OOSD2000lect11.doc

visibility

(chapter 20)

If a message is to be sent from A to B, B must be visible to A.

Attribute visibility

B is an attribute of A

permanent

most common

example: Post has a reference to ProductCatalog

Parameter visibility

B is a parameter of a method of A

temporary

next most common

[image: image1.wmf]1: [new sale] create()

3: makeLineItem(spec, qty)

enterItem(upc, qty)

2: spec := specification(upc)

3.1: create(spec, qty)

:POST

:Sale

:Product

Catalog

sl : SalesLineItem

// initializing method (e.g., a Java constructor)

SalesLineItem--SalesLineItem(ProductSpecification spec, int qty)

{

...

productSpec = spec; // parameter to attribute visibility

...

}

Local visibility

B is a local variable of a method of A

temporary

3rd most common

a) create a new local instance of B and assign to a local variable of a method of A

b) assign a return object of a query method to a local variable of a method of A

Global visibility

B is globally visible to A (somehow)

permanent

least common

example: Make a domain façade widely visible in an application.

a) can be achieved by making B a global variable.
Generally regarded as poor design – makes localisation of change difficult.
Permitted easily in Fortran, C, C++. Not possible in Java. Not possible in Eiffel.

b) In OO, global visibility can be achieved by the singleton Pattern (see Design Patterns, ch 35)

design class diagrams

(chapter 21)

	
	
	code
	
	

	
	
	
[image: image2.wmf]
	
	

	
	
	design class diagrams
	
	

	
	
[image: image3.wmf]
	
	
[image: image4.wmf]
	

	conceptual model
	
	
	
	collaboration diagrams

Information in design class diagrams

classes, associations, attributes

interfaces

methods

attribute type

navigability

dependencies

1. Identify classes

From conceptual model

Use collaboration diagrams to filter

2. Add attributes

From conceptual model

3. Add method names

From collaboration diagrams

Notes about names:

a) UML notation for a new object is create()
C++, Java have constructor which must be name of class

Eiffel (by convention) uses make
b) set and get
The C++ / Java convention is to make all data members private and use setX() and getX() methods.

c) Multiobjects

UML uses
[image: image5.wmf] to show multiobjects.

So the notation

[image: image6.wmf]spec := specification(upc)

2.1: spec := find(upc)

:Product

Catalog

:Product

Specification

The

find

message is to the

container object, not to a

ProductSpecification.

is a call to a collection of ProductSpecification objects. There is no find() in ProductSpecification.

Collections are implemented by class libraries (Hashtable, PriorityQueue, LinkedList, …). They will have a find() method, or equivalent.

Further issue. You should consider whether a library class is sufficient, or whether you should create, a class such as Persons, of which contains a collection attribute such as Hashtable. If you start to need extra features which apply to the collection as a whole, consider a new class.

4. Type information?

types of attribute

types of parameters

types of return values

Include if using a CASE tool with automatic code generation

Probably don't include if human reader – clutters up the diagram too much

5. Associations and navigability

Associations in the conceptual model are directionless.

	Post
	
[image: image7.wmf]
	Sale

From Collaboration diagram, Post needs to send a message to Sale

	Post
	
[image: image8.wmf]
	Sale

(
Post has an attribute sale,

Sale does not have an attribute post.
Navigation (visibility (generally attribute visibility)

Conceptual model shows all associations
Design class diagrams shows only associations identified in collaboration diagrams

[image: image9.wmf]SalesLineItem

quantity : Integer

subtotal()

ProductCatalog

specification()

ProductSpecification

description : Text

price : Quantity

upc : UPC

Store

address : Address

name : Text

addSale()

Payment

amount : Quantity

Contains

1..

*

Contains

1..

*

POST

endSale()

enterItem()

makePayment()

Sale

date : Date

isComplete : Boolean

time : Time

becomeComplete()

makeLineItem()

makePayment()

total()

Captures

Houses

Uses

Looks-in

Paid-by

Describes

1

1

1

1

1

1

1

1

1

1

1

1

1

*

Logs-completed

4

*

1

6. Dependency Relationships

Used for non-attribute visibility

[image: image10.wmf]SalesLineItem

quantity : Integer

subtotal()

ProductCatalog

specification()

ProductSpecification

description : Text

price : Quantity

upc : UPC

Store

address : Address

name : Text

addSale()

Payment

amount : Quantity

Contains

1..

*

Contains

1..

*

POST

endSale()

enterItem()

makePayment()

Sale

date : Date

isComplete : Boolean

time : Time

becomeComplete()

makeLineItem()

makePayment()

total()

Captures

Houses

Uses

Looks-in

Paid-by

Describes

1

1

1

1

1

1

1

1

1

1

1

1

1

*

A dependency of POST knowing about

ProductSpecification.

