advertisements include necessary
contact information and also descriptive attributes (or
information allowing the attributes to be discovered). An
eventing mechanism is typically available, which allows
clients or services to be informed of interesting events in
the network (e.g., a printer becoming available to a client
whose search for a printer previously failed). A garbage
collection facility rids the system of outdated information,
such as descriptions of services that have disappeared
from the network, or requests from clients that no longer
need services. Typically, an implementation of a
particular service discovery framework provides a robust
environment for developing applications, but developed
clients and services are quite non-portable between
different service discovery technologies.

1.2. Smart People Don’t All Think Alike: The
Need for Interoperability

None of the current technologies for service discovery
is a superset of the others, and none is mature enough to
dominate the market. The fact that none dominates isn’t
a sign of poor engineering, or an excuse to sit down and
wait for the “next big thing”—it’s simply a sign that smart
people don’t necessarily tackle problems in the same way.
In the long term, market pressures may result in the field
being trimmed substantially. These pressures haven’t yet
materialized, because the ink is still drying on many of
the specifications and few commercial products have
emerged. Of course the service discovery approach that
succeeds in the marketplace may do so for reasons quite
unrelated to “best technical approach”. In the short term,
there are options, developers have to choose among them,
and as a result of various factors, different choices will be
made. This puts users in a quandary: developers using
Jini may be interested in contacting UPnP services. It
may be necessary to install a Jini-enabled peripheral in a
network in which UPnP is the primary service discovery
technology. Or a user with an SLP-enabled laptop might

need to use a printer in a Salutation coffeeshop.
Interoperability frameworks allow service discovery
technologies to be bridged, so that clients and services of
different types can interact. Without interoperability, the
presence of half a dozen competing technologies will
limit the usefulness of service discovery “in the large”.

In this paper we concentrate on interoperability
between UPnP and Jini. Despite the high-level
similarities between these protocols, interoperability turns
out to be quite difficult. The language-centric nature of
Jini and distinct differences in what has to be standardized
to define a service are substantial obstacles. Since Jini
relies heavily on mobile code, the thing to be standardized
is an interface, which specifies the methods that a Java
client can expect a service implementation to provide.
Jini services can make use of a wide spectrum of Java
technologies, including support for audio, video, and the
transfer of complex Java objects through object
serialization. Further, complicated types can bleed over
into the interfaces that define services, making interaction
with non-Java applications quite daunting. In UPnP, on
the other hand, the things to standardize are XML device
and service descriptions. Unlike Jini, the protocols
spoken between UPnP clients and services tend to be
based on simple, primitive types such as strings, booleans,
and integers. The details of device discovery,
advertisement, and eventing are also quite different,
meaning that bridging Jini and UPnP clients and services
from scratch on a case-by-case basis places a heavy
burden on programmers. Our architecture provides tools
to make bridging the protocols much easier, with the key
idea being to introduce per-service proxies that perform
discovery of UPnP services on behalf of Jini clients and
Jini services on behalf of UPnP clients. These proxies are
essentially “virtual services” and are instantiated
automatically as supported service types are detected.
Enabling bridging for new service types cannot be fully
automated, but in our experience the effort required per
service type is quite an improvement over coding
interoperability from scratch. Our architecture provides
proxy skeletons that provide much of the functionality
needed to support a new service type. Details of the
architecture are presented in Section 4, after a look at
related work and an introduction to Jini and UPnP.

1.3. Related Work
Some initial work on interoperability for service

discovery has been done, though the number of efforts to
date is relatively small. Despite the importance of
interoperability, much remains to be done, and the
scarcity of related work is due primarily to the youth of
many of the technologies. A whitepaper available from
the Salutation Consortium [10] describes mapping the
Salutation architecture for service discovery to Bluetooth
SDP. Bluetooth is an attractive target for interoperability
efforts because it brings low-cost wireless to mobile

 3

devices, eliminating cables. In fact, to our knowledge
none of the other groups developing service discovery
technologies rule out Bluetooth interoperability. Mapping
Jini, UPnP, and SLP to Bluetooth is relatively painless
because PPP (and thus IP) can be run over Bluetooth and
current implementations of Jini, UPnP, and SLP all target
IP-based networks. Salutation is also interoperable with
SLP in one direction, for discovery beyond the local
network.

