OOSD2000lect02.doc

the road ahead

Classes

Methods

[image: image1.wmf]

[image: image2.wmf]

[image: image3.wmf]

Design Class
Diagrams

[image: image4.wmf]
Interaction
(Collaboration)
Diagrams

[image: image5.wmf]

[image: image6.wmf]

[image: image7.wmf]

Conceptual
Model

Contracts

[image: image8.wmf]

System Sequence
Diagrams

[image: image9.wmf]

Expanded
Use Cases

Example

dice game

[image: image10.wmf]

throw two dice,

if total = 7 you win, else you lose

use case

description of a process in the domain

Use case
Play a game

Actors
Player

Description
Player picks up and rolls the dice. The player wins if the total is 7.

Conceptual model

Concepts – entities recognised in the external world

player

die

dice game

[image: image11.wmf]Player

name

DiceGame

Die

faceValue

Rolls

Plays

Includes

2

2

1

1

1

1

collaboration diagrams

show flow of messages between objects

[image: image12.wmf]:Player

d1 : Die

d2 : Die

play()

1: r1 := roll()

2: r2 := roll()

class diagrams

software components, not external world concepts – but may model concepts

[image: image13.wmf]Rolls

Plays

Includes

2

2

Player

name

play()

Die

faceValue

roll()

DiceGame

initialize()

1

1

1

1

Reading

Applying UML & Patterns

part 1, browse

chapters 4 and 5

Object Oriented software Construction

version 1, chapters 1-4 or
version 2, chapters 1-5

class DIE

feature { ANY } -- Queries

face_value : INTEGER

feature { ANY } -- Operations

roll is

local

now : NOW

do

!!now

face_value := (now.second \\ 6) + 1

end -- roll

end -- class DIE

Comment

Use time of day (now.second) to act as a random number.

class PLAYER

creation

MAKE

feature { ANY } -- Queries

name : STRING

die1, die2 : DIE

feature { ANY } -- Operations

make (name_in : STRING) is

do

name := name_in

!!die1

!!die2

end -- make

play is

do

die1.roll

die2.roll

end -- play

end -- class PLAYER

class DICE_GAME

creation

MAKE

feature { ANY } -- Queries

p : PLAYER

die1, die2 : DIE

won : BOOLEAN is

do

Result :=

(die1.face_value + die2.face_value) = 7

end -- won

feature { ANY } -- Operations

make (player_in : PLAYER) is

do

p := player_in

die1 := p.die1

die2 := p.die2

end -- make

end -- class DICE_GAME

Point of Sale Terminal

use cases

(chapter 6)

Narrative describing a sequence of events of an actor who uses a system to complete a process.

Not requirements, but illustrate and imply requirements.

Actors are external to the system

Use cases may be

high level or expanded

essential or real

High level use case

concise description of process

Use case
Buy Items

Actors
Customer, Cashier

Type
primary

Description
Customer arrives at checkout with items to purchase. Cashier records purchase items and collects payment. On completion, Customer leaves with items.

Expanded use case

· more details

· includes typical course of events

· may include alternatives

Use case
Buy Items with Cash

Actors
Customer (initiator), Cashier

Purpose
Capture a sale and its cash payment

Overview
Customer arrives at checkout with items to purchase. Cashier records purchase items and collects payment. On completion, Customer leaves with items.

Type
primary

Cross References

Typical course of events

Actor Action
System Response

1. Use case begins when a Customer arrives at POST checkout with items to buy.

2. Cashier records identifier of each item.

If several of same item, Cashier can enter quantity.
3. Determines item price and adds item info to transaction.

Description and price of current item presented.

4. On completion of item entry, Cashier tells POST that item entry is complete.
5. Calculates and presents the sale total.

6. Cashier tells Customer the total.

7. Customer gives Cashier at least enough cash.

8. Cashier records the cash received amount.
9. Shows change to be given to customer.

Generates a receipt.

10. Cashier deposits cash received and extracts balance.

Cashier gives change and receipt to Customer.
11. Logs the completed sale.

12. Customer leaves with items purchased.

types of use case

Primary:
Major common processes
(buy items)

Secondary:
Minor or rare processes
(stock new item)

Optional:
May not be implemented.

(product recall)

use case diagrams

[image: image14.wmf]Cashier

POST

Buy Items

Customer

Log In

Refund Purchased

items

System boundaries

Use case interaction with system

Must know system boundary

If boundary was store:

[image: image15.wmf]Store

Buy Items

Customer

Refund Purchased

items

use cases

· Actors are external to the system

· Use case is about a process (buy items), not a step (write receipt)

· Identifying use cases

Actor based

1. identify actors

2. for each actor, identify processes

Event based

1. identify external events

2. relate events to actors

Alternate opinion on use cases

(Meyer, OOSC pp 738-740)

· Use cases not appropriate for analysis in general, and finding classes in particular.

· They focus on process rather than data abstraction.

· They are appropriate as a validation tool – to inspect a proposed analysis model.

essential use case

Use cases expressed in a way that does not imply an implementation.

examples

Essential
Real

go to the shop
ride your bike to the shop

hang the clothes on the line

wash the dishes

send a letter to the customer saying that the goods have arrived

[image: image16.wmf]Essential

very abstract

Real

very concrete

Use Case Degree of Design Commitment

Essential use case

Actor Action
System Response

13. The customer identifies themselves.
14. Presents options.

Real use case

Actor Action
System Response

15. The customer inserts their card.
16. Prompts for PIN.

17. Enters PIN on keypad.
18. Displays options menu.

development cycles

(chapter 7)

The first version of the software may not implement everything.

· whole system is too complex

· some parts less important

· may want to get something working quickly

So, several versions, each with its own development cycle.

Requirements → OOA → OOD → Implementation

OO paradigm supports incremental development

What goes in the first version?

Rank use cases

First version implements higher ranking use cases

How to rank use cases

rank use cases higher if they

a) have significant impact on architecture
(add many classes or extra layer such as persistence)

b) give significant insight into design with little effort

c) require risky, time-critical or complex functions

d) involve significant research or new and risky technology

e) represent core business

f) have impact on “bottom line”
(more revenue, reduce costs)

Ranking POST use cases

Rank
Use Case
Justification

High
Buy Items
Scores on all except d)

Medium
Add new users

Log in

Refund items
Affects security domain

Affects security domain

Core business, affects accounting

Low
Cash out

Start up

Shut down
Minimal effect on architecture

Depends on other use cases

Minimal effect on architecture

Start up use case

Need at least a simplified version to get going.
eg create an empty store

Start up developed incrementally to satisfy other use cases as they are included.

Where we are

Requirements → OOA → OOD → Implementation

(

— 1 —

_996056971.doc

_1010814770.doc

_1007458552

_996056867.doc

_996056874.doc

_996056802.doc

