
Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 1 of 16

Wingfoot SOAP 1.06

User Guide

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 2 of 16

Wingfoot SOAP 1.06 ..1

User Guide ..1
1. Abstract ...3
2. Wingfoot SOAP Binary ...3
3. Supported Style and Encoding ...3
4. SOAP Envelope ...4

4.1 Default Envelope..5
4.2 Custom Envelope ...5

5. SOAP Header ..6
6. SOAP Body ...6

6.1 RPC encoded style ...6
6.2 Document literal style ..7
6.3 RPC encoded � Primitive parameter ...8
6.4 RPC encoded � Primitive Array parameter ...8
6.5 RPC encoded � Role of TypeMappingRegistry...9
6.6 RPC encoded � Bean Parameter ...10
6.7 RPC encoded � Array of Beans parameter..12
6.8 Untyped Objects...12

7. SOAP Transport...14
8. Interrogating Response...15

8.1 Retrieving Headers...15
8.2 Retrieving Fault..15
8.3 Retrieving Parameters ..16

9. Resources ..16

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 3 of 16

1. Abstract

Wingfoot SOAP 1.06 (henceforth wSOAP) is a lightweight client
implementation of SOAP 1.1 that is specifically targeted at the
MIDP/CLDC platform. However, it can be used in J2SE and J2EE
environments.

This release of the SOAP client is an improvement over the 1.05
release. Details of the specific defects addressed are in Readme.txt.

The rest of this document shows the reader how to use the API to
send and receive SOAP payload. This is not meant as a tutorial;
the audience is expected to be familiar with SOAP.

2. Wingfoot SOAP Binary

wSOAP comes with two binaries. kvmwsoap_1.06.jar is targeted at
the CLDC/MIDP platforms. It includes a lightweight XML parser and
is 37K in size.

j2sewsoap_1.06.jar targets at the CDC/Personal Java, J2SE, and
J2EE platforms. It includes a lightweight XML parser and is 34.5K
in size.

The API for both binaries is identical except for the Transport
implementation. kvmwsoap_1.06.jar uses HTTPTransport while
j2sewsoap_1.06.jar uses J2SEHTTPTransport.

3. Supported Style and Encoding

A SOAP message can have two kinds of payload and two
mechanisms to encode the data. This section explains the
differences between them and the various combinations possible.
It concludes by documenting the combinations supported by wSOAP

A SOAP payload is either a RPC style or Document style. An RPC
style is usually used when there is a need to invoke a remote
procedure or method. Section 7 of SOAP 1.1 document specifies
the structure of a RPC style SOAP Body element (<Body>).

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 4 of 16

In a Document style, the SOAP Body contains arbitrary XML that
need NOT confirm to Section 7. The SOAP client simply accepts the
XML, appends it below the <Body> element and sends the payload
to the SOAP server. The SOAP server passes the payload to an
application and it is the responsibility of the application to parse the
arbitrary XML sent in the <Body> element.

Encoding refers to the rules followed by the SOAP client and the
SOAP server to interpret the contents of the <Body> element in the
SOAP payload. The client and the server have to agree on one rule
to ensure that either end correctly interprets the payload sent from
the other end.

An encoded SOAP body indicates that the rules to encode and
interpret a SOAP body are in a URL specified by the encodingStyle
attribute. wSOAP defaults the encodingStyle to
http://schemas.xmlsoap.org/soap/encoding/.

A literal encoding indicates that the rules to encode and interpret
the SOAP Body are specified by a XML schema. Some services do
not expect an encodingStyle attribute for literal encoding. For such
instances, set the encodingStyle attribute to null
(Envelope.setEncodingStyle(null))

Hence from the above discussion, there are four combinations of
SOAP Style and SOAP encoding:

• RPC encoded (supported by wSOAP)
• RPC literal (not supported by wSOAP)
• Document encoded (not supported by wSOAP)
• Document literal (supported by wSOAP)

wSOAP, like most SOAP products, supports RPC encoded and
Document literal combination. For RPC encoded, the only attribute
available for encodingStyle is
http://schemas.xmlsoap.org/soap/encoding. Subsequent releases
of our SOAP client will have support for RPC literal and Document
encoded along with the ability to specify custom encodingStyle.

