OOSD2000lect04.doc

Requirements → OOA → OOD → Implement / test

requirements

· overview

(
· customers

· goals

· system functions
(
· system attributes

use cases

High level use cases; expanded use cases

Essential use case; real use case

analysis

Conceptual model

identify concepts

(
associations

(
attributes

(
glossary

(
sequence diagrams

contracts

Concepts

"real world" things

not software components

have attributes, but no operations

conceptual model – attributes

(chapter 11)

Concepts

real world entity, not software component

Attributes

remembered information implied by use case

e.g. date and time of Sale

UML notation

Sale

Sale

date

time
or
date : Date

time : Time

(Type is optional)

Attributes

Simple attributes or pure data types

Boolean, Number, String, Date

Address, UPC, PostCode

may be non-primitive

UPC is more than String

Address is more than Sting, or list of Strings

Not references to other objects (or foreign keys)

(they come in code, but later)

[image: image1.wmf]Flight

Flight

destination

Worse

Better

Flies-to

Airport

1

1

destination is a complex

concept

Attributes in POST model

POST

Item

Store

address : Address

name : Text

Sale

date : Date

time : Time

Payment

amount : Quantity

ProductCatalog

ProductSpecification

description : Text

price : Quantity

upc : UPC

SalesLineItem

quantity : Integer

Cashier

Customer

Manager

conceptual model with attributes

[image: image2.wmf]POST

Item

Store

address

name

Sale

date

time

Payment

amount

Sales

Lineitem

quantity

Cashier

Customer

Manager

Product

Catalog

Product

Specification

description

price

UPC

Stocks

*

Contains

1..

*

Used-by

*

Contains

1..

*

Describes

*

Captured-on

Contained-in

1..

*

Described-by

*

Records-sale-of

0..1

Started-by

Paid-by

Initiated-by

Entered-by

Used-by

Logs-

completed

*

Larman fig 11.9

glossary

Definitions of terms

Define all terms that require clarification

POST glossary

Term
Category
Comments

Buy Items
use case
Description of a process of a customer buying items in a store

ProductSpecn.
description : Text
attribute
Short description of an item in a sale and its ProductSpecification.

Item
type
Item for sale in a store.

Payment
type
A cash payment.

ProductSpecn.
price: Quantity
attribute
Price of an item in a sale and its ProductSpecification.

SaleLineItem.
quantity: Integer
attribute
Quantity of one king of Item bought.

Sale
type
A sales transaction

Term
Category
Comments

SaleLineItem
type
Line item for a particular item bought in a Sale.

Store
type
Place where sales occur.

Sale.total : Quantity
attribute
Grand total of sale.

Payment.amount: Quantity
attribute
Amount of cash tendered by customer for payment.

ProductSpecn.
upc : UPC
attribute
Universal product code of the Item and its ProductSpecification.

Relationships in analysis (Review)
1. Generalization-specialization / Classification

SYMBOL 183 \f "Symbol" \s 10 \h
"is-a"

a kestrel is a bird

commodore is a car

2. Association
Named relationship

SYMBOL 183 \f "Symbol" \s 10 \h
"uses-a" (often)

a ship uses a port

a company employs an employee

sometimes called "acquaintance"

3. Aggregation

SYMBOL 183 \f "Symbol" \s 10 \h
"has-a"
"consists-of"

a car has an engine

Aside 1:

Sometimes difficult to decide between association and aggregation

a country has a capital

determined more by intent than explicit language mechanism

Aside 2:

aggregation or attributes?

In some models, an engine may just be an attribute of a car,
in others it will be a separate entity (object).

Transition from analysis to design (OO)

Generalization
SYMBOL 174 \f "Symbol"
Inheritance

Association

SYMBOL 174 \f "Symbol"
Reference

Aggregation

SYMBOL 174 \f "Symbol"
Reference

Value

inheritance

Suppose you have an Employee class.

It has features such as

name

address

phone

id

position

leaveRemaining

setAddress(newAddress)

takeLeave(days)

Now you find that you need an Academic class which has everything in an employee class plus some extra features

subjects

studentsSupervising

You could create a new class which is distinct from Employee. You would duplicate all that is in Employee and add the extra features.

Not much extra work in the duplication (cut and paste).

But consider maintenance: If you had to add an email feature, with methods setEmail and getEmail. You would have to do it in 2 places.

