

1

CHAPTER 1

Overview of Jini

J

INI

IS

MIDDLEWARE

FOR

 building distributed systems in Java. It builds upon the dis-
tributed computing mechanisms of sockets and Remote Method Invocation. The
intent is to offer “network plug and work,” where new services can join a network
of other services and be immediately useful, and where clients can search for and
use these services. Jini has only been released for a little over a year as this is being
written, and it introduces novel ideas and technologies for building distributed
systems. This chapter gives a brief overview of the components of a Jini system
and the relationships between them.

Jini

Jini is the name for a distributed computing environment that can offer “network
plug and work” A device or a software service can be connected to a network and
announce its presence, and clients that wish to use such a service can then locate
it and call it to perform tasks. Jini can be used for mobile computing tasks where a
service may only be connected to a network for a short time, but it can more gen-
erally be used in any network where there is some degree of change. There are
many scenarios where this would be useful:

• A new printer can be connected to the network and announce its presence
and capabilities. A client can then use this printer without having to be spe-
cially configured to do so.

• A digital camera can be connected to the network and present a user inter-
face that will not only allow pictures to be taken, but it can also become
aware of any printers so that the pictures can be printed.

• A configuration file that is copied and modified on individual machines can
be made into a network service from a single machine, reducing mainte-
nance costs.

• New capabilities extending existing ones can be added to a running system
without disrupting existing services, or without any need to reconfigure clients.

Chapter 1

2

• Services can announce changes of state, such as when a printer runs out of
paper. Listeners, typically of an administrative nature, can watch for these
changes and flag them for attention.

Jini is not an acronym for anything, and it does not have a particular meaning.
(though it gained a post hoc interpretation of “Jini Is Not Initials.”) A Jini system or
federation is a collection of clients and services all communicating by the Jini pro-
tocols. Often this will consist of applications written in Java, communicating using
the Java Remote Method Invocation mechanism. Although Jini is written in pure
Java, neither clients nor services are constrained to be in pure Java. They may
include native code methods, act as wrappers around non-Java objects, or even be
written in some other language altogether. Jini supplies a “middleware” layer to
link services and clients from a variety of sources.

Components

Jini is just one of a large number of distributed systems architectures, including
industry-pervasive systems, such as CORBA and DCOM. It is distinguished by
being based on Java and deriving many features purely from this Java basis. One of
the later chapters in this book discusses bridging between Jini and CORBA, as an
example of linking these different distributed architectures.

There are other Java frameworks from Sun that might appear to overlap Jini,
such as Enterprise Java Beans (EJBs). EJBs make it easier to build business logic
servers, whereas Jini would be better used to distribute those services in a “net-
work plug and play” manner.

You should be aware that Jini is only one competitor in a non-empty market.
The success or failure of Jini will result partly from the politics of the market, but
also (hopefully!) the technical capabilities of Jini, and this book will deal with
the technical issues involved in using Jini.

In a running Jini system, there are three main players. There is a service, such
as a printer, a toaster, a marriage agency, etc. There is a client which would like to
make use of a service. Third, there is a lookup service (service locator), which acts
as a broker/trader/locator between services and clients. There is one additional
component, and that is a network connecting all three of these. This network will
generally be running TCP/IP. (The Jini specification is fairly independent of net-
work protocol, but the only current implementation is on TCP/IP.) See Figure 1-1.

Code will be moved around between these three pieces, and this is done by
marshalling the objects. This involves serializing the objects in such a way that
they can be moved around the network, stored in this “freeze-dried” form, and
later reconstituted by using instance data and included information about the
class files. Movement around the network is done using Java’s socket support to
send and receive objects.

Overview of Jini

33

In addition, objects in one JVM (Java Virtual Machine) may need to invoke
methods on an object in another JVM. Often this will be done using RMI (Remote
Method Invocation), although the Jini specification does not require this and there
are many other possibilities.

Service Registration

A service is a logical concept and can be anything, such as a blender, a chat ser-
vice, a disk. A service is usually defined by a Java interface, and this interface is
used to advertise the service. This interface is also used to locate a service. Each
service can be implemented in many ways, by many different vendors. For exam-
ple, there may be Joe’s dating service, Mary’s dating service, and many others.
What makes them the same service is that they implement the same interface;
what distinguishes one from another is that each different implementation uses a
different set of objects (or maybe just one object) belonging to different classes.