4. SOAP Envelope

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 5 of 16

A SOAP XML payload consists of a mandatory Envelope element, an
optional Header element and a mandatory Body element. The first
step is to create an Envelope. Wingfoot SOAP allows the user to
use a default Envelope or create a custom Envelope.

4.1 Default Envelope

A default Envelope is created by instantiating
com.wingfoot.soap.Call using the default constructor. Instances
of com.Wingfoot.soap.Call are used to send a SOAP payload to
the server. A default Envelope:

a. Sets the schema to http://www.w3.org/2001/XMLSchema;
b. Sets the schema-instance to

http://www.w3.org/2001/XMLSchema-instance;
c. Does not allow the user to specify SOAP Header;
d. Allows only RPC-encoded SOAP Body.

The following code fragment creates an instance of Call with
default Envelope:

Call theCall = new Call ();

4.2 Custom Envelope

A custom Envelope is created by instantiating
com.wingfoot.soap.Envelope. Using a custom Envelope allows
the user to specify

a. an alternative schema (example

http://www.w3.org/1999/XMLSchema);
b. an alternative schema-instance (example

http://www.w3.org/1999/XMLSchema-instance);
c. SOAP Headers;
d. RPC-encoded or Document-literal SOAP Body.

Once a custom SOAP Envelope is created, it is passed as a
parameter to the constructor of com.wingfoot.soap.Call.

The following code fragment creates a custom Envelope and
passes it to the Call object

Envelope customEnvelope = new Envelope ();
customEnvelope.setSchema (

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 6 of 16

 �http://www.w3.org/1999/XMLSchema�);
customEnvelope.setSchemaInstance (
 �http://www.w3.org/1999/XMLSchema-instance�);
Call theCall = new Call (customEnvelope);

5. SOAP Header

A SOAP Header element is optional, and is specified by creating a
custom Envelope. A Header element can have a number of user-
defined headers each of which is encapsulated in
com.wingfoot.soap.HeaderEntry.

The following code fragment uses the custom Envelope created in
the previous section to specify two headers:

HeaderEntry he1 = new HeaderEntry (�header1�, �value1�);
HeaderEntry he2 = new HeaderEntry (�header2�, �value2�);
he2.setMustUnderstand (true); // default is false.
customEnvelope.addHeader (he1);
customEnvelope.addHeader (he2);

6. SOAP Body

As discussed in Section 4 of this document, wSOAP supports RPC
encoded and Document literal SOAP Body. This section looks at the
wSOAP API to create these two styles of SOAP body.

6.1 RPC encoded style

The following is a sample of RPC encoded SOAP payload

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <SOAP-ENV:Body>
 <m:GetStockQuote xmlns:m=�urn:somens�> <symbol>C</symbol></m:GetStockQuote>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This is an encoded SOAP body because the encodingStyle
attribute specifies a URL with the rules to interpret the SOAP
body. wSOAP defaults the encodingStyle to
http://schemas.xmlsoap.org/soap/envelope/.

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 7 of 16

This is a RPC style SOAP body because the structure of the XML
between <SOAP-ENV:Body> and </SOAP-ENV:Body> is dictated
by SOAP Section 7. In the example above, GetStockQuote is the
method name. For Java based SOAP servers, the namespace
�urn:somens� maps to a Java class which has a method named
GetStockQuote. This method expects one parameter named
symbol. C is the value for the parameter symbol.

To create a RPC encoded SOAP request, the default Envelope or
a Custom Envelope can be used. The following stub uses the
default Envelope to create a RPC encoded style SOAP Body.

Call theCall = new Call();
theCall.addParameter(�symbol�, �C�);

Using custom Envelope, the stub looks like:

Envelope custom = new Envelope();
/**
 *Set alternate schema and schema instance here if necessary
**/
Call theCall = new Call(custom);
theCall.setMethodName(�GetStockQuote�);
theCall.setTargetObjectURI(�urn:somens�);
theCall.addParameter(�symbol�, �C�);

6.2 Document literal style

In a Document literal style, the XML between <SOAP-
ENV:Body> and </SOAP-ENV:Body> is supplied to the SOAP API
by the client application. If the encodingStyle is not required
(can be determined from WSDL), it is set to null. A custom
Envelope is required for Document literal style. The stub below
sends the XML stub in section 7.1 above as a Document literal.

