OOSD2000lect12.doc

the persistence layer

(chapter 38)

Classic three tier architecture

[image: image1.wmf]Record sales

Presentation

Application

Logic

Authorize

payments

Storage

Database

Object Store

Enter Item

End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

Multitiered architecture ((3 tiers)
Isolate application logic into separate components which can be reused in other system

Distribute tiers on different machines

Allocate developers to specific tiers

Database Brokers

VE files

Catalog broker

version 1: dematerialize and materialize

version 2: class STORABLE

Client (how to call)

Putting it together

Next lecture

Broker server - the Façade Pattern

The Singleton Pattern

Putting it all together

database brokers

Who should be responsible for storing and retrieving objects such as Catalog?

The class itself could (by expert), but 2 problems

tightly couples the class to a particular way of doing the storage,

introduces a whole new set of responsibilities (features) which have little to do with the other responsibilities of the class.

The first of these violates low coupling and so makes maintenance and reuse harder.

The second violates high cohesion and again makes maintenance and reuse more difficult.

The solution is to construct a class which has the responsibility for storing and retrieving objects.

This is the Database Broker pattern.

There is a database broker class for each persistent object class.

The file class in visual eiffel

The class FILE in VE kernel views a file as persistent sequential stream of characters (bytes).

Creation routines:

make

make_create_read_write

make_open_append

make_open_read

make_open_read_write

make_open_write

make_open_stdin

make_open_stdout

make_open_stderr

Writing "fields"

put_boolean, put_character, put_integer, put_real, put_double, put_string

Reading "fields"

read_character, read_integer, read_real, read_double, read_line

Strings in Eiffel

In C, C++ strings are sequences of characters terminated by the null character.

In Java, the length of a string is stored in the first two bytes.

In Pascal, the length of a string is stored in the first byte (hence <= 255 chars)

In Eiffel, the length of the string is not part of the string. This means that strings have to be treated with care when reading and writing.
Need to know when a string is finished, and have to avoid confusing a number with a string.

Pattern of writing and reading fields is

STRING

file.put_string (s)

file.put_string ("%N")

file.read_line

s := file.last_string

INTEGER, REAL, DOUBLE

file.put_x (x)

file.put_string ("%N")

file.read_x

x := file.last_x

file.read_line ("%N")

materialization and dematerialization

Materialization is the act of transforming non-object representation of data (records) from a persistent store into objects. Dematerialization is the opposite activity.

Materialization is used when retrieving objects. Dematerialization is used when storing objects.
catalog_broker

All the Catalog Broker will do is to store and retrieve a Product Catalog (from Post). The catalog will be a hash table whose key is the UPC (String) and whose item is a product specification (Spec).
The SPEC class is

class SPEC

--

creation

make

--

feature { ANY } -- Queries

upc, description : STRING

price : INTEGER

--

feature { ANY } -- Operations

make (u, d : STRING; p : INTEGER) is

do

upc := u

description := d

price := p

end -- make

end -- class SPEC

catalog_broker version 1
using materialization and dematerialization

In this version we will dematerialize as we store (commit) and materialize as we retrieve.

The main methods of CatalogBroker are commit which saves the catalogue to a file and retrieve which reads it from the file.

commit

Each field of each specification must be written separately. So there will need to be a loop.

commit is

local

file_out : FILE

cs : CURSOR_

spec : SPEC

do

!!file_out.make_open_write ("cat.txt")

cs := cat.cursor

from

cs.first

until

cs.is_finished

loop

spec := cat.item_at (cs)

file_out.put_string(spec.upc + "%N")

file_out.put_string(spec.description+"%N")

file_out.put_integer(spec.price)

file_out.put_string("%N")

cs.forth

end

file_out.close

end -- commit

retrieve

retrieve is the complement of commit. Each field of each specification has to be read. From these the specification object is created, and this is then inserted into a (new) hash table. This process is called materialization.

retrieve: CATALOG is

local

file_in : FILE

spec : SPEC

upc, description : STRING

price : INTEGER

do

!!Result.make

!!file_in.make_open_read ("cat.txt")

from

file_in.read_line

until

file_in.end_of_file

loop

upc := clone(file_in.last_string)

file_in.read_line

description := clone(file_in.last_string)

file_in.read_integer

price := file_in.last_integer

file_in.read_line

!!spec.make (upc, description, price)

Result.put (spec, spec.upc)

file_in.read_line

end

file_in.close

end -- retrieve

The whole class is

class CATALOG_BROKER

feature { ANY } -- Operations

commit is

-- as above

end -- commit

retrieve : CATALOG is

-- as above

end -- retrieve

--

end -- class CATALOG_BROKER

catalog_broker version 2
using STORABLE

Eiffel supplies a class STORABLE which supports writing and reading objects
. This removes the housekeeping of materialization and dematerialization.

