
ANOTHER TAKE ON
INTRODUCING JINI AND
JAVASPACES

Brian Murphy
Sun Microsystems

THE SERVICE MODEL AND THE SPACE
MODEL

2

Different Distributed Technologies

• Traditional remote procedure call (RPC)

• Common Object Request Broker Architecture
(CORBA)

• Java RMI (Java's RPC mechanism)

• Jini

• Enterprise Java Beans (EJB's)

• Servlets

• Web services

3

Common To All Distributed Systems
• Separate parties communicating across a network

• Mechanism for advertising/finding the system itself

• Mechanism for advertising/finding system services

• Well defined model for interaction
> Service identification
> Acquisition and reclamation of resources
> Communication
> Coordination of actions

• All embodied in a programming model

4

Abstractly – Jini Is

• A service-based architecture for building networked
systems that can adapt to change
> Erases the hardware/software distinction

• Examples of change on the network
> Network entity instances (service/client) – come and go

> Implementations – new features, bug fixes, etc.

> Communication protocols

> Topology

> Failure – entities or the network itself

5

Concretely – Jini Is

• A set of specifications

> Core specifications

> Standard, non-core specifications (net.jini)

• A programming model

• Contributed implementations

• A community

6

The Principles Of Jini Technology
• First Axiom: fundamental differences exist between

local and remote objects
> The network cannot be ignored or hidden

• Second Axiom: agreement occurs in the public
interface
> Not the implementation, not the protocol
> The 'remoteness' of an object is part of the contract

• Fundamental Theorem: agreement occurs in the
interface if and only if code is moved

7

7 Fallacies Of Distributed Computing

• The network is reliable

• Latency is zero

• Bandwidth is infinite

• The network is secure

• Network topology doesn't change

• There is only one administrator

• Transport cost is zero

Peter Deutsch

8

Communicating Across A Network

• Remote object is exported on the server side

> Produces a proxy to the remote object

• Client side obtains the proxy somehow (RMI
Registry, Jini Lookup Service, UDDI, etc.)

> Code may be downloaded in the process

• Execution of the call is initiated on the client side

• Communication between client and server occurs

• Execution of the call occurs on the server side

The Java Remote Call Model

9

The Java Remote Call Model In Action

Call foo()

foo() Return

'Server' Side'Client' Side

Serialized
Proxy

Class
Defs

Proxy

Registry

Class Server

Code

Data

Make exported
Remote object
available to
clients

10

The Jini Programming Model
• Discovery

• Lookup

• Distributed leasing

• Remote events

• Transactions (Two Phase Commit)

• Distributed shared memory (JavaSpacesTM) –
asynchronous communication

• Comprehensive network security
> Remote calls and downloaded code

11

Lookup Discovery And Join

Service and Lookup Service Interaction

Service Lookup Service

Lookup
Proxy

Discovery Request

Discovery Response

Service
Proxy

'Server' Side'Client' Side

register()

12

Service Discovery
Client and Lookup Service Interaction

Client Lookup Service

Lookup
Proxy

Service
Proxy

Discovery Request

Discovery Response

lookup()

Service
Proxy lookup() Return

'Server' Side'Client' Side

13

Client And Service Interaction
• Code downloaded into the client side
> Client only knows about service's public interface

• Execution is initiated on the client side
• Execution occurs on the server side

Client

Service
Proxy

Service

foo()

foo() Return

'Server' Side'Client' Side

14

The Jini Service Model
• Clients and services agree on service interface only

• Network protocol is an implementation detail
> Server side controls both ends of the wire

> Allows for change over time

> Bug fixes, requirement changes, new/better implementations

• Exploits code downloading (“smart” proxies)

• Allows for self-healing/self-managing systems
> Through discovery and leasing

• Security in the face of remote calls/downloaded code

15

Example: Orbitz.com

Web

Web
Services

IVR /
Messaging

 Air
Services

Presentation/State
/Persistence

 Hotel
Services

Jini Services

GDS
Wrapper

Airline 1
Wrapper

Airline 2
Wrapper

GDS

Airline 1

Airline 2

Hotel 1
Wrapper

Hotel 2
Wrapper

Hotel 1

Hotel 2

Supplier Services

EJB

16

An Additional Communication Model

• Sometimes a more decoupled communication
model is useful/required
> Further decouple client and service for less synchronicity
>Compute server

>Work flow

>Message routing

>Caching/distributed shared memory

• Move the agreement from the service interface to a
new, general-purpose interface

• JavaSpaces technology provides this other model

JAVASPACES

18

A JavaSpace Is A Jini Service

• Component of the Jini programming model

• Leverages all of the benefits of the model

> Registers with lookup services

> Exploits leasing, events, transactions

> No wire protocol specified

> Exploits code downloading

The “Killer” Jini Service

19

A Different Communication Model

• Traditional RPC model

> Point-to-point – like a telephone
> Parties need to know 'who', 'where', 'when'

• The JavaSpaces communication model

> Not point-to-point – like a bulletin board
> Parties don't necessarily need to know 'who'
> Parties don't need to know 'when' – time capsule

20

Moving The Agreement: Entry Objects
• Jini clients and services agree on service interfaces

• Parties communicating through a “space” agree on
what goes in the space
> Typed collection of objects
>marker interface – net.jini.core.entry.Entry

> public, non-transient, non-static, non-final, non-primitive fields

> public, no-arg constructor

• Because objects are stored, provides all the
benefits of working with objects
> Real polymorphic value objects
>Where code movement really “shines”

21

Simple Yet Powerful API
• Four basic operations
> write
> Places copy of a given entry into the space
>Returns a lease on how long entry will be maintained in space

> read/readIfExists
>Returns copy of an entry from the space that matches a given

template (matching semantics similar to lookup service)
> take/takeIfExists
> Like read, except it removes/returns the entry from the space