A service is created by a service provider, and a service provider plays a num-
ber of roles:

• It creates the objects that implement the service.

• It registers one of these—the service object—with lookup services. The ser-
vice object is the publicly visible part of the service, and it will be
downloaded to clients.

• It stays alive in a server role, performing various tasks such as keeping the
service “alive.”

service
lookup

serviceclient

TCP/IP

Figure 1-1. Components of a Jini system

Chapter 1

4

In order for the service provider to register the service object with a lookup
service, the server must first find the lookup service. This can be done in two ways.
If the location of the lookup service is known, then the service provider can use
unicast TCP to connect directly to it. If the location is not known, the service pro-
vider will make UDP multicast requests, and lookup services may respond to these
requests. Lookup services will be listening on port 4160 for both the unicast and
multicast requests. (4160 is the decimal representation of hexadecimal (CAFE -
BABE). Oh well, these numbers have to come from somewhere.) This process is
illustrated in Figure 1-2.

When the lookup service gets a request on this port, it sends an object back to
the server, as shown in Figure 1-3. This object, known as a registrar, acts as a proxy
to the lookup service and runs in the service’s JVM. Any requests that the service
provider needs to make of the lookup service are made through this proxy regis-
trar. Any suitable protocol may be used to do this, but in practice the
implementations of the lookup service that you get (such as those from Sun) will
probably use RMI.

service
lookup service

provider

service
object

Figure 1-2. Querying for a service locator

lookup
service

registrar

service

service
provider

object

Figure 1-3. Registrar returned

Overview of Jini

55

What the service provider does with the registrar is register the service with
the lookup service. This involves taking a copy of the service object and storing it
on the lookup service, as shown in Figure 1-4.

Client Lookup

The client on the other hand, is trying to get a copy of the service object into its
own JVM. It goes through the same mechanism to get a registrar from the lookup
service, as shown in Figures 1-5 and 1-6.

Figure 1-4. Service uploaded

lookup
service

service registrar

service
provider

service
object

object

service
lookup

service
object

client

Figure 1-5. Querying for a service locator

Chapter 1

6

However, the client does something different with the registrar. It requests that
the service object be copied across to it. See Figures 1-7 and 1-8.

At this point the original service object is running on its host, there is a copy of
the service object stored in the lookup service, and there is a copy of the service
object running in the client’s JVM. The client can make requests of the service
object running in its own JVM.

Figure 1-6. Registrar returned

client

registrar

service
lookup

service
object

Figure 1-7. Asking for a service

client

registrar

service
lookup

service
object

Figure 1-8. Service object returned

client

registrar

service
lookup

service

service
object

object

Overview of Jini

77

Proxies

Some services can be implemented by a single object, the service object. How does
this work if the service is actually a toaster, a printer, or is controlling some piece of
hardware? By the time the service object runs in the client’s JVM, it may be a long
way away from its hardware. It cannot control this remote piece of hardware all by
itself. In this situation, the implementation of the service must be made up of at
least two objects, one running in the client and another distinct one running in the
service provider.

The service object is really a proxy, which will communicate with other objects
in the service provider, probably using RMI. The proxy is the part of the service
that is visible to clients, but its function will be to pass method calls back to the
rest of the objects that form the total implementation of the service. There isn’t a
standard nomenclature for these server-side implementation objects. I shall refer
to them in this book as the

service backend

 objects.
The motivation for discussing proxies is the situation in which a service object

needs to control a remote piece of hardware that is not directly accessible to the
service object. However, this need not involve hardware—there could be files
accessible to the service provider that are not available to objects running in cli-
ents. There could be applications local to the service provider that are useful in
implementing the service. Or it could simply be easier to program the service in
ways that involve objects on the service provider, with the service object being just
a proxy. The majority of service implementations end up with the service object
being just a proxy to service backend objects, and it is quite common to see the
service object being referred to as a service proxy. It is sometimes referred to as the
service proxy even if the implementation doesn’t use a proxy at all!