A Jini/SLP bridge is proposed in [6] that allows Jini
clients to make use of SLP services. Properly equipped
service agents advertise the availability of Java driver
factories that may be used to instantiate Java objects for
interacting with an SLP service. A special SLP user agent
discovers these service agents and registers the driver
factories with available Jini lookup services. An
advantage of this architecture is that the service agents do
not need to support Jini—in fact, they do not even need to
run a Java virtual machine. Bridges of this sort seem to
be the most appropriate way to foster operability between
the various service discovery technologies. As with our
architecture, some programming is required for each
service type. This is generally necessary because the
client/service interfaces are so different between the
various service discovery approaches. Note that all of
the interoperability efforts to date are unidirectional,
providing interoperability in only one direction. Our
architecture provides bi-directional interoperability,
allowing UPnP and Jini clients and services to mingle.
2. Jini

Jini is a service discovery technology based on Java,
developed by Sun Microsystems. Because of the
platform-independent nature of Java, Jini can rely on
mobile code for interaction between clients and services.
Lookup services provide catalogs of available services to
clients in a Jini network. On initialization, Jini services
register their availability by uploading proxy objects to
one or more of these lookup services. The proxy objects
are essentially “device drivers” written in Java—they
allow the client to control the service. Protocols are
included for connecting to lookup services with known
locations and for dynamically discovering lookup services
within multicast range. Once a client has contacted a
lookup service, it can search for interesting services and
then download the corresponding service proxy objects.
In Jini, searching is based on the type of the proxy
object—generally specified using a Java interface—and
on sets of descriptive attributes. For example, a client
interested in discovering a remote file storage facility
might search for services whose proxy objects implement
the following interface:
public interface StorageService extends Remote {

public boolean open(String username,
 String password, boolean newAccount)

throws RemoteException;

 public boolean close(String username,
 String password) throws RemoteException;
 public boolean shutdown(String username,
 String password) throws RemoteException;
 public boolean store(String username,
 String password, byte[] contents,
 String pathname) throws RemoteException;
 public byte[] retrieve(String username,
 String password, String pathname)

throws RemoteException;
 public boolean delete(String username,
 String password, String pathname)

throws RemoteException;
 public String[] listFiles(String username,
 String password) throws RemoteException;
 public String name() throws RemoteException;
}

After downloading an object implementing the above
interface, the client can invoke the methods to create
accounts, store and retrieve files, etc.

Garbage collection in Jini is based on a leasing
mechanism, which allows lessors to grant access to a
resource (e.g., proxy object storage on a lookup service)
on a leased basis. Eventing is provided for asynchronous
notification of interesting things occurring in the
network—examples include the discovery of a new
lookup service and the availability of a needed service.
Development of clients and services in Jini is at a high-
level. Extensive class support hides the details of the
multicast-based discovery and advertisement protocols,
leasing, etc. from programmers. Further, RMI-based
service proxies tend to reduce the need to create custom
client/service protocols (e.g., based on sockets), except
when performance is a concern.

Note that Jini specifically requires at least one
accessible lookup service—there is no “directory-less”
mode where clients and services discover each other and
then interact directly. This is in sharp contrast to UPnP,
where no directories are used. Jini includes other tools,
such as a transaction service and a JavaSpaces
implementation, which provides a Linda-like “bag-of-
objects” abstraction. These have no peer in UPnP. Code
mobility allows the creation of very interesting services in
Jini—the proxy object downloaded by a client may
perform computation on the client side, on the service
side, or both. We currently use the standard Jini
distribution v1.1 from Sun Microsystems for
development.
3. Universal Plug and Play (UPnP)

Universal Plug and Play is a set of protocols for
service discovery under development by the Universal
Plug and Play Forum, an industry consortium led by
Microsoft. UPnP standardizes the protocols spoken
between clients (called control points in the UPnP lingo)
and services rather than relying on mobile code. Device
and service descriptions are coded in XML, and a number
of protocols for local autoconfiguration, discovery,
advertisement, client/service interaction, and eventing—
Auto-IP, SSDP (Simple Service Discovery Protocol),

 4

SOAP (Simple Object Access Protocol), GENA (General
Event Notification Architecture)—are included in the
specification. These protocols tend to be based loosely
on existing standards (e.g., HTTP).