> notify
> Event registration – registers interest in futures entries that

match a given template

• Each operation can be executed under a
transaction

22

Example: Compute Server & Spaces
• Perform large, time-consuming computations
> Break work into small chunks
> Write an entry for each chunk into the space
> Wait for results to come back

• Server process loops
> Taking compute requests
> Executing each request, writing back results

Space

Client Server

Request Request

ResultResult

23

public class ComputeTask implements Entry {
 public String clientID;
 public InitialConditions data;
 public ComputeTask() { }//no-arg const
 public Entry execute() {
 ComputeTaskResult result =
 new ComputeTaskResult();
 result.clientID = clientID;
 result.value = data.doComputation();
 return result;
 }
 public long resultLeaseTime() {...}
}

ComputeTask
Client Writes To Space, Server Takes From Space

24

public class ComputeTaskResult
 implements Entry
{
 public String clientID;
 public Computation value;
 public ComputeTaskResult() { }//no-arg const
}

ComputeTaskResult
Server Writes To Space, Client Takes From Space

25

Space Based Compute Server Model

• Client writes ComputeTasks to the space

• Client blocks looking for ComputeTaskResults

• Server loops – blocks looking for ComputeTasks
> Takes ComputeTask from the space

> Executes the task's execute() method
> Writes ComputeTaskResult back to the space

• Client takes ComputeTaskResults
> Saves, aggregates, displays, etc. the results

26

The Client
int count = 0;
while (i.hasNext()) {//write all tasks
 ComputeTask task = new ComputeTask();
 task.clientID = "seti";
 task.data = (InitialConditions)i.next();
 Lease l = space.write(task, null, 3600000)
 lrm.renewFor(l, Lease.FOREVER, null);
 count++;
}//end loop

ComputeTaskResult template = new ComputeTaskResult();
template.clientID = "seti";
for (int i=0; i<count; i++) {//retrieve/save results
 ComputeTaskResult result =
 (ComputeTaskResult)space.take(template,null,
 Long.MAX_VALUE);
 handleResult(result.value);
}//end loop

27

The Server

ComputeTask template = new ComputeTask();
while (true) {
 ComputeTask task =
 (ComputeTask)space.take(template,null,
 Long.MAX_VALUE);
 Entry result = task.execute();
 if (result != null) {
 space.write(result, null,
 task.resultLeaseTime());
 }//endif
}//end loop

28

Can Scale Up

• Add more servers...
> Don't need to tell client about new servers

Client ServersSpace

29

And Up

• Add even more servers

Client ServersSpace

30

Can Tolerate Failure

• Sometimes servers crash
> No need to tell client about missing servers
> Handle planned outages too

Client ServerSpace

31

More On Scalability

• Add more clients
> No need to tell servers about new clients

Clients ServersSpace

32

Adding New Types Of Tasks
• As servers scale up, excess capacity can result
• New kinds of clients with new tasks can be added to

exploit the extra available cycles
> New types of jobs can be run without touching the servers

?
?

Clients ServersSpace

33

Agree On A Generic Task Entry

public class Task implements Entry
 public String clientID;
 public Task() {}
 public Entry execute() {
 throw new
 UnsupportedOperationException();
 }
 public long resultLeaseTime() {...}
}

• Server doesn't need to know about ComputeTask
• The power of polymorphism
> Different subclasses of Task class can be written/taken

34

Define A New Task To Be Executed
public class ComputeTask2 extends Task {

 public Parameters data;
 public ComputeTask2() {}

 public Entry execute() {
 ComputeTask2Result result =
 new ComputeTask2Result();
 result.clientID = clientID;
 result.answer = data.crunch();
 return result;
 }
 public long resultLeaseTime() {...}
}

35

public class ComputeTask extends Task {
 // public String clientID;
 public InitialConditions data;
 public ComputeTask() { }//no-arg const
 public Entry execute() {
 ComputeTaskResult result =
 new ComputeTaskResult();
 result.clientID = clientID;
 result.value = data.doComputation();
 return result;
 }
 public long resultLeaseTime() {...}
}

Small Change To ComputeTask
Extend Task And Remove clientID field

36

A Few Minor Changes To The Server

Task template = new Task();
while (true) {
 Task task =
 (Task)space.take(template,null,
 Long.MAX_VALUE);
 Entry result = task.execute();
 if (result != null) {
 space.write(result, null,
 task.resultLeaseTime());
 }//endif
}//end loop

Replace ComputeTask With Task

37

Polymorphism & Code Downloading

• Generic Task entries not written to the space, only
> ComputeTask
> ComputeTask2

• The power of polymorhism
> Clients, server, and space agree on Entry
> Clients and server agree on Task
> Only the clients know about their specific task type

• The power of code downloading
> The implementation of execute in Task never runs
> Through code downloading, client provides server with

the correct implementation of execute method

38

Uses For The Space Model

• Coordinate loosely coupled collections of processes
> Allows components to come and go
> Allows components to change

• When problem can be modeled as flow of objects
> Workflow

> Dataflow

• Large, parallelizable computations
• Don't use a “space” when you need
> A file system or a database (object or relational)

39

Summary
• Jini starts from fundamental principles
> The network cannot be ignored
> Agreement is through the interface
> Code is moved

• Provides a programming model that supports
> The service model
> The space model
> Network security

• Through JavaSpaces, supports the space model
> Decouple communication through the space
> Minimize the amount of prior knowledge necessary
> Exploits polymorphism and code downloading

ANOTHER TAKE ON
INTRODUCING JINI AND
JAVASPACES
THE SERVICE MODEL AND THE SPACE
MODEL

Brian Murphy
brian.t.murphy@sun.com

mailto:brian.t.murphy@sun.com