Both the class which is being stored (CATALOG) and the class which is doing the retrieving (CATALOG_BROKER) must inherit from STORABLE.

class CATALOG_BROKER

inherit

STORABLE

end

--

feature { ANY } -- Operations

commit is

local

f : FILE

do

!!f.make_open_write ("cat.obj")

catalog.general_store (f)

f.close

end -- commit

--

feature { ANY } -- Queries

retrieve : CATALOG is

local

f : FILE

do

!!f.make_open_read ("cat.obj")

Result ?= retrieved (f)

f.close

end -- retrieve

end -- class CATALOG_BROKER

in the client

Persistent objects such as a catalog will typically be used by a use case controller such as NEW_PRODUCT_CONTROLLER. It will simply create a broker object and ask it for the catalog.

class NEW_PRODUCT_CONTROLLER

-- this version does not use a broker server

creation

make

feature -- creation

make is

local

cat_broker : CATALOG_BROKER

do

!!cat_broker

cat := cat_broker.retrieve

end -- make

feature -- system events

-- routines for system events

-- they will use services of catalog such as

-- cat.add_product (product, upc)

-- if they change its state they will commit

-- cat_broker.commit
feature {NONE}

cat : CATALOG

end -- class NEW_PRODUCT_CONTROLLER

summary (no broker server)

1. Write a brokers for each persistent object class.

2. Each use case controller will ask the broker for the objects it requires. Each use case controller will (probably) create a broker for its own use.

3. The presentation layer will not communicate directly with the persistence layer. If it needs a domain object, it asks the controller for it. The controller then asks the broker server.

brokers - retrieving objects via a key

The Catalog Broker above retrieved a single catalog object - the only one in the system. It is more typical to retrieve on of several objects, via a key or object identifier (OID).

The key could be internal to the system, such as UPC or TourId, or it could be the Universally Unique Identifier which assigns a unique 16 byte identifier to any object at any time and place.

Brokers typically support methods

objectWith(anOID) : Object

inCache(anOID) : Object

materializeWith(anOID) : Object

Random access storage and retrieval via a key is provided in the class ENVIRONMENT (at least in ISE Eiffel).

persistence issues

Caches: Materialized objects are put into a local cache to improve performance. Each broker maintains its own cache.

Transactions: Objects can be materialized from a database or new ones created. They may be unchanged, modified or deleted. To help with the housekeeping (don't need to save unmodified objects, don't need to save a new object if it is subsequently deleted), it can be worth while having 6 caches:

new clean: new objects, unmodified

old clean: materialized objects, unmodified

new dirty: new objects, modified

old dirty: materialized objects, modified

new delete: new objects, deleted

old delete: materialized objects, deleted

Smart references: Lazy or on-demand materialization. Defer materialization until it is necessary. Can be implemented using the Proxy Pattern. A proxy is an object that is used in place of the real object until it is materialized.

Java aside : 1

Here is catalog broker version 1 implemented in Java:

import java.io.*;

import java.util.*;

/** stores, retrieves Catalog (hash table of Specs)

 */

public class CatBroker {

public CatBroker() {

}

public Hashtable getCat() throws IOException {

if (cat == null) retrieve();

return cat;

} // getCat

public void commit() throws IOException {

public void commit() throws IOException {

Spec spec;

FileOutputStream file_out;

DataOutputStream data_out;

file_out = new FileOutputStream("cat.txt");

data_out = new DataOutputStream(file_out);

for (Enumeration elts = cat.elements();

elts.hasMoreElements();) {

spec = (Spec) elts.nextElement();

data_out.writeUTF(spec.getUpc());

data_out.writeUTF(spec.getDescript());

data_out.writeInt(spec.getPrice());

}

data_out.flush();

data_out.close();

} // commit

private void retrieveCat() throws IOException {

FileInputStream file_in;

DataInputStream data_in;

String upc, descript;

Spec spec;

int price;

try {

file_in = new FileInputStream("cat.txt");

data_in = new DataInputStream(file_in);

cat = new Hashtable();

boolean moreData = true;

while (moreData) {

try {

upc = data_in.readUTF();

descript = data_in.readUTF();

price = data_in.readInt();

spec = new Spec(upc, descript, price);

cat.put(upc, spec);

}

catch (EOFException e){

moreData = false;

}

}

data_in.close();

}

catch (FileNotFoundException e) {

cat = new Hashtable();

}

} // retrieveCat

private
Hashtable cat;

} // class CatBroker

Java aside : 2

Here is catalog broker version 2 implemented in Java. It uses

import java.io.*;

import java.util.*;

/** stores, retrieves Catalog (hash table of Specs)

 */

public class CatBroker {

public CatBroker() {

}

public Hashtable getCat() throws IOException {

if (cat == null) retrieveCat();

return cat;

} // getCat

public void commit() throws IOException {

FileOutputStream file_out;

ObjectOutputStream data_out;

file_out = new FileOutputStream("catobj.txt");

data_out = new ObjectOutputStream(file_out);

data_out.writeObject(cat);

data_out.flush();

data_out.close();

} // commit

private void retrieve() throws IOException {

FileInputStream file_in;

ObjectInputStream data_in;

try {

file_in = new FileInputStream("catobj.txt");

data_in = new ObjectInputStream(file_in);

try {

cat = (Hashtable) data_in.readObject();

data_in.close();

}

catch (EOFException e) {

System.out.println ("EOF");}

catch (ClassNotFoundException e) {

System.out.println ("Class not found");}

}

catch (FileNotFoundException e) {

cat = new Hashtable();

}

} // retrieve

private
Hashtable cat;

} // class CatBroker

If this approach is being adopted, the class Spec has to supply a methods writeObject and readObject. They can be inherited from Serializable.

public class Spec implements Serializable{

� 	Java supplies classes ObjectOutputStream and ObjectInputStream and Serializable which provide equivalent services.

— 12 —