The UPnP specification addresses six areas. The first
(numbered 0) is Addressing, and is related to device
initialization—in order to interact with other UPnP
entities, a device or control point must have an IP address.
IP addresses will generally be provided by a DHCP server
or configured statically, but for environments with little
infrastructure (e.g., a home LAN), UPnP uses a protocol
named Auto-IP to automatically generate non-routable IP
addresses. The second area is Discovery, which allows
control points to discover UPnP devices offering services
of interest. Discovery also covers device advertisement,
used to announce the availability of devices as they enter
the network. The discovery phase provides control points
with existential information, but little additional
information about the discovered devices. Discovery is
the concern of SSDP. Description, or the ability to
inquire about device specifics (e.g., manufacturer, serial
numbers, specific services offered, etc.) is the third phase.
Using a URL obtained in the Discovery phase, a control
point can download a document called the device

description document, which fully describes a device of
interest. This document is platform-neutral, expressed
entirely in XML. For example, the description
document for a remote file storage “device” might look
like the one specified in Appendix A (placed there in
single column format for readability).

If a control point determines, after examining a
device’s description document, that it wishes to interact
with services provided by a device then Control is used to
send the device commands and receive results. All
Control interactions are via a protocol based on HTTP,
called SOAP (Simple Object Access Protocol), which
runs over TCP. Commands sent via SOAP are addressed
to control URLs for the services provided by a device—
these control URLs are specified in the device’s
description document, which is obtained during the
Description phase. The API for a service is also
expressed in XML. A partial specification of the remote
file service “rfsService” is given in Appendix A (A.2).

To be informed of important state changes, UPnP
control points subscribe to the event services offered by a
device. This mechanism makes up the Eventing portion
of the UPnP specification and is handled by the GENA
(General Event Notification Architecture) protocol.
Eventing consists of notifications of state variable
changes. Finally, the Presentation aspect of UPnP allows
devices to define a presentation URL, which is the
location of an HTML document which provides a
graphical interface to the device (a “virtual” remote
control).

Unlike Jini and SLP, UPnP does not support service
directories—communication between devices and clients
is always direct. Thus UPnP is aimed at smaller
environments where the benefits of directories are
reduced due to the small number of devices typically
found in the network.

We currently do UPnP development using Intel’s
UPnP SDK, an open source implementation of the UPnP
protocols for Unix, and Siemen’s Java UPnP stack.
4. A Jini/UPnP Interoperability Framework

In this section we discuss the design of our UPnP/Jini
interoperability framework. The architecture introduces
service-specific proxies that allow Jini and UPnP clients
and services to mingle—UPnP clients can use Jini
services and vice versa. Each new service type requires
a modest amount of code to be written, but the Jini/UPnP
clients and services themselves do not require
modification. Our goal, as might be expected, is to
reduce the per-service implementation effort as much as
possible.

To achieve this goal, we need to fool Jini clients into
believing they are interacting with Jini services even
when the services are in fact UPnP, and the reverse for
UPnP clients. The framework generates virtual Jini
services, one for each instance of a recognized UPnP

UPnP Service

JINI Service

UPnP Client

JINI Client

UPnP JINI
Framework

Virtual JINI Service

JINI UPnP
Framework

Virtual UPnP Service

Virtual UPnP Client

Virtual JINI Client

UPnP

JINI

Lookup
Service

Figure 1: UPnp/Jini framework. Arrows represent
client service usage, e.g. a client can use a service when
an arrow connects them. This diagram only shows one
entity of each type but the framework supports multiple
clients and services simultaneously.

 5

service. This concept is similarly applied in the other
direction (UPnP client using a Jini service). This process
is depicted in Figure 1. For each supported UPnP service
instance, the architecture automatically generates a virtual
Jini service instance and registers the instance with
available Jini lookup services. For each supported Jini
service instance, the architecture generates a virtual UPnP
instance which performs UPnP advertisement for the
service. The virtual services perform bridging, translating
between Jini method calls and UPnP actions. When a
UPnP or Jini service is removed from the network, the
architecture automatically destroys the corresponding
virtual services.

4.1. Design
The architecture is illustrated in Figure 2. The major

components are:
• UPnP Service Framework, which provides basic

UPnP service functionality to Java through a JNI
interface to the Intel UPnP SDK. This component
supports the development of proxies for new service
types.

