ANOTHER TAKE ON
INTRODUCING JINI AND
JAVASPACES

THE SERVICE MODEL AND THE SPACE
MODEL




Different Distributed Technologies

- Traditional remote procedure call (RPC)

= Common Object Request Broker Architecture
(CORBA)

- Java RMI (Java's RPC mechanism)

 Jini

* Enterprise Java Beans (EJB's)
» Servlets

* Web services



Common To All Distributed Systems
» Separate parties communicating across a network

» Mechanism for advertising/finding the system itself

* Mechanism for advertising/finding system services

» Well defined model for interaction
> Service identification
> Acquisition and reclamation of resources
> Communication
> Coordination of actions

* All embodied in a programming model



Abstractly — Jini Is

» A service-based architecture for building networked
systems that can adapt to change

> Erases the hardware/software distinction

- Examples of change on the network
> Network entity instances (service/client) — come and go
> Implementations — new features, bug fixes, etc.
> Communication protocols
> Topology
> Failure — entities or the network itself



Concretely — Jini Is

* A set of specifications
> Core specifications

> Standard, non-core specifications (net.jini)
* A programming model
» Contributed implementations

* A community



The Principles Of Jini Technology

* First Axiom: fundamental differences exist between
local and remote objects

> The network cannot be ignored or hidden

» Second Axiom: agreement occurs in the public
interface
> Not the implementation, not the protocol
> The 'remoteness’ of an object is part of the contract

» Fundamental Theorem: agreement occurs in the
interface if and only if code is moved



7 Fallacies Of Distributed Computing

Peter Deutsch

* The network is reliable

- Latency Is zero

» Bandwidth is infinite

* The network Is secure

* Network topology doesn't change
» There Is only one administrator

» Transport cost is zero



Communicating Across A Network
The Java Remote Call Model

* Remote object is exported on the server side

> Produces a proxy to the remote object

» Client side obtains the proxy somehow (RMI
Registry, Jini Lookup Service, UDDI, etc.)

> Code may be downloaded in the process
» Execution of the call is initiated on the client side
* Communication between client and server occurs

» Execution of the call occurs on the server side



The Java Remote Call Model In Action

'Client' Side  code 'Server' Side

Call foo()

foo() Return

Make exported

C Renot e obj ect
Serialized avail able to

Proxy clients



The Jini Programming Model
» Discovery

* Lookup

» Distributed leasing

» Remote events

» Transactions (Two Phase Commit)

- Distributed shared memory (JavaSpaces™) -
asynchronous communication

= Comprehensive network security
> Remote calls and downloaded code



Lookup Discovery And Join

Service and Lookup Service Interaction

Service Lookup Service

Discovery Request

Discovery Response

_ Service

regi ster() Proxy

'Client' Side '‘Server' Side

11



Service Discovery

Client and Lookup Service Interaction

Client

Service
Proxy

'Client' Side

12

Lookup Service
Discovery Request

Discovery Response

Service
Proxy

| ookup() Return

'‘Server' Side



Client And Service Interaction

» Code downloaded into the client side
> Client only knows about service's public interface

» Execution is initiated on the client side
* Execution occurs on the server side

Client Service

foo()

oy
Proxy

foo() Return

'Client' Side '‘Server' Side

13



The Jini Service Model

» Clients and services agree on service interface only
* Network protocol is an implementation detall
> Server side controls both ends of the wire

> Allows for change over time

> Bug fixes, requirement changes, new/better implementations

» Exploits code downloading (“smart” proxies)

» Allows for self-healing/self-managing systems
> Through discovery and leasing

» Security in the face of remote calls/downloaded code



Example: Orbitz.com

N

Web :I

Web @
Services «

IVR/
Messagi

Presentation/State
/Persistence

15

Alr
Services

Hotel

Services

Jini Services

GDS
Wrapper

Airline 1
Wrapper

Airline 2
Wrapper

GDS

Airline 1

Airline 2

g Wrapper

Hotel 2

MWrapper

EJB

Hotel 1

Hotel 2




An Additional Communication Model

* Sometimes a more decoupled communication
model is useful/required

> Further decouple client and service for less synchronicity
> Compute server
> Work flow
> Message routing
> Caching/distributed shared memory

* Move the agreement from the service interface to a
new, general-purpose interface

- JavaSpaces technology provides this other model

16



JAVASPACES




A JavaSpace Is A Jini Service
The “Killer’ Jini Service

= Component of the Jini programming model

> Leverages all of the benefits of the model
> Registers with lookup services
> Exploits leasing, events, transactions

> No wire protocol specified

> Exploits code downloading



A Different Communication Model

* Traditional RPC model

> Point-to-point - like a telephone
> Parties need to know ‘who', 'where', ‘when'

» The JavaSpaces communication model

> Not point-to-point — like a bulletin board
> Parties don't necessarily need to know ‘who'
> Parties don't need to know 'when' — time capsule



Moving The Agreement: Entry Objects
- Jini clients and services agree on service interfaces

» Parties communicating through a “space” agree on
what goes in the space

> Typed collection of objects
> marker interface —net.jini.core.entry.Entry
> public, non-transient, non-static, non-final, non-primitive fields
> public, no-arg constructor
- Because objects are stored, provides all the
benefits of working with objects

> Real polymorphic value objects
> Where code movement really “shines’

20



Simple Yet Powerful API

* Four basic operations
> write
> Places copy of a given entry into the space
> Returns a lease on how long entry will be maintained in space
> read/readIfExists

> Returns copy of an entry from the space that matches a given
template (matching semantics similar to lookup service)