Envelope request = new Envelope();
/**
 *Set alternate schema and schema instance here if necessary
**/
String str = �<m:GetStockQuote xmlns:m=�urn:somens�>
<symbol>C</symbol>�
request.setBody(str);

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 8 of 16

request.setEncodingStyle(null);

Call theCall = new Call(custom);

This will produce a XML payload identical to the example in 7.1
above. The difference is any response returned by the server is
expected to be in Document literal style and is not automatically
deserialized; the contents between <SOAP-ENC:Body> and
</SOAP-ENC:Body> is returned back as a string to the
application; the application is responsible to parse the XML.

6.3 RPC encoded � Primitive parameter

wSOAP automatically serializes and deserializes instances of:

• java.lang.String
• java.lang.Byte
• java.lang.Short
• java.lang.Integer
• java.lang.Long
• java.lang.Boolean
• java.util.Date
• com.wingfoot.soap.encoding.Float
• com.wingfoot.soap.encoding.Base64

CLDC does not support java.lang.Float; hence wSOAP uses
com.Wingfoot.soap.encoding.Float to represent Float and Double
data types. The Base64 class is used to send binary data as a
base64 encoded String. It also encapsulates base64 data type
returned by the server.

Instances of these objects are added as parameter using the
Call.addParameter(String name, String value) method.

6.4 RPC encoded � Primitive Array parameter

wSOAP automatically serializes and deserializes arrays of
primitive types (listed above in section 7.3). Arrays are passed
as parameters using Call.addParameter as the example below
documents:

Integer intArray[] = new Integer[] {new Integer(100),
 new Integer(200)};
Call.addParameter(�arrayParameter�, intArray);

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 9 of 16

wSOAP, returns arrays sent by the server as an array of Objects
(Object[]).

6.5 RPC encoded � Role of TypeMappingRegistry

As discussed above in 7.3 and 7.4, primitive objects are
automatically serialized and deserialized by wSOAP. User
defined java objects are a different story; they are not
automatically serialized and deserialized by wSOAP. It is
impossible for a SOAP toolkit to know how to represent a user
defined Java object.

An instance of TypeMappingRegistry gives the SOAP toolkit
enough information to convert a custom Java object to a XML
structure and vice-versa.

wSOAP provides an interface called WSerializable. Concrete
instances of this interface represent a JavaBean. Such a
concrete instance is a user defined Java object and hence is not
automatically serialized and deserialized by the toolkit. Hence a
TypeMappingRegistry is necessary.

The method mapTypes in TypeMappingRegistry is used to
provide necessary information to the toolkit to serialize and
deserialize a user defined Java object. It expects five
parameters:

1. A namespace;
2. A data type;
3. an instance of the concrete user defined object;
4. an instance of Class that contains the rules to convert the

concrete user defined object to XML;
5. an instance of Class that contains the rules to convert XML

structure to concrete user defined Java object.

The namespace and data type is usually provided by the service
(this is usually part of WSDL). The toolkit provides a class
named BeanSerializer that has the rules to convert user defined
Java object to XML and vice-versa. This is passed as the fourth
and fifth parameter. The third parameter is the object to be
converted to XML or vice-versa using the rules specified in fourth
and fifth parameter.

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 10 of 16

If a custom Java object is encountered in the payload returned
by the server that is not mapped in TypeMappingRegistry, the
toolkit has not way to determine the class to deserialize the
structure into. In such an instance, the custom class is
deserialized into an UntypedObject. The methods in
UntypedObject are now used to retrieve the data elements of the
structure.

6.6 RPC encoded � Bean Parameter

This section provides an example of passing an instance of
WSerializable as a parameter. It uses the concepts discussed
above in section 7.5.