The proxy needs to communicate with other objects in the service provider,
but this begins to look like a chicken-and-egg situation: how does the proxy find
the service backend objects in its service provider? Use a Jini lookup? No, when the
proxy is created it is “primed” with its own service provider’s location so that when
it is run it can find its own “home,” as illustrated in Figure 1-9.

How is the proxy primed? This isn’t specified by Jini, and it can be done in
many ways. For example, an RMI naming service can be used, such as

rmiregistry

,
where the proxy is given the name of the service. This isn’t very common, as RMI
proxies can be passed more directly as returned objects from method calls, and
these can refer to ordinary RMI server objects or to RMI activable objects. Another
option is that the proxy can be implemented without any direct use of RMI and
can then use an RMI-exported service or some other protocol altogether, such as
FTP, HTTP, or a home-grown protocol. These various possibilities are all illustrated
in later chapters.

Chapter 1

8

Client Structure

Now that we’ve looked at how the various pieces interact, we’ll take a look at what
is going on inside clients and services. Internally a client will look like this:

The “prepare for discovery” step involves setting up a list of service locators
that will be looked for. The “discover a lookup service” step is where the unicast or
multicast search for lookup services is performed. “Prepare a template for lookup
search” involves creating a description of the service so that it can be found. “Look
up a service” is when a service locator is queried to see if it has such a service.
Once a suitable service has been found, then “call the service” will invoke methods
on this service.

PSEUDOCODE WHERE DISCUSSED

Prepare for discovery Chapter 3, “Discovering a Lookup Service”

Discover a lookup service Chapter 3, “Discovering a Lookup Service”

Prepare a template for

lookup search

Chapter 4, “Entry Objects,” and

Chapter 6, “Client Search”

Look up a service Chapter 6, “Client Search”

Call the service Chapter 8, “A Simple Example”

Figure 1-9. A proxy service

client

registrar

locator
service

proxy
service

registrar

service
proxy

service

service

implementation

provider

Overview of Jini

99

The following code has been simplified from the real case by omitting various
checks on exceptions and other conditions. It attempts to find a

FileClassifier

service, and then calls the

getMIMEType()

method on this service. The full version of
the code is given in Chapter 8. I won’t give detailed explanations right now—this is
just to show how the preceding schema translates into actual code.

public class TestUnicastFileClassifier {

 public static void main(String argv[]) {

 new TestUnicastFileClassifier();

 }

 public TestUnicastFileClassifier() {

 LookupLocator lookup = null;

 ServiceRegistrar registrar = null;

 FileClassifier classifier = null;

 // Prepare for discovery

 lookup = new LookupLocator("jini://www.all_about_files.com");

 // Discover a lookup service

 // This uses the synchronous unicast protocol

 registrar = lookup.getRegistrar();

 // Prepare a template for lookup search

 Class[] classes = new Class[] {FileClassifier.class};

 ServiceTemplate template = new ServiceTemplate(null, classes, null);

 // Lookup a service

 classifier = (FileClassifier) registrar.lookup(template);

 // Call the service

 MIMEType type;

 type = classifier.getMIMEType("file1.txt");

 System.out.println("Type is " + type.toString());

 }

} // TestUnicastFileClassifier

Chapter 1

10

Server Structure

A server application will internally look like this:

Again, the following code has been simplified by omitting various checks on
exceptions and other conditions. It exports an implementation of a file classifier
service as a

FileClassifierImpl

 object. The full version of the code is given in
Chapter 8. I won’t give detailed explanations right now—this is just to show how
the preceding schema translates into actual code.

public class FileClassifierServer implements DiscoveryListener {

 protected LeaseRenewalManager leaseManager = new LeaseRenewalManager();

 public static void main(String argv[]) {

 new FileClassifierServer();

 // keep server running (almost) forever to

 // - allow time for locator discovery and

 // - keep re-registering the lease

 Thread.currentThread().sleep(Lease.FOREVER);

 }

 public FileClassifierServer() {

 LookupDiscovery discover = null;

 // Prepare for discovery - empty here

 // Discover a lookup service

 // This uses the asynchronous multicast protocol,

 // which calls back into the discovered() method

 discover = new LookupDiscovery(LookupDiscovery.ALL_GROUPS);