• UPnP Client, which provides basic UPnP client
functions, such as sending an action, retrieving state
variables, and service discovery. These functions are
to transmit commands to a UPnP service on behalf of
a Jini client.

• Jini Service Discovery, which is responsible for the
discovery of known Jini service types.

• Jini Service Registration, which registers virtual Jini
services with available lookup services.

• Proxy Service Implementation, which is the only part
specifically dependent on the specific type of a

supported service. This component is used to
implement a “virtual” service, which interacts with a
real service to perform service functions. A pair of
proxies are required for each supported service type,
one to support Jini UPnP interoperability, and one
to support UPnP Jini.

• Kernel, which manages the other modules,
coordinates discovery of services, instantiation of
appropriate proxies to bridge UPnP and Jini service
implementations, registration and advertisement of
virtual services and garbage collection. The Kernel
uses Java reflection to enumerate supported service
types, eliminating the need for modifying core
components when new services types are added. The
Kernel also ensures that virtual services are not
bridged again—e.g., a UPnP service that is made
available to Jini clients should not then be bridged to
make it available to UPnP clients!

The main idea behind this design is that the framework
should provide as much support as possible for rapid
proxy development, reducing the amount of code that
must be written to support new service types. To verify
this claim we developed proxies for two independently
developed remote file services, one in Jini and the other in
UPnP, paying attention to the effort required to get
proxies running. The design and development of the
proxies took one afternoon for one person. Each
represents about a hundred lines of Java code. This is
very light development effort, considering that the Jini
and UPnP services have reasonably different interfaces.
As an example of these differences, the Jini interface for
remote file storage contained methods to create a new
account and to login into an existing account, whereas the

Figure 2: Jini/UPnP framework design. Arrows indicate dependencies.

 6

UPnP specification uses a single action for logging into
an account, which implicitly creates the account if it does
not already exist. Further, the representation of a
transmitted file is different. The code for the proxies is
included in Appendix B (for the curious). In addition to
remote file storage, we have also applied our architecture
to interoperability for GPS and LCD projection services.

4.2. The Details
In this section we present a case study to better explain

how the framework functions. Figure 3 details how the
framework works to allow a Jini client to use a UPnP
service. We follow this process from initialization, to the
discovery of an UPnP service, the creation and
registration of a corresponding virtual Jini service,
through the use of the service by a Jini client.

We elaborate on the interesting steps here. The steps
correspond to the numbers in Figure 3.

1. The Kernel uses the UPnP Client component to

discover available services. Only supported service
types are discovered (that is, service types for which
a proxy has been developed).

2. The request is forwarded to UPnP SDK.
3. Service request messages are transmitted.
4. Service description documents are retrieved.
5. The UPnP Client component parses the description

documents.
6. The UPnP Client component creates a UPnPService

interface to interact with the UPnP service and sends
it to the kernel

7. The kernel locates an appropriate proxy service class
for the discovered service.

8. The proxy service class is found.
9. The kernel creates a Jini service proxy instance.
11. A Jini service registration instance is created.
12. The service description is registered with available
lookup services.
13. A client performs a service request and downloads the
service’s stub.
17-20. Methods invoked in the service’s stub cause the
client to interact with the concrete UPnP service through
the virtual service.
4.3. Issues

In this section we detail some of the issues
encountered when bridging UPnP and Jini. Bridging
from scratch for each service type is not trivial, since the
two technologies differ in several critical ways.

The most important difference is service
standardization. Each service type (printer, remote file
service, LCD projection service, etc.) will have a
standardized Java interface and a standardized UPnP
XML specification, which may or may not offer
equivalent functionality. Further, standard types in Java,
such as vectors, hashtables, etc. tend to find their way into
Java interfaces, while UPnP service specifications tend to
be based on simpler types.

The other issues are:
• Service discovery: Jini uses a set of attributes to

search for specific services, UPnP does not. The
possible Jini attributes (manufacturer, model,
capabilities) must be derived from the UPnP XML

Figure 3: A Jini client interacts with a UPnP service.

Plain arrows represent local method calls. Dashed arrows
represent network messages.

 7

description document, which must be downloaded
before it can be examined.

• Programming languages: Only Java is available for
Jini development. A number of languages are
available for UPnP, notably C, C++, and Java.

