OOSD2000lect07.html

Proving things correct

We use assertions mainly in testing. In a fully tested routine it should be possible to formally prove

pre + body  post

We do not go to this extent.

The class invariant should be true after every (exported) routine. Else the object is invalid. However, it should be possible to deduce it from the pre and post conditions and the fact that the class invariant was true before the routine was entered.

That is

class inv + pre + post  class inv

Example:
In an Account, balance must be positive

Consider a withdrawal

old bal  0
(class invariant)

amt <= old bal
(pre)

bal = old bal - amt
(post)


bal  0
(class invariant)

Example:
In an Committee there is a maximum of 8 members.

Consider adding a member

old count < 8
(pre)

count = old count + 1
(post)


count < 8 + 1


count <= 8
(class invariant)

Proof of correctness

Proof of correctness attempt to prove programs correct by starting from a set of assumptions (pre conditions) and proving a set of requirements (post conditions) using logic on all of the program statements between.

Design by Contract borrows ideas from proof of correctness and uses them to test whether programs are correct. (This is not proving programs correct - it only tests the current data.)

Eiffel Syntax

<routine_name> is

require

preconditions

do

body of routine

ensure

postconditions

end -- <routine_name>

The require and ensure parts are optional

pre and post are lists of one or more assertions

Java does not have support for Design by Contract built into the language. There is a tool called iContract which adds Design by Contract facilities to Java.

dealing with abnormal situations

(See OOSC, chapter 12)

Exceptions - abnormal situations:

much written about triggering exceptions

little written about handling exceptions

Starting point : Design by contract
"Failure" is the basic concept.
"Exception" is a derived notion.

An exception occurs when a certain strategy for fulfilling a routine's contract has not succeeded. This is not yet a failure - there may be an alternate strategy.

exceptions

What can go wrong?:

·
assertion is violated

·
called routine fails

·
void reference

·
hardware violation

·
interrupt

network call fails

Underlying causes

·
bug in software

·
machine can't carry out operation

problem in network

Exception handling policy

Starting point: design by contract

Either
a routine succeeds
or

a routine fails

It does not (appear to) do both

See Ada example at end of this lecture

An exception is the occurrence of an event that prevents a component from fulfilling the current execution of its contract.

Disciplined exception handling policy

If an exception occurs during the execution of a routine

1.
Retry: Try another strategy to fulfil the contract.

2. Failure: If you can't fulfil the contract, try to return objects into an acceptable state, and signal failure to the client.

1. Retry

a) Try another strategy to fulfil the contract
example: Searching through a list. You may start from last position. That works well most of the time. If it fails, you resort to starting from the beginning of the list - slower but surer.

b) Retry the same routine
example: Reading from a noisy line or a corrupted disk, you may simply retry.

2. Failure (organized panic)

clean up environment

report failure to the client

Key point is to let the caller know. Generally by raising an exception, if the language permits it.

Cleaning up: May not have to do anything, but may have already changed some variables and have to change them back.

summary

Correctness

Every component must have a well defined task.
It does it all and it does it only.

Design by contract

every routine has pre and post conditions

preconditions bind the client

postconditions bind the server

class invariants

relate to the global properties of a class

at the analysis/specification level they correspond to 'business rules'.

Class invariants together with pre and post conditions capture the semantics of a class.

If they are done well enough, they will completely specify a class and it's behaviour.

Exceptions

Occurrence of an event that prevents a routine from fulfilling its contract.

Indicates a bug in the software.

Comment and response about exceptions (Ada vs Eiffel)

Subject: Re: Exceptions: Are they a Bad Thing?

Date: 20 Feb 1994 18:02:17 GMT

Bertrand Meyer (bertrand@eiffel.com) wrote:

> 2. More generally, it is important to understand the rationale for the Eiffel approach, which is widely documented in publications on the Design by Contract principle. The idea, which I believe is sound, is to separate two tasks:

> - Doing the routine's job: this is the role of the body

> (the `do' clause).

> - Recovering from an abnormal situation: this is the role of the

> Rescue clause.

Comment by Marc Wachowitz

> It isn't really true that an exception e.g. in Ada disappears without notice; the exception will be propagated to the next (i.e. dynamically enclosing) handler until it is handled, or will abort the main program if there is no appropriate handler.