The first task is to define a Bean. Due to the absence of full-
blown reflection in CLDC, a JavaBean has to implement an
instance of WSerializable. The stub below defines an Employee
Bean (in the interest of brevity, only important parts are shown;
the import statements are left out).

public class Employee implements WSerializable {

private Object name;
private Object age;

public int getPropertyCount() {return 2;}

public String getPropertyName(int index) {
 if (index == 0)
 return �name�;
 else if (index == 1)
 return �age�;
}

public Object getPropertyValue(int index) {
 if (index == 0)
 return name;
 else if (index == 1)
 return age;

public void setPropertyAt(Object newProperty, int index) {
 if (index == 0)
 name=newProperty;
 else if (index == 1)

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 11 of 16

 age=newProperty;
}

public void setProperty(String name, Object value) {
 if (name.equals(�name�))
 this.name=value;
 else if (name.equals(�age�))
 this.age=value;

public String getName() {
 return (String) name;
}

public Integer getAge() {
 return (Integer) age;
}

} /* class Employee */

The following stub shows how to send this Bean to the SOAP
server.

WSerializable myEmployee = new Employee();
ws.setProperty(�name�, �Tiger Woods�);
ws.setProperty(�age�, new Integer(25));

TypeMappingRegistry registry = new TypeMappingRegistry();
registry.mapTypes(�employeeNS�,
 �employeeType�,
 myEmployee,
 new BeanSerializer().getClass(),
 new BeanSerializer().getClass());

Call theCall = new Call();
theCall.setMappingRegistry(registry);
theCall.addParameter(�employee�, myEmployee);
theCall.setMethodName(�getEmployeeDetails�);
theCall.setTargetObjectURI(�urn:employeeClass�);

// theCall.invoke(Transport) is invoked here to call the server.

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 12 of 16

This produces the following SOAP payload (for brevity,
namespaces and other attributes are not shown).

<Envelope>
<Body>
<ns1:getEmployeeDetails xmlns:ns1=�urn:employeeClass�>
<employee xmlns:ns2=employeeNS xsi:type=�ns2:employeeType>
<name xsi:type=xsd:string>Tiger Woods</name>
<age xsi:type=xsd:int>25</age>
</employee>
</getEmployeeDetails>
</Body>
</Envelope>

6.7 RPC encoded � Array of Beans parameter

The toolkit can send and receive an array of Bean parameters.
To send such an array, the first task at hand is to define the
Bean and the TypeMappingRegistry. The next step is to add the
array of Beans using call.addParameter.

6.8 Untyped Objects

wSOAP tags each parameter with explicit data type. A call to
theCall.addParameter(�golfer�, �Tiger Woods) results the
following XML stub

<golfer xsi:type=�xsd:string�>Tiger Woods</golfer>

Not all SOAP servers are required to provide explicit typing
information. Some SOAP servers return the following stub:

<golfer>Tiger Woods</golfer>

In such instances, the wSOAP converts the parameter to a
String. Consider the following stub:

<age>25</age>

Although age would represent an Integer, the toolkit has no way
of knowing this; hence it will convert the age parameter as a
String and present the String to the user.

If a structure returned from a server is not typed, the structure
is deserialized into an instance of UntypedObject.
UntypedObject implements WSerializable and the parameter

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 13 of 16

names and their values within the structure are retrieved using
the methods provided in the WSerializable interface. Consider
the following XML stub

<Envelope>
<Body>
<ns1:getEmployeeDetails xmlns:ns1=�urn:employeeClass�>
<employee>
<name>Tiger Woods</name>
<age>25</age>
</employee>
</getEmployeeDetails>
</Body>
</Envelope>

Here, the element employee has a structure that has two
properties: name and age. However these elements are not
typed. The toolkit creates an instance of UntypedObject for the
employee element; the instance of UntypedObject contains two
elements. UntypedObject.getPropertyValue(int index) returns
the Tiger Woods (index 0) and 25 (index 1) as String.

Users can avoid this unpleasant behavior by mapping the
element to a data type. In this case, the element name is
mapped to a String, the element age is mapped to Integer and
the element employee is mapped to Employee (Employee is
implemented in section 7.6 above).

Elements are mapped using the mapElements method in
TypeMappingRegistry. It expects three parameters in the
following order
1. the element name
2. instance of Class that represents the class that the value of

the element is to be converted.
3. instance of Class that represents, if required, a custom Bean

Deserializer. This is required only for instances of
WSerializable.