• Eventing: Jini eventing is quite different from the
eventing mechanism in UPnP, where state variable
values are transmitted directly to clients. Equivalent
functionality can be provided using a remote callback
mechanism or the proxy can use a thread to poll the
Jini service periodically and detect state changes.

5. Conclusions and Future Work
We have presented an architecture for Jini/UPnP

interoperability. Our architecture introduces virtual
services that allows Jini and UPnP clients to mingle.
Efforts of this sort are important because in the near term,
a number of service discovery technologies will compete
for dominance. One important area we are currently
working on is scooping, which allows services to be
separated into groups (primarily for administrative
purposes). In addition, are currently working on
interoperability with other service discovery protocols
such as SLP and Salutation. An open question is how to
further automate the support of new service types, thus
reducing the per-service programming effort even further.
The code for the architecture and some sample proxy
implementations is available on our website at
http://www.cs.uno.edu/~interop/

References

[1] K. Arnold, R. W. Scheifler, J. Waldo, A. Wollrath,
B.O 'Sullivan, The Jini Specification, 1999.
[2] Bluetooth specification, available from
http://www.bluetooth.org/.
[3] “Bluetooth Extended Service Discovery Profile,”
http://www.bluetooth.org/specifications.htm.
[4] S. E. Czerwinski, B. Y. Zhao, T. Hodes, A. D. Joseph,
R. Katz “An Architecture for a Secure Service Discovery
Service,”Fifth Annual International Conference on
Mobile Computing and Networks (MobiCOM '99).
[5] E. Guttman, C. Perkins, J. Veizades, M. Day,
“Service Location Protocol, Version 2,” RFC 2608,
http://www.ietf.org/rfc/rfc2608.txt.
[6] Automatic Discovery of Thin Servers: SLP, Jini and
the SLP-Jini Bridge, Erik Guttman, James Kempf,
IECON, San Jose, 1999.
[7] B. Miller, R. Pascoe, “Mapping Salutation
Architecture APIs to Bluetooth Service Discovery Layer,”
www.salutation.org/whitepaper/BtoothMapping.PDF.
[8] G. G. Richard III, Service and Device Discovery:
Protocols and Programming, McGraw-Hill, 2002.
[9] G. G. Richard III, "Service Advertisement and
Discovery: Enabling Universal Device Cooperation,"
IEEE Internet Computing, vol. 4, no. 5,
September/October 2000.
[10] Salutation Service Discovery Architecture.
www.salutation.org.
[11] Universal Plug and Play Specification, v1.0, at
www.upnp.org.

Appendix A: Sample UPnP Remote File Service Specification
A.1 Device description

<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <URLBase>http://sarah.remotefs.com:6599</URLBase>
 <device>
 <deviceType>urn:schemas-upnp-org:device:rfs:1</deviceType>
 <friendlyName>UPnP Remote File Server</friendlyName>
 <manufacturer>

Remote File Services, Inc. </manufacturer>
 <manufacturerURL>http://www.remotefs.com/</manufacturerURL>
 <modelDescription>UPnP RFS</modelDescription>
 <modelName>RFS Test</modelName>
 <modelNumber>1.0</modelNumber>
 <modelURL>http://www.remotefs.com/</modelURL>
 <serialNumber>999954321</serialNumber>
 <UDN>uuid:Upnp-RFS-1_0-1212121212120</UDN>
 <UPC>123456789</UPC>
 <serviceList>
 <service>
 <serviceType>

urn:schemas-upnp-org:service:rfsService:1</serviceType>
 <serviceId>urn:upnp-org:serviceId:rfsService1</serviceId>
 <controlURL>/upnp/control/rfs1</controlURL>

 8

 <eventSubURL>/upnp/event/rfs1</eventSubURL>
 <SCPDURL>/rfsSCPD.xml</SCPDURL>
 </service>
 </serviceList>
 <presentationURL>/rfspres.html</presentationURL>
</device>
</root>

A.2 Partial SCPD for remote file storage service
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>LogIn</name>
 <argumentList>
 <argument>
 <name>Login</name>
 <relatedStateVariable>A_ARG_string</relatedStateVariable>
 <direction>in</direction>
 </argument>
 <argument>
 <name>Password</name>
 <relatedStateVariable>A_ARG_string</relatedStateVariable>
 <direction>in</direction>
 </argument>
 <argument>
 <name>Connection</name>
 <relatedStateVariable>A_ARG_i4</relatedStateVariable>
 <direction>out</direction>
 </argument>
 </argumentList>
 </action>