PSEUDOCODE WHERE DISCUSSED

Prepare for discovery Chapter 3, “Discovering a Lookup Service”

Discover a lookup service Chapter 3, “Discovering a Lookup Service”

Create information about a service Chapter 4, “Entry Objects”

Export a service Chapter 5, “Service Registration”

Renew leasing periodically Chapter 7, “Leasing”

Overview of Jini

1111

 discover.addDiscoveryListener(this);

 }

 public void discovered(DiscoveryEvent evt) {

 ServiceRegistrar registrar = evt.getRegistrars()[0];

 // At this point we have discovered a lookup service

 // Create information about a service

 ServiceItem item = new ServiceItem(null,

 new FileClassifierImpl(),

 null);

 // Export a service

 ServiceRegistration reg = registrar.register(item, Lease.FOREVER);

 // Renew leasing

 leaseManager.renewUntil(reg.getLease(), Lease.FOREVER, this);

 }

} // FileClassifierServer

Partitioning an Application

Jini uses a

service

view of applications, in contrast to the simple object-oriented
view of an application. Of course, a Jini “application” will be made up of objects,
but these will be distributed as individual services, which will communicate via
their proxy objects. The service view will show these services as they exist on their
servers, without any detail about their implementation by objects. This leads to a
different way of partitioning an application, not into its component objects, but
into its component services. The Jini specification claims that in many monolithic
applications there are one or more services waiting to be released, and that mak-
ing them into services increases their possible uses.

To support this claim, we can look at a smart file viewer application. This
application will be given a filename, and based on the structure of the name will
decide what type of file it is (

.rtf

 is Rich Text Format,

.gif

 is a GIF file, and so on).
Using this classification, it will then call up an appropriate viewer for that type of
file, such as an image viewer or document viewer. A UML class diagram for this
application, using a standard object-oriented approach, might look like Figure 1-10.

There are a number of services that could be extracted from this smart file
viewer application. Classifying a file into types is one service that can be used in
lots of different situations, not just when you want to view file contents. Each of
the different viewer classes is another service.

Jan Newmarch
Can these two lines be indented to startunderneath the "null" of the previous lines/

Jan Newmarch

Chapter 1

12

However, this is not to say that every class should become a service! That
would be overkill. What makes these qualify as services is that they all

• have a simple interface

• are useful in more than one situation

• can be replaced or varied

They are reusable, and this is what makes them good candidates for services. They
do not require high-bandwidth communication, and they are not completely trivial.

If the application is reorganized as a collection of services, then it could look
like Figure 1-11.

Each service may be running on a different machine on the network (or on the
same machine—it doesn’t matter). Each exports a proxy to whatever service loca-
tors are running. The

SmartViewer

 application finds and downloads whatever
services it needs, as it needs them.

Figure 1-10. UML diagram for an application

SmartViewer

getMIMEType()

FileClassifier

display()

DisplayService
JPanel

ImageDisplay

display() display()

TextDisplay

JTextAreaJLabel

Overview of Jini

1313

Support Services

The three components of a Jini system are clients, services, and service locators,
each of which can run anywhere on the network. These will be implemented using
Java code running in Java Virtual Machines (JVMs). The implementation may be in
pure Java but it could make use of native code using JNI (Java Native Interface) or
make external calls to other applications. Often, each of these applications will run
in its own JVM on its own computer, though they could run on the same machine
or even share the same JVM. When they run, they will need access to Java class
files, just like any other Java application. Each component will use the

CLASSPATH

environment variable or use the

CLASSPATH

 option with the runtime to locate the
classes it needs to run.

However, Jini also relies heavily on the ability to move objects across the net-
work, from one JVM to another. In order to do this, particular implementations
must make use of support services such as RMI daemons and HTTP (or other)
servers. The particular support services required depend on implementation
details, and so may vary from one Jini component to another.