Meyer's response

Sorry, but this is not quite correct. It is possible in Ada to include a `return' in an `exception' clause. And not only is this scheme possible, it figures prominently in at least one elementary textbook, which I quoted in the book chapter ``Design by Contract'' (pp. 1-50 of ``Advances in Object-Oriented Software Engineering'', eds. Mandrioli & Meyer, Prentice Hall, 1991). The extract quoted there is from the textbook ``Software Development with Ada'' by Ian Sommerville and Ron Morrison, Addison-Wesley, 1987; it is a routine for computing the square root of a real number, which appears essentially as this:

sqrt (n: REAL) return REAL is begin

if x < 0.0 then

raise Negative;

else

normal_square_root_computation;

end if;

exception

when Negative =>

put ("Negative argument");

return;

when others => ...

end sqrt

This is rather hair-raising: In case you get a negative value you trigger an exception which the routine immediately catches, and handles by just returning, without signalling the error to the caller!

(Considering what Ada is about, the caller might be, let's say, a missile trajectory computation, which is typical of the kind of algorithm that may need a square root. To paraphrase what Tony Hoare wrote in a different occasion, but also about the Ada exception handling mechanism, the question is whether the general will see the nice message "Negative argument" before or after being hit by the missile that was initially meant for the other side.)

This example shows exactly what Mr. Wachowitz's message calls ``an exception [that] disappears without notice''.

It is possible, of course, to claim that the culprit, more than the Ada mechanism, is its use in the quoted example. Remove the `return' and you have a more decent routine, which when unable to fulfil its contract will pass on the exception to its caller. But the point of good language design is precisely to support good software design. Here we instead have a language construct that seems to invite horrors such as the above. What can we expect of the Ada programmer-in-the-street if even experienced and respected textbook authors can be fooled in this way?

[Note: it is clear that the example quoted was written somewhat too fast by the authors of the quoted textbook. In particular `return' for a function should include a return value. The point is not to ridicule the authors of that textbook, a perilous exercise anyway on the part of someone who writes write books himself, and hasn't yet found affordable anti-blunder insurance. But it is fair to take this example as representative of an area where the language design does not provide the support that it should. Besides, the example is a direct refutation of Mr. Wachowitz's point quoted above.]

What we will be doing

During design

Determine pre and post conditions for all functions

Determine class invariants for all classes

During implementation / testing

Test all assertions

Raise an exception if any assertion fails

we won't

Write code to recover from the failure of an assertion.

The failure of an assertion is a bug.
We fix the bug - we don't condone it.

During production

Switch off assertion testing

Buy Items use case (Post is use case controller)

End Sale system event

Contract for end sale

Preconditions
sale is under way

sale is not complete

Postconditions
sale is complete

Collaboration diagram for endSale()

[image: image1.wmf]:POST

endSale()

:Sale

1: becomeComplete()

by Expert

by Controller

becomeComplete()

{

 isComplete := true

}

Post

endSale()

pre:

saleUnderWay()

! saleComplete()

post:
saleComplete()

Sale

becomeComplete()

pre:

! isComplete()

post
:
isComplete()

Implementation

Sale will have a boolean variable complete.

Post has to know

whether a sale is under way

whether a sale which is under way is complete

Three ways to implement in Post

1. 2 boolean variables, saleStarted, saleComplete

2. one boolean variable, saleStarted, and ask sale whether it is complete

3. no boolean variables - if sale is not under way, post's sale attribute is null.

corresponding postcondition on makePayment()

1. saleStarted, saleComplete are both false

2. saleStarted is false

3. sale = Void

Enter Item system event

Contract for enter item

Preconditions
UPC is valid; quantity > 0

UPC is known to system

Postconditions
If a new sale, a Sale was created

If a new sale, the new Sale was associated with the POST

A SaleLineItem was created

The SaleLineItem was associated with the Sale

SaleLineItem.quantity was set to quantity

The SaleLineItem was associated with a ProductSpecification, based on UPC match

Collaboration diagram for enterItem()

[image: image2.wmf]1: [new sale] create()

3: makeLineItem(spec, qty)

enterItem(upc, qty)

2: spec := specification(upc)

3.1: create(spec, qty)

2.1: spec := find(upc)

:POST

:Sale

:Product

Catalog

sl: SalesLineItem

SalesLineItem

:SalesLineItem

:Product

Specification

1.1: create()

3.2: add(sl)

Post

enterItem(upc, quantity)

pre:

quantity > 0

upc /= Void

productCatalog.hasUPC(upc)

ProductCatalog

hasUPC(upc)

pre:

upc /= Void

post
:
productSpecns.containsKey(upc)

ProductCatalog

specification(upc)

pre:

upc != null

productSpecns.containsKey(upc)

post
:
result == productSpecns.get(upc)

- 16 -