…
 <name>PutFile</name>
 <argumentList>
 <argument>
 <name>Connection</name>
 <relatedStateVariable>A_ARG_i4</relatedStateVariable>
 <direction>in</direction>
 </argument>
 <argument>
 <name>Name</name>
 <relatedStateVariable>A_ARG_string</relatedStateVariable>
 <direction>in</direction>
 </argument>
 <argument>
 <name>Data</name>
 <relatedStateVariable>A_ARG_bin.hex</relatedStateVariable>
 <direction>in</direction>
 </argument>
 </argumentList>
 </action>
 …
 </actionList>
 <serviceStateTable>
 <stateVariable>
 <name>A_ARG_string</name>
 <dataType>string</dataType>
 </stateVariable>

…
 <stateVariable>
 <name>A_ARG_boolean</name>
 <dataType>boolean</dataType>
 </stateVariable>
 </serviceStateTable>
</scpd>

 9

Appendix B: Remote File Service Proxies Source Code
B.1 UPnP-to-Jini Proxy Implementation

import upnpsdk.*;
import java.rmi.server.UnicastRemoteObject;
import java.io.*;
import java.rmi.*;
import java.util.*;
import server.*;

public class U2JRFSProxy extends UnicastRemoteObject implements StorageService, Serializable {
 public static String knownUpnpService = "urn:schemas-upnp-org:service:rfsService:1";
 private UpnpServiceInterface upnpService;

 public U2JRFSProxy(UpnpServiceInterface upnpService) throws RemoteException {
 this.upnpService=upnpService;
 }
 private HashMap connections = new HashMap();
 private String getCID(String name, String password) {
 return (String)connections.get(name+":"+password);
 }
 private void setCID(String name, String password, String cid) {
 connections.put(name+":"+password, cid);
 }
 // establish communication with the server.
 public boolean open(String username, String password,
 boolean newAccount) throws RemoteException {
 try {
 String cid = upnpService.sendAction("LogIn"
 ,new String[]{"Login","Password"}
 ,new String[]{username,password}
 ,new String[]{"Connection"})[0];
 if (cid.equals("0")) {
 return false; // failed;
 } else { // success, save connection informations
 setCID(username, password, cid);
 return true;
 }
 } catch (Exception e) {
 throw new RemoteException(e.toString());
 }
 }
 // close communication with the server, but don't destroy the account
 public boolean close(String username, String password) throws RemoteException {
 try {
 String cid = getCID(username, password);
 upnpService.sendAction("LogOut"
 ,new String[]{"Connection","DeleteAllFiles"}
 ,new String[]{cid, "false"}
 ,null);
 return true;
 } catch (Exception e) {
 throw new RemoteException(e.toString());
 }
 }
 // close communication with the server, and destroy the account
 public boolean shutdown(String username, String password)throws RemoteException {
 try {
 String cid = getCID(username, password);
 upnpService.sendAction("LogOut"
 ,new String[]{"Connection","DeleteAllFiles"}
 ,new String[]{cid, "true"}
 ,null);
 return true;
 } catch (Exception e) {
 throw new RemoteException(e.toString());
 }
 }
 // store the 'contents' of a file with name 'pathname'
 public boolean store(String username, String password, byte[] contents,

 10

 String pathname) throws RemoteException {
 try {
 String cid = getCID(username, password);
 String hexContent = UpnpUtils.bin2hex(contents);

 System.out.println("connection "+cid+"> Storing file \""+
 pathname+"\" content=\""+hexContent+"\"");

 upnpService.sendAction("PutFile"
 ,new String[]{"Connection","Name","Data"}
 ,new String[]{cid, pathname, hexContent}
 ,null);
 return true;
 } catch (Exception e) {
 throw new RemoteException(e.toString());
 }
 }
 // return the contents of a stored file identified by 'pathname'
 public byte[] retrieve(String username, String password,
 String pathname)throws RemoteException {
 try {
 String cid = getCID(username, password);
 String hexContents = upnpService.sendAction("GetFile"
 ,new String[]{"Connection","Name"}
 ,new String[]{cid,pathname}
 ,new String[]{"Data"})[0];
 return UpnpUtils.hex2bin(hexContents);
 } catch (Exception e) {
 throw new RemoteException(e.toString());
 }
 }
 // return an array containing the pathnames of remotely stored files
 public String[] listFiles(String username, String password)throws RemoteException {
 try {
 String cid = getCID(username, password);
 String files = upnpService.sendAction("ListFile"
 ,new String[]{"Connection","Directory"}
 ,new String[]{cid,"/"}
 ,new String[]{"List"})[0];

