OOSD2000lect08

	Requirements
	→
	OOA
	→
	OOD
	→
	Implement / test

	(
	
	(
	
	
	
	

What we have

	Analysis Artefact
	Questions Answered

	Use cases
	What are the domain processes?

	Conceptual model
	What are the concepts, terms?

	System sequence diagrams
	What are the system events and operations?

	Contracts
	What do the system operations do?

design

In analysis we answer what questions.

In design we answer how questions.

Real use cases
(chapter 16)

Essential use cases are abstract.

They say what, not how.

They have to be translated into real use cases.
Implementation decisions have to be made.

"User identifies themselves" is abstract
Real use case says how they identify themselves.

May be formal – separate exercise of writing real use cases.
May be informal – nail down the details during implementation.

the big picture

	Classes
	
	Methods

	
[image: image17.wmf]Presentation

Application Logic

Storage

Database

Sale

Payment

DatabaseBroker

SecurityManager

-problem domain

 objects

-service objects

	
[image: image2.wmf]
	
[image: image3.wmf]

	Design Class
Diagrams
	
[image: image4.wmf]
	Interaction
(Collaboration)
Diagrams

	
[image: image5.wmf]
	
[image: image6.wmf]
	
[image: image7.wmf]

	Conceptual
Model
	
	Contracts

	
	
	
[image: image8.wmf]

	
	
	System Sequence
Diagrams

	
	
	
[image: image9.wmf]

	
	
	Expanded
Use Cases

Conceptual model (10.7)

[image: image10.wmf]POST

Item

Store

address

name

Sale

date

time

Payment

amount

Sales

LineItem

quantity

Cashier

Customer

Manager

Product

Catalog

Product

Specification

description

price

UPC

Stocks

*

Houses

1..

*

Used-by

*

Contains

1..

*

Describes

*

Captured-on

Contained-in

1..

*

Described-by

*

Records-sale-of

0..1

Started-by

Paid-by

Initiated-by

Logs-

completed

6

*

3

 Records-sales-on

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Class diagrams (21.10)

[image: image11.wmf]SalesLineItem

quantity : Integer

subtotal()

ProductCatalog

specification()

ProductSpecification

description : Text

price : Quantity

upc : UPC

Store

address : Address

name : Text

addSale()

Payment

amount : Quantity

Contains

1..

*

Contains

1..

*

POST

endSale()

enterItem()

makePayment()

Sale

date : Date

isComplete : Boolean

time : Time

becomeComplete()

makeLineItem()

makePayment()

total()

Captures

Houses

Uses

Looks-in

Paid-by

Describes

1

1

1

1

1

1

1

1

1

1

1

1

1

*

Logs-completed

4

*

1

finding classes

In analysis, we have concepts

correspond to real world entities.

In design we have classes

software artefacts

Some, but not all, concepts are modelled as classes.

[image: image12.wmf]POST

endSale()

enterItem()

makePayment()

Sale

date

isComplete : Boolean

time

makeLineItem()

Captures

Conceptual Model

POST

Sale

date

isComplete : Boolean

time

Captures

Design Class Diagram

Concept; abstraction

Software component

1

1

1

1

Some, but not all, classes model concepts.

categories of classes

(OOSC, chapt 22)

Analysis classes

Data abstraction from the problem domain.
Find classes in Conceptual Model.

Post

Catalogue

Implementation classes

Data abstractions used to implement algorithms.
Find classes in class libraries

LinkedList

Hashtable

Window

Button

Design classes

Data abstractions used to implement architectural choice.
Often concerned with communication between subsystems or layers

Classic 3 tier architecture

Presentation (user interface)

Application logic (problem domain)

Storage (database)

[image: image1.wmf]How to keep them as independent as possible but still allow communication?

Design classes: Data abstractions used to implement architectural choice.
Often concerned with communication between subsystems or layers

Find classes in Design Pattern catalogues

Command

Façade

Momento

class rejection

(OOSC, chapt 22)

	Danger signals
	Why suspicious

	A class whose name is a verb
	May be a method, not a class.

	A class with only 1 public method
	May be a method, not a class.

	A class described as "performing something"
	May not be a proper data abstraction.

	A class with no methods
	May be a piece of information, not an ADT.

	Class inheriting from another, but no or few new features
	May be a case of "taxomania".

	Class covering several abstractions
	Should be split into several classes
one per abstraction.

assigning responsibilities

(chapter 18)

Who has the responsibility

to create an object?

to do the printing?

to calculate the subtotal?

A payment object has to be created at the end of a sale

1. POST creates the payment

[image: image13.wmf]:POST

p : Payment

:Sale

makePayment()

1: create()

2: addPayment(p)

2. Sale creates the payment

[image: image14.wmf]:POST

:Sale

:Payment

makePayment()

1: makePayment()

1.1. create()

The details of a sale have to be printed

1. Sale does the printing

[image: image15.wmf]:Sale

print()

2: print()

sli:SalesLineItem

implies Sale objects have a

responsibility to print

themselves

SalesLineItem

:SalesLineItem

1*: [for each] sli := next()

2. User interface object does the printing

Sale provides the details

Who calculates the subtotal of a sale?

