OOSD2000lect09.doc

the big picture

Classes

Methods

[image: image25.wmf]enterItem(UPC, quantity)

Cashier

Buy Items-version 1

system event "enterItem"

it triggers a system operation

likewise named "enterItem"

:System

[image: image2.wmf]

[image: image3.wmf]

Design Class
Diagrams

[image: image4.wmf]
Interaction
(Collaboration)
Diagrams

[image: image5.wmf]

[image: image6.wmf]

[image: image7.wmf]

Conceptual
Model

Contracts

[image: image8.wmf]

System Sequence
Diagrams

[image: image9.wmf]

Expanded
Use Cases

defining classes

Classes are defined by their behaviour
what they know

what they can do (ie their responsibilities)

what do they know?

what properties do they have?

what questions can they answer?

they know by

· stored values in the objects

· performing calculations

· asking other object(s)

what can they do?

what requests can be made to them?

will involve a change of state

they can do by

· changing their own state

· requesting changes in other objects

· control / co-ordinate changes in other object(s)

class behaviour

what classes know
(
conceptual model

what classes can do
(
interaction diagrams

adding methods (responsibilities) to classes

[image: image10.wmf]ClassName

attributes

methods

third section is for

methods

Basic problem

who has responsibility to do what?

how do you decide?

deliverable: collaboration diagram

Aim

solution that gives best quality

ease of maintenance

ease of reuse

there may be trade-offs

collaboration diagrams

(chapter 17)

Interaction diagrams

illustrate message interaction between instances (objects) in the class model

structured walkthrough of design
starting point is the contracts

two types of interaction diagrams

collaboration diagrams

sequence diagrams

we will use collaboration diagrams
more expressive

more contextual information

same information takes less space

[image: image11.wmf]Sequence Diagrams

Collaboration Diagrams

id 1: Class

id 2: Class

message()

message()

Contract

Name:

Responsibilities:

Class:

Cross-references:

Notes:

Output:

Preconditions:

Postconditions:

Contracts

id-1 : Class

id-2 : Class

1 : message1(parameter list)

2: [test] message2()

3a: [test2] message3()

firstMessage()

instance-name : Class Name

instance-name : Class Name

attribute = value

...

id-3 : Class

3b: [not test2] message4()

id-4 : Class

4 *: [i := 1..10] message5()

iteration clause

mutually exclusive

conditional clause

id-4 : Class

multiobject : Class

5 : message6()

ClassName 1

attribute

...

method()

...

TemplateClass

attribute

...

method()

...

Association-name

4

1

1..

*

Class Diagrams - Design View

navigability

T

template

parameter

message to the collection object

Examples

Collaboration diagram

[image: image12.wmf]:POST

:Sale

:Payment

makePayment()

1: makePayment()

1.1. create()

System diagram

[image: image1.wmf]
how to add methods (responsibilities) to classes

Collaboration diagrams are documentation.

Use patterns to help decide.

Pattern

problem

solution

+
consequence

Patterns

no new ideas

existing knowledge

learn from (others') experience

named

think at higher level of abstraction

better communication

reapplied in new contexts

reuse of design

We will use GRASP patterns (chapter 18).

grasp patterns

(chapter 18)

General Responsibility Assignment Software Patterns

patterns for assigning responsibility

· Expert

Creator

High Cohesion

Low Coupling

Controller

Expert

assign a responsibility to the information expert
– the class that has the information necessary to fulfil the responsibility.

who is responsible for knowing the grand total of a sale?

By expert, we ask "who has the information?"

conceptual model

[image: image13.wmf]Sale

date

time

Sales

LineItem

quantity

Product

Specification

description

price

UPC

Described-

by

*

Contain

s

1..

*

Need all SalesLineItem instances and their subtotals. Only Sale knows this, so Sale is information expert.

Hence

 [image: image14.wmf]Sale

date

time

total()

:Sale

t := total()

New method

But subtotals are needed for each line item
(multiply quantity by price).
Whose responsibility is that?