 StringTokenizer token = new StringTokenizer(files,"\n",false);
 String[] result = new String[token.countTokens()];
 for (int i=0;i<result.length;i++)
 result[i]=token.nextToken();
 return result;
 } catch (Exception e) {
 throw new RemoteException(e.toString());
 }
 }
 // returns the hostname + serviceID of the temporary file storage service. We
 // guarantee that this name is unique for distinct storage services.
 public String name() throws RemoteException {
 return upnpService.getDeviceUDN();
 }
}

B.2. Jini-to-UPnP Proxy Implementation
import upnpsdk.*;
import java.io.*;
import java.util.*;
import java.rmi.server.UnicastRemoteObject;
import net.jini.core.lookup.ServiceItem;
import server.*;

public class J2URFSProxy extends UpnpDeviceImplementation {
 static public final Class supportedService = StorageService.class;
 static public final String xmlFile = "J2URFSProxy.xml";

 public J2URFSProxy(ServiceItem item, String xmlDir, String URLBase,
 String deviceUDN) throws Exception {
 super(UpnpUtils.loadXML(xmlDir+File.separator+xmlFile),xmlDir,URLBase,deviceUDN);
 addService(new RFSProxyService(this,(StorageService)item.service));
 }

 11

 protected class RFSProxyService extends UpnpServiceImplementation {
 private StorageService jiniService;
 public RFSProxyService(UpnpDeviceImplementation device,
 StorageService jiniService) throws Exception {
 super(device,
 "urn:schemas-upnp-org:service:rfsService:1",
 "urn:upnp-org:serviceId:rfsService1",
 new String[]{},
 new String[]{},
 0
);
 this.jiniService = jiniService;
 }
 private HashMap connections = new HashMap();
 private int nextCID = 1;
 public UpnpDocument doAction(String actionName, UpnpDocument actionRequest) throws Exception {
 if (actionName.equals("LogIn")) {
 String login = actionRequest.parseItem("Login");
 String password = actionRequest.parseItem("Password");
 int cid = 0;
 if (jiniService.open(login, password, false) ||
 jiniService.open(login, password, true)) {
 cid = nextCID++; // success, store the username and password
 connections.put(Integer.toString(cid),new String[]{login,password});
 }
 return makeActionResult(actionName,
 new String[]{"Connection"},
 new String[]{Integer.toString(cid)}
);
 }
 else { // all other actions has the same connection parameter
 String cid = actionRequest.parseItem("Connection");
 String[] user = (String[])connections.get(cid);
 if (actionName.equals("LogOut")) {
 if (UpnpUtils.s2bool(actionRequest.parseItem("DeleteAllFiles")))
 jiniService.shutdown(user[0],user[1]);
 else
 jiniService.close(user[0],user[1]);
 }
 else if (actionName.equals("PutFile")) {
 String filename = actionRequest.parseItem("Name");
 String hexData = actionRequest.parseItem("Data");
 byte[] binData = UpnpUtils.hex2bin(hexData);
 jiniService.store(user[0],user[1],binData,filename);
 }
 else if (actionName.equals("GetFile")) {
 String filename = actionRequest.parseItem("Name");
 byte[] binData = jiniService.retrieve(user[0],user[1],filename);
 String hexData = UpnpUtils.bin2hex(binData);
 return makeActionResult(actionName,
 new String[]{"Data"},
 new String[]{hexData}
);
 }
 else if (actionName.equals("ListFile")) {
 String[] tbl = jiniService.listFiles(user[0],user[1]);
 String list = "";
 for (int i=0;i<tbl.length;i++) {
 list = list + tbl[i] + "\n";
 }
 return makeActionResult(actionName,
 new String[]{"List"},
 new String[]{list}
);
 }
 else throw new UpnpException(-1,"action "+actionName+" unknown");
 }
 return makeActionResult(actionName, null, null);
 }
 }