Extra work (not a great deal), plus opportunity for mistakes

forget to make changes one of the classes

change both classes, but changes not quite the same

Should only have to make changes in one place

Localisation of change is the key to the ease of change of software

Inheritance

Make Academic a special type of Employee.

[image: image3.wmf]Employee

name

address

Academic

subjects

Then Academic contains all of the features in Employee + any extra that have been added.

Any changes to Employee are also propagated to Academic.

Implementing in Eiffel

class EMPLOYEE

creation

make

feature

-- features of EMPLOYEE

end -- class EMPLOYEE

to inherit use the keyword inherit
class ACADEMIC

inherit EMPLOYEE

creation

make

feature

-- features of ACADEMIC not in EMPLOYEE

end -- class ACADEMIC

Open Closed Principle
(OOSC, chapter 3)

A module is open if it is available for extension.

A module is closed if it is available for use by other modules.

Software should be open. It is impossible to foresee all of the features it will need in its lifetime.

Software should be closed. Other modules will need to use it.

Software should be both open and closed

Inheritance allows an elegant way of allowing software to be open and closed. Consider if a module 'nearly' does everything required. Without inheritance, the only options are change or copy. With inheritance, leave the existing module as it is, and the new one inherits from it.

abstract classes

(Read OOSC on behaviour classes, particularly 684-688, 848-850.)

Classes in which one or more features are abstract.
These features will be defined in a descendant.

Example

deferred class EMPLOYEE

feature

make

name STRING

make (a_name : STRING) is

do

name := a_ame

end -- make

weekly_earnings : REAL is

deferred

end -- weekly_earnings

end -- class EMPLOYEE

Every employee will have weekly_earnings, but they will be calculated differently. So the weekly_earnings function can't be implemented. It has to be implemented for each descendent.

Staff have an annual salary, so

class Staff

inherit EMPLOYEE end
creation

make

feature

annual_salary : REAL

weekly_earnings : REAL is

do

Result := annual_salary / 52

end -- weekly_earnings

end -- class STAFF

Sales people get paid by commission, so

class Sellers

inherit EMPLOYEE end
creation

make

feature

sales, commission : REAL

weekly_earnings : REAL is

do

Result := sales * commission

end -- weekly_earnings

end -- class SELLERS

There can be no objects of type EMPLOYEE. They wouldn't know how to calculate weeklyEarnings.

But abstract classes are an important and powerful design technique in OO. They can significantly improve the ease of maintenance of OO software.

java interfaces

Java does not support multiple inheritance

(one of its main weaknesses as an OO language)

Java goes part of the way with Interfaces
Interface

all methods are abstract

(but they have signatures)

any variables must be

initialized

final

static
Interfaces are skeletons of classes showing what form the class will take when it is implemented.

Writing an interface

interface X {

public void a(int b);

public int c();

public static final int d = 4;

}

Implementing an interface

public class A implements B

Inheriting from a superclass

public class A extends B

A can only extend one superclass

A is (typically) a specialization of B

Inherited functions can be abstract or concrete. Only abstract ones need to be implemented.

Implementing an interface

public class A implements B ...

A can implement several interfaces

No implication that A is a specialization of B

All functions in interface will be abstract and so must be implemented.

The Enumeration interface

Part of the Java class libraries.

Provides a way of stepping through a collection.

Has methods

hasMoreElements()
are there any more elements in the enumeration?

nextElement()
retrieves the next element in the enumeration.
(and moves the pointer along one in the enumeration)

Used in Hashtable, Vector, StringTokenizer,

Hashtable class has methods

elements()
returns an enumeration of all of the elements in a hash table

keys()
returns an enumeration of all of the keys in a hash table

to print all of the elements in a hash table

for (Enumeration elts = table.elements();

elts.hasMoreElements();) {

System.out.println(elts.nextElement());

}

to print all of the keys in a hash table

for (Enumeration keys = table.keys();

key.hasMoreElements();) {

System.out.println(keys.nextElement());

}

What has this gained us?

Once we know how to step through the elements in a Hashtable, we know how to step through the elements in a Vector, a StringTokenizer, etc.

If we write our own collection class, we can implement Enumeration and iterate through it in exactly the same way.

The biggest learning task in an OO language is not learning the language syntax, but learning the class libraries. Well designed class libraries can reduce this cognitive load.
The Enumeration interface in the Java libraries is an example.

— 16 —

_994841560.doc

Employee

name

address

Academic

subjects