The following code stub demonstrates the mapping of elements

Call theCall = new Call();
TypeMappingRegistry registry = new TypeMappingRegistry();
registry.mapElements(name, � �.getClass(), null);
registry.mapElements(age,
Class.forName(�java.lang.Integer�),null);
registry.mapElements(employee, myEmployee.getClass(),

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 14 of 16

 Class.forName(Employee));
theCall.setMappingRegistry(registry);

When the toolkit encounters either an employee, name or age
element, it deserializes it into String, Integer and Employee
respectively.

7. SOAP Transport

A call to a SOAP server is made using the invoke method in Call. It
expects an instance of Transport as a parameter. The toolkit
provides two implementation of Transport: HTTPTransport provides
a means for MIDP applications to send a SOAP payload over HTTP;
J2SEHTTPTransport provides PersonalJava/CDC, J2SE and J2EE
applications to send a SOAP payload over HTTP. Users can
implement alternative transport layers (SMTP as an example) by
implementing the Transport interface.

Call.invoke returns an instance of Envelope. This encapsulates the
response sent by the SOAP server. Section 9 below details how to
interrogate the response.

HTTP is a stateless protocol and hence the request-response cycle is
independent and isolated. Cookies are a popular mechanism to
maintain state across requests. The server generates a unique
identifier (a cookie) for each session. The server passes this
identifier back to the client as part of the response to the client�s
first request. The client is then responsible to pass it back to the
server on each subsequent request. The server sends the cookie
using the Set-Cookie HTTP header and the client sends the cookie
back to the server using the Cookie HTTP header.

The content of the cookie sent by the server depends on the kind of
server. For J2EE based servers, the cookie looks as follows:

 Set-Cookie: JSESSIONID=123dkdfk%8erterrvxvmKK08;path=/wingfoot

For J2EE based server, the cookie is always named JSESSIONID.
For other servers, it varies. The Set-Cookie header might consist of
many other optional name-value pairs separated by semicolon.

The useSession(boolean, String) method in HTTPTransport and
J2SEHTTPTransport allows an application to specify that it is

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 15 of 16

interested to maintain state across HTTP requests. The String
(second parameter) allows the application to specify the name of
the cookie. If null, it is assumed to be JSESSIONID.

If the boolean is true and wSOAP detects a Set-Cookie header, it
scans the string to determine if the specified key (the second
parameter in the useSession method) is present. If present, it
extracts the value of the cookie and sends it back in subsequent
requests to the server. Hence the subsequent request to the server
might look as follows:

Cookie: JSESSIONID=123dkdfk%8erterrvxvmKK08

8. Interrogating Response

The Envelope returned from Call.invoke encapsulates the response
from the SOAP server. The SOAP server can return SOAP
Header(s), a Fault indicating an exception and return parameters.
This section examines how to retrieve them from the response
Envelope.

8.1 Retrieving Headers

The getHeader method in Envelope returns a Vector of
HeaderEntry.

Vector v = response.getHeader();

Each instance of this Vector is a HeaderEntry. Methods in
HeaderEntry are used to retrieve information about the Header.

8.2 Retrieving Fault

The isFaultGenerated method in Envelope returns a boolean to
indicate if a Fault element is present in the SOAP response. If
the Fault element is present, it is retrieved using getFault
method. The code fragment to retrieve the Fault from the
response generated in Section 7 is:

if (response.isFaultGenerated) {
 Fault fault = response.getFault();

Wingfoot SOAP 1.06
User Guide

__

© Wingfoot Software (www.wingfoot.com). All rights reserved. Page 16 of 16

}

8.3 Retrieving Parameters

Envelope contains methods to retrieve parameters. For RPC
style request (which returns a RPC style response), the following
methods used are getParameterCount, getParameterName and
getParameter.

For Document style request (which returns a Document style
response) getBody returns the contents between <Body> and
</Body> elements as a String.

9. Resources

Wingfoot SOAP maintains a moderated mailing list to discuss all
aspects of its products including technical how to and suggestions
for future enhancements. You can find additional information about
joining the newsgroup at http://www.wingfoot.com/mailinglist.jsp.