1. SalesLineItem calculates its own subtotal

[image: image16.wmf]Sale

date

time

total()

:Sale

t := total()

sli:SalesLineItem

SalesLineItem

quantity

subtotal()

2: st := subtotal()

:Product

Specification

2.1: p := price()

Product

Specification

description

price

UPC

price()

New method

SalesLineItem

:SalesLineItem

1*: [for each] sli := next()

2. Sale calculates the subtotals

asks SaleLineItem for quantity

asks ProductSpecification for price

does the arithmetic

patterns

A pattern is a named description of a problem and its solution which can be applied in new contexts.

The term "design pattern" originated with Alexander in the context of architecture, where he stated that

“Each pattern describes a problem that occurs over and over again in our environment and then describes the core of the solution to that problem in such a way that you can use this solution a million times over without ever doing it the same way twice.”

Patterns

no new ideas

existing knowledge

learn from (others') experience

named

think at higher level of abstraction

better communication

reapplied in new contexts

reuse of design

design patterns

“Designing object oriented software is hard, and designing reusable object oriented software is even harder”

“Design Patterns - Elements of Reusable Object Oriented Software”
Gamma, Helm, Johnson, Vlissides
A/W 1995

Expert designers don’t solve every problem from first principles. They reuse solutions that have worked in the past. When they find a good solution, they reuse it.

Patterns of classes and communicating objects recur in many object oriented systems.

Patterns solve design problems and make object oriented designs more flexible, elegant and ultimately reusable.

If you are familiar with patterns you can apply them immediately to design problems.

Gamma, et al, describe 23 design patterns in their book.

iterator

Problem:
You have a collection of objects such as a list.

you want to traverse the list in different orders

you may in the future have to traverse the list in a new order that you haven't anticipated

you may in the future decide to change the representation of the collection to something different such as an array

Solution:
Create a separate object which has the responsibility of access and traversal of the collection.

The class will have an interface for accessing the elements of the collection:

first

next

isDone

currentItem

Benefits:

· supports variations in the traversal of the collection

· simplifies the collection's interface

· can have more than one traversal operating on the aggregate

Java's Enumeration interface is one way of implementing an iterator. (Hashtable has 2 enumerations. one for objects and one for keys>)

Enumeration in Hashtable

The iterator pattern is implemented in the Java Hashtable. There are two enumerators, one for keys and one for values.

Hashtable table= new Hashtable();

table.put(“one”, new Integer(1));

table.put(“two”, new Integer(2));

Enumeration keys = table.keys();

while (keys.hasMoreElements()) {

System.out.println(“Key is “ +

 keys.nextElement());

}

Enumeration values = table.values();

while (values.hasMoreElements()) {

System.out.println(“Values “ +

Values.nextElement());

}

Enumeration has been replaced by Iterator in newer collection classes

Make

Make is a tool for managing compilation of large collections of source files. It makes use a file called Makefile, which manages a list of dependencies. For example, to compile a Java .class file from a source .java file, a Makefile could contain

MyMath.class : MyMath.java

javac MyMath.java

The first line is a dependency, the following line (indented by a tab) is an instruction of what to do to bring the .class file up-to-date when the source is newer (has been edited).

Make can use rules to avoid lots of repitition. The rule to compile a Java source file is

%.class: %.java

javac $<

where $< means the filename on the right-hand side of the dependency rule

The complete Makefile for the example is

%.class: %.java

javac $<

all: MyMath.class

You can use variables to make things easier to read and change

JAVAC = N:\\Student\\java2\\bin\\java

CLASSPATH = N:\\Student\\java2\\lib\\tools.jar

CLASSES = MyMath.class

%.class: %.java

$(JAVAC) –classpath $(CLASSPATH) $<

all: $(CLASSES)

iContract

To run iContract, the simplest is

java com.reliablesystems.iContract.Tool \

MyMath.java

This also needs

· the classpath set to find the class files for iContract

· the name of a file to write the file with contract info

· what assertions are being tested

· whether to compile the output file

This looks like

java com.reliablesystems.iContract.Tool \

-c –mpre,post –otest/MyMath.java \

MyMath.java

A Makefile to compile the original, to build the instrumented file amd to compile that too is
Your Java compiler and runtime

JAVAC = n:\\Student\\java2\\bin\\javac

JAVA = n:\\Student\\java2\\bin\\java

Compile flags

JFLAGS = -g

CLASSPATH = \ .;N:\\Student\\iContract\\iContract.zip;\

N:\\Student\\java2\\lib\\tools.jar

%.class: %.java

$(JAVAC) $(JFLAGS) –deprecation \

-classpath $(CLASSPATH) $<

$(JAVA) -classpath $(CLASSPATH) \

 com.reliablesystems.iContract.Tool \

 -otest/$< \

 -c -mpre,post $< \

$(JAVAC) $(JFLAGS) -deprecation \

 -classpath $(CLASSPATH) test/$<

CLASSES = \

MyMath.class

all: $(CLASSES)

— 21 —

_996056971.doc

_1010814770.doc

_996056867.doc

_996056874.doc

_996056802.doc