> take/takelfExists
> Like read, except it removes/returns the entry from the space
> notify
> Event registration — registers interest in futures entries that
match a given template
» Each operation can be executed under a
transaction

21



Example: Compute Server & Spaces

» Perform large, time-consuming computations
> Break work into small chunks
> Write an entry for each chunk into the space
> Wait for results to come back

» Server process loops
> Taking compute requests
> Executing each request, writing back results

Request Request
] | ﬂ
' : Server
Client .m W —

Space Result

22



ComputeTask

Client Writes To Space, Server Takes From Space

public class ComputeTask implements Entry {
public String clientID;
public InitialConditions data;
public ComputeTask() { }//no-arg const
public Entry execute() {
ComputeTaskResult result =
new ComputeTaskResult() ;
result.clientID = clientID;
result.value = data.doComputation() ;
return result;

}
public long resultLeaseTime() {...}

23



ComputeTaskResult

Server Writes To Space, Client Takes From Space

public class ComputeTaskResult
implements Entry

public String clientID;

public Computation value;
public ComputeTaskResult() { }//no-arg const

24



Space Based Compute Server Model

« C
« C

lent writes ComputeTasks to the space
lent blocks looking for ComputeTaskResults

- Server loops - blocks looking for ComputeTasks

>

>

>

Takes ComputeTask from the space

Executes the task's execute() method
Writes ComputeTaskResult back to the space

» Client takes ComputeTaskResults

>

Saves, aggregates, displays, etc. the results



The Client

26

int count = 0;

while (i.hasNext()) {//write all tasks
ComputeTask task = new ComputeTask() ;
task.clientID = "seti";
task.data = (InitialConditions)i.next ()
Lease 1 = space.write(task, null, 3600000)
lrm.renewFor(l, Lease.FOREVER, null);
count++;

}//end loop

ComputeTaskResult template = new ComputeTaskResult() ;
template.clientID = "seti";
for (int i=0; i<count; i++) {//retrieve/save results
ComputeTaskResult result =
(ComputeTaskResult) space. take (template,null,
Long.MAX VALUE) ;

handleResult (result.value) ;
}//end loop



The Server

ComputeTask template
while (true) {
ComputeTask task =
(ComputeTask) space. take (template,null,
Long.MAX VALUE) ;
Entry result = task.execute() ;
if (result '= null) {
space.write (result, null,

new ComputeTask() ;

task.resultlLeaseTime()) ;
}//endif
}//end loop

27



Can Scale Up

* Add more servers...
> Don't need to tell client about new servers

Client Space Servers



And Up

* Add even more servers

Client Space Servers



Can Tolerate Failure

» Sometimes servers crash
> No need to tell client about missing servers
> Handle planned outages too

Client Space Server



More On Scalability

* Add more clients
> No need to tell servers about new clients

..\A

o—

Clients Space Servers



Adding New Types Of Tasks

* As servers scale up, excess capacity can result

 New kinds of clients with new tasks can be added to
exploit the extra available cycles
> New types of jobs can be run without touching the servers

..\A

.4—%

\\\\\\v

e "9“\\\\\\\\
(s ‘ \\\

Clients




Agree On A Generic Task Entry

- Server doesn't need to know about ComputeTask

» The power of polymorphism
> Different subclasses of Task class can be written/taken

public class Task implements Entry
public String clientID;
public Task() {}
public Entry execute() ({
throw new
UnsupportedOperationException() ;

}
public long resultLeaseTime() {...}

33



Define A New Task To Be Executed

public class ComputeTask2 extends Task {

public Parameters data;
public ComputeTask2 () {}

public Entry execute() {
ComputeTask2Result result =
new ComputeTask2Result() ;
result.clientID = clientID;
result.answer = data.crunch() ;
return result;

}
public long resultLeaseTime() {...}

34



Small Change To ComputeTask

Extend Task And Remove clientID field

public class ComputeTask extends Task {

// public String clientID;

public InitialConditions data;

public ComputeTask() { }//no-arg const

public Entry execute() {
ComputeTaskResult result =

new ComputeTaskResult() ;

result.clientID = clientID;
result.value = data.doComputation() ;
return result;

}
public long resultLeaseTime() {...}

35



A Few Minor Changes To The Server
Replace ComputeTask With Task

Task template = new Task() ;
while (true) {
Task task =
(Task) space. take (template, null,
Long.MAX VALUE) ;
Entry result = task.execute();
if (result '= null) {
space.write (result, null,
task.resultlLeaseTime()) ;
}//endif
}//end loop

36



Polymorphism & Code Downloading

- (Generic Task entries not written to the space, only
> ComputeTask
> ComputeTask?2

* The power of polymorhism
> Clients, server, and space agree on Entry
> Clients and server agree on Task
> Only the clients know about their specific task type

* The power of code downloading
> The implementation of execute in Task never runs

> Through code downloading, client provides server with
the correct implementation of execute method



Uses For The Space Model

» Coordinate loosely coupled collections of processes

> Allows components to come and go
> Allows components to change

» When problem can be modeled as flow of objects

> Workflow

> Dataflow
- Large, parallelizable computations

» Don't use a "space” when you need
> Afile system or a database (object or relational)



Summary

- Jini starts from fundamental principles
> The network cannot be ignored
> Agreement is through the interface

> Code is moved

* Provides a programming model that supports
> The service model
> The space model
> Network security

» Through JavaSpaces, supports the space model
> Decouple communication through the space

> Minimize the amount of prior knowledge necessary
> Exploits polymorphism and code downloading

39



ANOTHER TAKE ON
INTRODUCING JINI AND
JAVASPACES

THE SERVICE MODEL AND THE SPACE
MODEL



mailto:brian.t.murphy@sun.com