HTTP Server

A Java object running as a service has a proxy component exported to the service
locators and then onto a client. The proxy passes through a service locator’s JVM
in “passive” form and is activated (brought to life) in the client’s JVM. Essentially, a

Figure 1-11. Application as a collection of services

FileClassifierServiceSmartViewer

FileClassifierProxy

ImageDisplayProxy

ImageDisplayProxy

TextDisplayProxy

FileClassifierProxy

TextDisplayService

ImageDisplayServiceuser

lookup service

service

service

service

Jan Newmarch
Can this CLASSPATH be thesame font as the next one

Chapter 1

14

snapshot of the object’s state is taken using serialization, and this snapshot is
moved around.

An object consists of both code and data, and it cannot be reconstituted from
just its data—the code is also required. So, where is the code? This is where a dis-
tributed Jini application differs from a standalone application or a client-server
application: the code is not likely to be on the client side. If it was required to be on
the client side, then Jini would lose almost all of its flexibility because it wouldn’t
be possible to just add new devices and their code to a network. The class defini-
tions are most likely on the server, or perhaps on the vendor’s home Web site.

This means that class definitions for service proxy objects must also be down-
loaded, usually from where the service came from. This could be done using a
variety of methods, but most commonly an HTTP or FTP protocol is used. The ser-
vice specifies the protocol and also the location of the class files using the

java.rmi.server.codebase

 property. The object’s serialized data contains this code-
base, which is used by the client to access the class files.

If the codebase specifies an HTTP URL, then there must be an HTTP server
running at that URL and the class files must be on this server. This often means
that there is one HTTP server per service, but this isn’t required—a set of services
could make their class files available from a single HTTP server, and this server
could be running on a different machine than the services. This gives two sets of
class files: the set needed to run the service (specified by

CLASSPATH

) and the set
needed to reconstitute objects at the client (specified by the

codebase

 property).
For example, the

mahalo

 service supplied by Sun as a transaction manager uses the
class files in

mahalo.jar

 to run the service and the class files in

mahalo-dl.jar

 to
reconstitute the transaction manager proxy at the client. These files and support
services are shown in Figure 1-12.

Figure 1-12. Support services for mahalo

mahalo

server
http

client

mahalo proxy
class files

mahalo proxy
instance data

mahalo-dl.jar

mahalo.jar

Overview of Jini

1515

To run

mahalo

, the

CLASSPATH

 must include

mahalo.jar

, and to reconstitute its
proxy on a client, the

codebase

 property must be set to

mahalo-dl.jar

.

RMI Daemon

As mentioned earlier, a proxy service gets exported to the client, and in most cases
it will need to communicate with its host service. There are many ways to do this,
which are discussed in full in later chapters. One mechanism is the Java Remote
Method Invocation (RMI) system. This comes in two flavors in JDK 1.2: the original

UnicastRemoteObject

 and the newer

Activatable

 class. Whereas

UnicastRemoteObject

requires a process to remain alive and running,

Activatable

 objects can be stored
in a passive state and the Activation system will create a new JVM if needed when a
method call is made on the object. While passive, an activatable object will need to
be stored on some server, and this server must be one that can accept method calls
and activate the objects. This server is called an

RMI daemon

 and Sun supplies
such a server, called

rmid

.
This is really obscure and deep stuff if you are new to RMI or even to the

changes it is going through. So why is it needed? Sun supplies a service locator
called

reggie

, and this is really just another Jini service that plays a special role. It
exports proxy objects—the

registrar

 objects. What makes this complex is that

reg-

gie

 uses

Activatable

 in its implementation. In order to run

reggie

, you first have to
start an

rmid

 server on the same machine, and then

reggie

 will register with it.
Running

rmid

 has beneficial side-effects. It maintains log files of its own state,
which includes the activable objects it is storing. So

reggie

 can crash or terminate,
and

rmid

 will restore it as needed. Indeed, even

rmid can crash or be terminated,
and it will use its log files to restore state so that it can still accept calls for reggie
objects.

Summary

A Jini system is made up of three parts:

• Service

• Client

• Service locator

Chapter 1

16

Code is moved between these parts of applications. A registrar acts as a proxy
to the lookup locator and runs on both the client and service.

A service and a client both possess a certain structure, which is detailed in the
following chapters. Services may require support from other non-Jini servers, such
as an HTTP server.