Recommended when there is parameter,

global or locally declared visibility.

Logs-completed

4

*

1

UML notation:

Language issues in Java / C++

1. Static features : Belong to a class rather than an object

2. Visibility of features

public : visible to objects of any type

private : not visible to any other objects

protected : visible to descendants

visible method (can be called

visible attribute (can be changed

UML notation

+
public

-
private

#
protected

static

[image: image11.wmf]Class Name

attribute

attribute : type

attribute : type = initial value

classAttribute

/derivedAttribute

...

method1()

method2(parameter list) : return type

abstractMethod()

+publicMethod()

-privateMethod()

#protectedMethod()

classMethod()

...

java.awt.Font

plain : Integer = 0

bold : Integer = 1

name : String

style : Integer = 0

...

+getFont(name : String) : Font

+getName() : String

...

java.awt.Toolkit

#createButton(target : Button) : ButtonPeer

...

+getColorModel() : ColorModel

...

system architecture:
beyond the domain layer
(chapter 22)

Classic three tier architecture

[image: image12.wmf]Record sales

Presentation

Application

Logic

Authorize

payments

Storage

Database

Object Store

Enter Item

End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

((((
In contrast a 2 tier architecture ends up with the application logic inside window definitions, and reads and writes directly to a database.

inhibits reuse of domain layer components

not possible to have a distributed system

Multitiered architecture ((3 tiers)
Isolate application logic into separate components which can be reused in other system

Distribute tiers on different machines

Allocate developers to specific tiers

UML Packages

Subsystems or groups of components

[image: image13.wmf]Presentation

Application

Logic

Storage

Database

Presentation

Domain

Services

Application logic layer can be decomposed into

domain objects

services (database, reporting, …)

Visibility between packages

for good design:

Domain packages: Other packages, especially presentation packages, have visibility into many domain classes.

Service packages: Other packages, typically domain packages, have visibility into classes of a service package
Very often only one, a Façade class

Presentation packages: No other packages have visibility into classes of a presentation package
Any communication is indirect.

Façade Pattern - Services Packages Interface

Façade pattern is typically used as interface to service packages.

(See later lecture)

Model View Separation Pattern
(no direct communication to windows)

Comes from Smalltalk80 where it was known as MVC

model
(
domain

view
(
presentation

MV separation says that model objects have no direct knowledge of view objects

	(
	1. domain objects do not display themselves
no io.put_string(description) in ProductSpec
2. domain objects do not send messages such as view.displayMessage(msg) to view objects

Motivation

· model definition is more cohesive – focus on the domain processes

· allows separate development of model and user interface

· changes to interface do not propagate to model

· allows new views to be added without changes to the model

· allows multiple simultaneous views

· allows processing with no user interface
(overnight batch runs)

· allows easy porting to other platforms

How do views update themselves?

1. Polling
view decides when to query the model for the information it needs

when a window opens

when a window regains focus

after a system event it initiates

on a regular basis

2. Indirect communication

Observer Pattern ("Design Patterns", chapter 5)

Also known as Publish / Subscribe

Basic idea is

view(s) tell the model that they exist (subscribe)

after change of state, model notifies view (publish)

on notification views query model for new data

	(
	1. Model has a method subscribe() which views use to attach themselves to the model.

2. Model has a method notify() which tells each view that it should update itself.

3. View has a method update() which the model calls when its state has changed.
What the view does with this is up to itself.

simple example of polling

get a bunch of items (UPC + description)

public class ItemWindow {

public ItemWindow (Catalog catalogue) {

catalog = catalogue;

getItems()

} // ItemWindow

private getItems() {

String upc;

String description;

boolean finished = false;

while (!finished) {

println("Enter UPC (empty to finish)");

upc = readLine();

if (upc.empty())

finished = true;

else {

println("Enter description");

description = readLine ();

catalogue.addItem(upc, description);

numItems = catalog.size();

println(numItems + "items in catalog");

}

} // getItems

} // class ItemWindow

publish / subscribe

abstract class Model {

private LinkedList views;

public Model() {

views = new LinkedList();

} // Model

public void subscribe(View v) {

views.add(v);

} // subscribe

private void notify() {

Enumeration e = views.elements();

while (e.hasMoreElements() {

v = (View) e.nextElement();

v.update(this);

}

} // notify

...

} // class Model
abstract class View {

public View() {

...

model.subscribe(this);

} View

abstract public update(Model model);

...

} // class View

— 18 —

_996911075.doc

_996914899.doc

_996915039.doc

_996911118.doc

_996910778.doc

_996672764.doc