By expert, SalesLineItem is expert,
knows quantity and has association with ProductSpecification which knows price.

[image: image15.wmf]Sale

date

time

total()

:Sale

t := total()

sli:SalesLineItem

SalesLineItem

quantity

subtotal()

2: st := subtotal()

:Product

Specification

2.1: p := price()

Product

Specification

description

price

UPC

price()

New method

SalesLineItem

:SalesLineItem

1*: [for each] sli := next()

Hence responsibilities added to 3 classes

Class
Responsibility

Sale
knows sale total

SalesLineItem
knows line item subtotal

ProductSpecification
knows product price

Benefits of expert

· low coupling

· high cohesion

Creator

who has responsibility to create an object?

By creator, assign class B responsibility of creating instance of class A if

· B aggregates A objects

· B contains A objects

· B records instances of A objects

· B closely uses A objects

· B has the initializing data for creating A objects

where there is a choice, prefer

· B aggregates or contains A objects

Who is responsible for creating SalesLineItem objects?

Look for a class that aggregates or contains SalesLineItem objects.

[image: image16.wmf]Sale

date

time

Sales

LineItem

quantity

Product

Specification

description

price

UPC

Described-

by

*

Contain

s

1..

*

Creator pattern suggests Sale.

Collaboration diagram is

[image: image17.wmf]Sale

date

time

makeLineItem()

total()

:Sale

makeLineItem(quantity)

:SalesLineItem

1: create(quantity)

New method

Benefits of creator

· low coupling

Low coupling

Classes should communicate with as few other classes as possible.

[image: image18.wmf]
not

[image: image19.wmf]

(

(

Why is high coupling bad?

Effect of change or error may propagate to a large number of other modules.

See OOSC ch 3 for discussion of modularity.

Low Coupling

how can we make classes independent of other classes?

· changes are localised

· easier to understand

· easier to reuse

who has responsibility to create a payment?

[image: image20.wmf]Payment

POST

Sale

Two possibilities:

1. Post

[image: image21.wmf]:POST

p : Payment

:Sale

makePayment()

1: create()

2: addPayment(p)

2. Sale

[image: image22.wmf]:POST

:Sale

:Payment

makePayment()

1: makePayment()

1.1. create()

Low coupling suggests Sale because Sale has to be coupled to Payment anyway (Sale knows its total).

High cohesion

· All of the features of a class should work together to provide some well bounded behaviour.

· Class has a single responsibility

· The answer to "what is this class about" had no and in the answer.

Example of low cohesion.
"A class which looks after logging a user on and figuring out if user has any outstanding fines."

Classes should not be multi-skilled

Why is low cohesion bad?

Someone trying to understand it has to understand too much.

Low cohesion probably means high coupling.

High Cohesion

how can we keep complexity manageable?

how can we find a balance between

a few big classes which do too much

many small classes which don't do enough?

High cohesion: Classes with high cohesion have highly related responsibilities and which do not do too much work.

Test: If graph of features is not connected then you definitely have low cohesion.

Warning

It is possible to go too far.
Many small classes, each with high cohesion but their number makes the system too complex.

That would lead to high coupling.

See also Meyer's class rejection danger signals.

who has responsibility to create a payment?

1. Post

[image: image23.wmf]:POST

p : Payment

:Sale

makePayment()

1: create()

2: addPayment(p)

looks OK if makePayement considered in isolation, but as add more system operations Post would take on more and more responsibilities and become less cohesive.

2. Sale

Giving responsibility to Sale supports higher cohesion in Post, as well as low coupling.

[image: image24.wmf]:POST

:Sale

:Payment

makePayment()

1: makePayment()

1.1. create()

Benefits of high cohesion

· easier to understand

· easier to maintain

· often supports low coupling

· supports reuse because of fine grained responsibility

— 17 —

_996056971.doc

_1010814770.doc

_996056867.doc

_996056874.doc

_995893221.doc

_996056802.doc

_995893101.doc

